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ABSTRACT 
This p,aper presents a study of the nature of optimal quan- 
tiser/dequantiser pairs for use with binary symmetric chan- 
nels with moderate to high error rates. It is well known 
that some codewords of such quantisers are never output, 
because there is always another codeword with lower ex- 
pected distortion. This paper investigates how high the bit 
error rate must be for this phenomenon to occur. It also 
investigates the nature of optimal quantisers for extremely 
noisy channels, in which the error probability is almost 1/2. 

1. INTRODUCTION 
Quantisation is an important aspect of signal processing 
for multimedia signals such as audio and video, forming a 
key component of many compression techniques. Tradition- 
ally quantisation schemes are optimised for use with noise- 
less channels, which do not introduce errors into the digital 
data. However with the increased use of highly noisy chan- 
nels in :such areas as mobile communications, channel noise 
can no llonger be ignored. Much work has already been done 
on quantisation for use with noisy channels [l-91, although 
work has primarily focused on vector quantisation [l-51 
rather than scalar quantisation, which is discussed here. 
A major contribution was made by Farvardin [3, 81, who 
presented an algorithm for finding locally optimal quantis- 
ers for a range of channel conditions. In [SI, it was found 
that as the error rate of a binary symmetric channel in- 
creases, some of the codewords are never output by an op- 
timal qnantiser, i.e., the expected distortion is always lower 
when a different codeword is transmitted. These are known 
as redundant codewords. This result was extended to the 
vector case in [3]. This paper will use a powerful optimisa- 
tion technique to investigate the bit error rate at  which this 
first occurs for a range of quantiser resolutions, transmitting 
over binary symmetric channels. In particular, the result 
has previously only been demonstrated for comparatively 
high bit error rates, but results in this paper indicate that 
for realistic quantisers with 8 bits/sample, the phenomenon 
occurs ,at quite modest error rates of under Section 2 
introduces some notation and describes the algorithm used 
in [SI, and Section 3 describes the extended algorithm used 
in this paper. Simulation results are presented in Section 4. 
Section 5 describes the nature of quantisers in the presence 
of very high bit error rates. 

12. NOTATION AND PRIOR WORK 
In [SI, Farvardin proposed a generalisation of the Lloyd-Max 
algorithm [lo] to the case of noisy channels. This algorithm 
will be described using the following notation. Let x be the 

input to the quantiser. Let U be the output of the quan- 
tiser for input x. Let V be the channel output when U is 
transmitted over a noisy channel, V is the output. When 
V is input to the dequantiser, the output (reconstruction 
level) is 2 .  These are all random variables, but U is a de- 
terministic function of x, and f is a deterministic function 
of V. Let ui, vi and gibe instances of U and V and f 
respectively. Let E[2Iui] = E[?lU = ui] be the expected 
output given that codeword ui is transmitted, and define 
other expectations analogously. The algorithm iteratively 
finds fi and the encoding thresholds, ti. Each iteration can 
be stated as follows [SI: 

Calculate E [ f J u i ]  and E[P21ui] for each i. 
Renumber the codewords and reconstruction levels 
such that E[?iui] 
Calculate thresholds ti = minj>i(Tij), where 

E[?luj] if i < j. 

If j > i + 1, the codewords U k ,  i < IC < j ,  are unused 
Calculate 2; = E[xlwj] 

3. OPTIMISATION TECHNIQUE 
The algorithm described in [SI uses the generalised Lloyd- 
Max algorithm to generate locally optimal quantisers. This 
study uses a more powerful technique, based on the obser- 
vation that, for a given codeword assignment, the design of 
quantisers for smooth input distributions is comparatively 
free of local minima. The task is thus to find the codeword 
assignment which minimises the expected coding error. An 
n bit quantiser has (2n)!  possible codeword assignments, 
making the optimisation very difficult for moderate n. The 
task is simplified by using symmetry: two codeword assign- 
ments are equivalent if one can be obtained from the other 
by reordering the bits or by inverting the i th bit in ev- 
ery codeword, giving around (2”)!/n!2” distinct orderings. 
From these, an ordering was sought using an extension of 
pseudo-gray coding for vector quantiser codeword assign- 
ment [6]. This takes a “seed” codeword assignment, and 
evaluates all perturbations obtained by interchanging pairs 
of codewords. If a better assignment is found, the procedure 
begins again with that as the seed. The algorithm used here 
has three main differences. First, for each codeword assign- 
ment the entire quantiser is re-computed. Second, once all 
of the perturbations are tested, the procedure is not only 
repeated if a better assignment was found, but instead it is 
repeated on the best k assignments found so far (typically 
k = 5). 
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The third difference between the algorithm used and 
pseudo-gray coding is that a much richer range of pertur- 
bations is used, rather than merely interchanging pairs of 
codewords. As well as these small perturbations, it also in- 
cludes larger perturbations which still retain much of the 
codeword ordering information. The actual perturbation 
used is as follows: From the set (0 , .  . . n - l} of bit posi- 
tions, select two disjoint subsets, SI and s2. Select a par- 
ticular pattern of 1s and Os, p l ,  for the bits in si. For all 
codewords such that the bits in positions 5-1 match the pat- 
tern PI, invert the bits in positions s2. This causes the new 
codeword assignment to have similar bit patterns to the pre- 
vious. For example, natural binary code may be perturbed 
to folded binary code by selecting si = {n  - 1) to be the 
most significant bit, p l  to be 1, and s2 = ( 0 , .  . . n - 21 to 
be all of the bits except the most significant. 

The overall algorithm can be summarised as follows: 

1 Initialise a set of “best” codeword assignments, P ,  to 
contain only the natural binary code 

2 while there is a codeword assignment in P which has 
not been used as a seed 
2.1 Select the unchecked codeword assignment, a E P ,  

with lowest MSE as the seed 
2.2 foreach perturbed codeword assignment, a’ 

2.2.1 Perform iterations of the modified Lloyd- 
Max algorithm until the improvement in MSE 
drops below a threshold 

2.2.2 If the MSE is less than the current kth best, 
add the new codeword assignment to P and if 
P now contains more than k elements, delete 
the worst. 

endfor 
endwhile 

4. RESULTS 

4.1. Empty encoding regions 
In order to determine the smallest BER for which redun- 
dant codewords occur, quantisers were designed for uniform 
and Gaussian quantisers with bit rates ranging from 2 to 
5 bits per sample. Figure 1 shows the smallest BER at 
which the optimal codeword ordering is different from the 
ordering for infinitesimal error rate. For infinitesimal error, 
uniform quantisers always have a natural binary codeword 
ordering. Gaussian quantisers have a folded binary order- 
ing up to 4 bitslsample, but not for higher rates. Figure 2 
shows the smallest BER for which one the codewords is ac- 
tually redundant. Clearly the bit rate at which these occur 
varies exponentially with the resolution of the quantiser. 
This indicates that Farvardin’s approach is necessary even 
at the very modest error rates found in real communica- 
tion systems. If the trends shown in these figures continue, 
then an 8-bit quantiser designed optimally would have re- 
dundant codewords at  error rates as low as 3 x It 
is also worth noting that, although the actual error rate 
at which the thresholds merge depends on the input dis- 
tribution, the decrease in the error rate as the quantiser 
resolution increases is similar for both uniform and Gaus- 
sian quantisers. It is hazardous to draw firm conclusions 
from such limited data, but the super-exponential compu- 
tational requirements make finding the optimal quantiser 
for a 6-bit quantiser intractable, and the phenomenon does 
not occur for 2-bit quantisers. 
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Figure 1. BER for first change of optimal codeword assignment 
as a function of quantiser resolution 
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Figure 2. BER for first reduction in the number of thresholds 
as a function of quantiser resolution 

4.2. Thresholds 
Figures 3 and 4 show the actual thresholds for the op- 
timal quantisers for 2, 3 and 4 bit/sample qantisers, for 
unit variance uniform and Guassian sources respectively. 
Because both of the pdfs considered are entirely symmet- 
rical about zero, the optimal quantiser is generally also 
symmetric. However, it can be seen that these quantisers 
are often asymmetric near the points where the thresholds 
merge, that is, where the number of redundant codewords 
increases. For example, this occurs at E = 0.061 for the 
3 bit/sample uniform quantiser, and E = 0.013 for the 3 
bit/sample Gaussian quantiser, where the number of redun- 
dant codewords is odd. It also occurs for 0.003 < E < 0.01 
for the 3 bit/sample Gaussian quantiser, even though the 
number of redundant codewords is even, and a symmetric 
quantiser would be expected. It has been verified by ex- 
haustive search that these results are not simply the result 
of finding a local optimum. 

In general the largest and smallest thresholds converge 
monotonically to zero. However, in the case of the 4-bit 
Gaussian quantiser, these thresholds diverge for 0.01 < E < 
0.03. This effect was found in [ll] to occur frequently in 
optimal encoders for fixed decoders, and is due to the par- 
ticular ordering of the codewords. For these error rates, 
the codeword for the smallest reconstruction level is 0000. 
However, the codewords 0100 and 1000 both correspond 
to comparatively large reconstruction levels (11th smallest 
and 13th smallest). Because the codeword 0000 can easily 
be corrupted into either of these, the actual input must be 
quite negative to justify transmitting such a l‘dangerous’’ 
codeword. As E ,  and hence the “danger”, increases, the 
lowest threshold diverges from zero. 
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Figure 3. Thresholds vs BER for a u n i t  variance uniform source 

4.3. Quality of results 
The results obtained by the optimisation procedure of sec- 
tion 3 are compared in Tables 1 and 2 with those obtained 
by the simpler approach of [8]. Clearly the results presented 
here are better, particularly for the higher resolution quan- 
tisers, which are plagued by local optima. This indicates 
that thle technique used in this study has avoided most of 
the local minima, and gives confidence that the quantis- 
ers of Figures 3 and 4 are likely to be the actual optimal 
quantisers . 

5 .  HIGH ERROR RATES 
It is also informative to look at the nature of an optimal 
quantiser in the presence of very high levels of noise. If 
some codewords become redundant at moderate error rates, 
it may :seem reasonable to assume that as the bit error rate 
approaches E = 0.5 all quantisers will revert to two-level 
quantisers. However this is not the case, as seen in Figures 
3 and 4.  Two and three bit quantisers both reduce to four- 
level quantisers, and four bit quantisers only reduce to five 
level quantisers. In this section, a heuristic investigation of 
this will be presented, and it will be argued that, for e zz 0.5, 
an n-bit quantiser (with n > 2) degenerates to n + 1 levels, 
and an approximation to those levels will be derived. The 
resulting quantiser represents most of the possible inputs 
with one of two codewords, but in a small range around zero, 
other codewords will be used. These codewords are coded 
in unary, rather than binary. That is, the ith codeword 
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Figure 4. Thresholds vs BER for a u n i t  variance Gaussian 
source 
used is i 1s followed by n - i Os. This derivation is far from 
rigorous, but provides some insight into the nature of these 
quantisers. 

Consider an optimal quantiser for input drawn from a 
symmetric pdf (p(z) = p ( - 2 ) )  for a bit error rate of E = 
1/2 - 6 with 6 << 1. Let PO be the smallest reconstruction 
level, and ? ~ - 1 ,  N = 2", be the largest. Because of the high 
error rate, the received codeword will give very little infor- 
mation about the input, and the minimum expected mean 
square error (MEMSE) will be obtained when all of the 
reconstruction levels and all of the thresholds are approxi- 
mately zero. Hence, Pr(U = uo) = Pr(U = u j v - 1 )  1/2, 
and the encoding will be dominated by these two codewords. 
Without loss of generality, let the first codeword be uo = 0. 
For very high error rates, the MEMSE will be obtained 
when U N - - 1  -- N - 1. 

Let E = E[zlz > 01, and denote the Hamming weight of 
codeword uj, the number of 1 bits in it, by H ( u j ) .  

Then the expected value of the input given that a code- 
word vj was received will be given by 

E[zIvj] zz Pr(ualvj)(-E) -I- P r ( u N - 1 I v j ) ( E )  

k#O,N-1 

where Pr(UkIzlj) is shorthand for Pr(U = UklV = vj) ,  the 
probability that codeword uk was transmitted given that 
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n 0.005 0.010 0.050 I 0.100 J 

vj  was received. The last term will be neglected since 
PT(’ILk1Vj) =: 0 for IC # O,N - 1. Let i = H(v j ) .  Using 
Bayes’ rule, the fact that Pr(u0) 1/2, and the fact that 
Pr(wj) M (Pr(vjlu0) + Pr(vjIuN--1))/2 gives 

- - (1 + 2 b y i  
(1 + 26p-2; + (1 - 26)”.-2i 

M 1 / 2  + (n  - 2i)b 

and similarly Pr(uN-llvj) 1/2 - (n  - 2i)d. Thus 

2j = E[zjvj] M 2(2i - n)bE (2) 
Some interesting conclusions can be drawn from equa- 

tion 2. Firstly, the reconstruction levels only are indepen- 
dent of the shape of the input distribution, and only depend 
on the distribution through the quantity E = E[zlz > 01. 
This is largely because all of the thresholds converge to zero 
for high error rates. A second interesting observation is that 
the spacing between the levels is independent of the rate of 
the quantiser, n. That is, increasing the number of bits 
used to code each sample increases the dynamic range of 
the quantiser but does not increase its resolution. 

Equation 2 shows that there are n+ 1 distinct and evenly 
spaced groups of closely spaced reconstruction levels, de- 
pending on the Hamming weight of the received codeword. 
Similarly, the expected reconstruction level, k ,  given that 
symbol Uk is transmitted will depend primarily on x(uk). 
The thresholds can then be obtained by equation 1. Since 
E[2luk] M E[Zluj] when H(uk)  = H ( u J ) ,  the denomita- 
tor becomes very small, and these thresholds are likely to 
be indeterminate. However, when H ( u k )  = H ( u 3 )  + !, 
E[2luk] # E[PIuj], the threshold between uj and Uk will 
be well formed. 

This provides some explanation for the empirical obser- 
vation that there are n distinct thresholds separating n + 1 
distinct encoding regions for arbitrarily high bit error rates. 

6. CONCLUSION 
It has been shown that channel error rate at which quantiser 
codewords first become redundant decreases exponentially 
with the data rate (bits/sample). A heuristic analysis of 
quantisers for extremely noisy channels has also been pre- 
sented, which shows that the optimal quantiser using n bits 

is an n + 1 level quantiser, and the actual quantiser is inde- 
pendent of the shape of the input distribution. 
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