

RESEARCH REPOSITORY

This is the author’s final version of the work, as accepted for publication
following peer review but without the publisher’s layout or pagination.

The definitive version is available at:

http://dx.doi.org/10.1016/j.comnet.2017.03.010

Zander, S., Andrew, L.L.H. and Armitage, G. (2017) Collaborative and privacy-

preserving estimation of IP address space utilisation.
Computer Networks and ISDN Systems, 119 . pp. 56-70.

http://researchrepository.murdoch.edu.au/id/eprint/36285/

Copyright: © 2017 Elsevier B.V.

It is posted here for your personal use. No further distribution is permitted.

http://dx.doi.org/10.1016/j.comnet.2017.03.010
http://researchrepository.murdoch.edu.au/id/eprint/36285/

Accepted Manuscript

Collaborative and Privacy-Preserving Estimation of IP Address
Space Utilisation

Sebastian Zander, Lachlan L.H. Andrew, Grenville Armitage

PII: S1389-1286(17)30079-8
DOI: 10.1016/j.comnet.2017.03.010
Reference: COMPNW 6125

To appear in: Computer Networks

Received date: 24 March 2016
Revised date: 16 February 2017
Accepted date: 10 March 2017

Please cite this article as: Sebastian Zander, Lachlan L.H. Andrew, Grenville Armitage, Collaborative
and Privacy-Preserving Estimation of IP Address Space Utilisation, Computer Networks (2017), doi:
10.1016/j.comnet.2017.03.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.comnet.2017.03.010
http://dx.doi.org/10.1016/j.comnet.2017.03.010

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Collaborative and Privacy-Preserving Estimation of IP
Address Space Utilisation

Sebastian Zandera,∗, Lachlan L. H. Andrewb, Grenville Armitagec

aSchool of Engineering and IT, Murdoch University, Perth, Australia
bFaculty of IT, Monash University, Melbourne, Australia

cSchool of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia

Abstract

Exhaustion of the IPv4 address space is driving mitigation technologies, such as carrier-
grade NAT or IPv6. Understanding this driver requires knowing how much allocated
IPv4 space is actively used over time – a non-trivial goal due to privacy concerns and
practical measurement challenges. To address this gap we present a collaborative and
privacy-preserving capture-recapture (CR) technique for estimating IP address space
utilisation. Public and private datasets of IP addresses observed by multiple independ-
ent collaborators can be combined for CR analysis, without any individual collabor-
ator’s privately observed addresses leaking to the others. We show that CR estimation
is much more accurate than assuming all used addresses are observed, and that our
scheme scales well to datasets of over a billion addresses across several collaborators.
We estimate that 1.2 billion IPv4 addresses and 6.5 million /24 subnets were actively
used at the end of 2014, and also analyse address usage depending on RIR and country.

Keywords: Actively used IPv4 space, Privacy-preserving capture-recapture

1. Introduction

By mid 2015 all Regional Internet Registrars (RIRs), except AfricNIC, had less
than one /8 (224) of unallocated IPv4 addresses remaining [1]. While the IPv4 space is
still not allocated completely, is is practically ‘exhausted’ since it is hard for organisa-
tions to get new prefixes from the RIRs. Yet, at the same time, the number of devices
connected to the Internet is rapidly increasing – driven by “the Internet of Things (IoT)”
[2]. This has created a sense of urgency around the deployment of short- and long-term
mitigation technologies, such as carrier-grade Network Address Translation (NAT) or
IPv6, and markets for trading allocated IPv4 prefixes. Understanding the degree of
IPv4 address prefix exhaustion requires plausible estimates of actual IPv4 address use
– particularly the fraction of addresses in allocated prefixes that are actively used. We

∗Corresponding author
Email addresses: s.zander@murdoch.edu.au (Sebastian Zander), lachlan.andrew@monash.edu

(Lachlan L. H. Andrew), garmitage@swin.edu.au (Grenville Armitage)

Preprint submitted to Computer Networks 11 March 2017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2

present estimation techniques that can track progressive exhaustion even once all IPv4
prefixes are allocated.

Early work [3, 4, 5, 6] that studied, among other things, IPv4 space growth focused
on IP addresses observed mainly by “pinging”. As part of their work, Dainotti et al.
[7, 8] estimated the used IPv4 /24 (28 address) subnets based on IP addresses observed
in several data sources. Apart from a simple multiplier in [4], prior work did not attempt
to correct their estimates for under-sampling.

To address the issue of under-sampling, in [9, 10] we proposed estimating the pop-
ulation of both observed and unobserved (yet still active) IPv4 addresses from multiple
diverse data sources using a statistical capture-recapture (CR) model. One challenge
of CR is heterogeneity (where the probability of observing an IP address depends on
whether it is used by, for example, a server or client), which we addressed using log-
linear models. We now introduce another CR technique that models heterogeneity
more directly, and we compare both approaches and show that the estimates of both
approaches are similar.

CR techniques estimate population sizes based on (1) the number of IP addresses
in each source and (2) the sizes of intersections between all combinations of sources.
A key challenge is to efficiently compute the input needed for CR from data sources
of multiple collaborators in a privacy-preserving (“private”) manner, i.e. without re-
vealing the observed IP addresses. Many potential sources of ‘used’ IP addresses are
privately held, and cannot be shared directly for privacy reasons. To solve this issue, we
developed an efficient solution called Secure Fast Set Intersection (SeFaSI), by com-
bining private (or secure) set intersection cardinality (PSIC) techniques with CR. With
this approach the input data for CR can be computed while ensuring the anonymity of
the IP addresses observed.

SeFaSI extends computationally-secure commutative encryption by adding hash-
based sampling for scalability, prevents probing attacks for IPv4 addresses, and works
for two or more semi-honest parties without the need for a trusted third party. We
demonstrate that our protocol scales well with 5–10 collaborators and datasets of over
one billion IPs. Evaluation on small networks for which ground truth is known shows
that estimates from SeFaSI have a much smaller error than the estimate from simply
aggregating all data sources.

Our new key contributions in this article are:

1. A novel application of CR to estimate the used IP addresses, which deals with
heterogeneity of IP addresses directly;

2. A privacy-preserving protocol to feed our CR estimation techniques while keep-
ing the observed IPs private;

3. A publicly available open source implementation of SeFaSI and our log-linear
model CR technique [11], which we use to validate our approach;

4. Illustrative results for the estimated number of actively used IPv4 addresses and
/24 subnets at the end of 2014.

Our new CR approach is also beneficial for other privacy-sensitive applications of CR.
For example, it could be used in epidemiology to estimate populations of people with
certain illnesses while ensuring the privacy of personal information used for matching
the data sources, such as names or birth dates.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3

After a discussion of related work in Section 2, Section 3 explains the basics of CR,
the input data needed for CR, log-linear models used in [10] and our new CR model.
Sections 4 and 5 describe SeFaSI’s design, implementation and evaluation. Section 6
presents our IPv4-space estimation results, and we conclude in Section 7.

2. Related Work

We first briefly review previous work in the area of CR before discussing related
work on estimating the used IPv4 space.

2.1. Capture-Recapture

Capture-Recapture (CR), also referred to as Mark and Recapture, is an old tech-
nique that was initially developed in ecology to estimate the population of certain types
of animals. The basic idea is to take multiple samples of the population (such as at dif-
ferent times) and then estimate the number of unsampled animals based on the overlap
between samples. The first well-document CR method is the two-sample Lincoln-
Petersen (L-P) method [12, 13], which we describe in Section 3.5. The L-P method
was later extended to more than two samples by Schnabel [14].

The restrictions of the early CR methods, discussed in Section 3.3, led to the de-
velopment of more powerful models in recent decades [15]. In ecology, CR models
are classified as “closed” or “open” depending on whether they assume the popula-
tion being sampled is the same for each sample or differs. The Jolly-Seber model is a
commonly used model for open populations [16].

Another major area where CR methods have been applied for many years is epi-
demiology [17, 18]. In epidemiology, instead of sampling at different points in time,
the samples are data sources concurrently collected over time, such as doctor records or
hospital records. Often this data was originally collected for purposes other than CR.
With concurrent data sources, the population size does not change between samples as
in ecology and so in epidemiology closed models are usually used [18]. CR models
commonly used in epidemiology include various types of log-linear models [17, 18]
and the sample coverage approach [19].

Our application of CR is similar to the use of CR in epidemiology. Instead of med-
ical records we use concurrently captured data sources that contain used IP addresses,
such as server logs or logs from active probing.

2.2. IP Space Estimation

Pryadkin et al. [3] probed the whole allocated Internet with ICMP echo and TCP
SYN probes. They discovered 62 million used IPv4 addresses in 2003–2004. They
also showed that only a small number of allocated prefixes appeared to be heavily
used, while a large part of the IPv4 space appeared unused.

Heidemann et al. [4] infrequently probed all allocated IPv4 addresses (census) and
frequently probed address samples (survey) with ICMP echo pinging to study usage,
availability and up-time of addresses. The last census from [4] accounted for 112

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.2 IP Space Estimation 4

million used addresses in 20071. Heidemann et al. compared ICMP probing with TCP
port 80 probing and passive measurements based on small samples. They proposed a
“correction factor” of 1.86, thus estimating that the total number of used IPv4 addresses
in mid 2007 was 200–210 million.

Cai et al. [5] used ping survey data to analyse typical address block sizes and their
characteristics. They did not estimate the used IPv4 address space, but observed that
“most addresses in about one-fifth of /24 blocks are in use less than 10% of the time”.
In 2012, anonymous researchers hacked commodity routers to perform a port scan of
the IPv4 Internet [6]. They detected 420 million addresses that responded to ICMP
echo, which is consistent with our ping censuses [10].

In 2013–2014 we proposed using CR to estimate the population of used IPv4 ad-
dresses from multiple sources of IPv4 addresses [9, 10]. We found that our CR es-
timate is significantly higher than the aggregate number of observed IPv4 addresses
from multiple measurement sources (1.1–1.2 billion estimated used IPv4 addresses vs.
750 million observed IPv4 addresses in mid 2014), but for /24 subnets the difference
is smaller (6.2 million estimated used /24s vs. 5.9 million observed /24s in mid 2014).
We also estimated the numbers of addresses and /24 subnets still available.

Dainotti et al. [7] developed techniques to filter out spoofed IPv4 addresses from
darknet or NetFlow data and showed that the filtered datasets can be used to estimate
Internet address space usage. With multiple datasets combined, they observed 4.8 mil-
lion used /24 subnets in September 2012. In extended work Dainotti et al. [8] used
further data sources, and analysed several aspects of /24 subnet usage. They identified
5.3 million used /24 subnets with data collected until October 2013. This is broadly
consistent with the 5.7 million /24 subnets we observed in the year to September 2013
[10]. The difference is likely due to the longer time windows we use.

Moura et al. [20] repeatedly pinged 1 million IP addresses of one ISP to estimate
the churn caused by dynamic IP addressing. They compared the ping data with ground
truth provided by the ISP and report the accuracy of their churn estimation to be 70%.
They also found that over the whole measurement duration most used IP addresses
responded to ping, and while only 15% of the IP space was in use at any given time,
75% of the IP space appeared to be used over the whole measurement. Both findings are
consistent with our observations that (1) for one IP address the churn leads to increased
likelihood of responding to active probing and (2) that the number of simultaneously
active addresses is significantly smaller then the number of active addresses.

Our work enhances previous work in that (1) we estimate the total number of ob-
servable addresses instead of just reporting the number of observed addresses and (2)
our new technique allows estimation of the used addresses from anonymised datasets.
The latter point is significant for researchers wishing to access IP address data from the
wider networking community.

1More census data has been collected since 2007 but there is no analysis in the literature and it is not easy
for organisations outside the USA to access this data. Since 2012 we have done our own ICMP and TCP
SYN census scans (see Section 5.2).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5

3. Capture-Recapture Models

We now define more specifically what we are estimating, and describe the measure-
ment setting. Then, we discuss the basic assumptions for CR in our scenario and how
to extract the data required for CR. Next, we illustrate CR by describing the simplest
case: the two-sample Lincoln-Petersen (L-P) estimator. This section concludes with a
description of the CR models that we actually use.

3.1. Measurement Metric

Our goal is to estimate the number of IP addresses that were actively used during
a measurement period. Since many IP addresses are (re)assigned dynamically (for ex-
ample, with DHCP) and hosts may move between multiple static/dynamic addresses,
the number of actively used IP addresses is likely to be higher than the number of sim-
ultaneously used addresses. For example, if dynamic addresses are drawn uniformly
from a pool, all pool addresses could eventually be observed even if at most one address
is in use at a time.

We argue that any addresses that could be observed during our measurement period
were on “stand-by” and de facto in use. For example, addresses assigned to dynamic
pools cannot be used elsewhere. In the future freed addresses from under-utilised pools
may be used for other purposes, but we cannot measure such future optimisations.

3.2. Approach

We assume several collaborators have data sources of IP addresses known to be
actively used during a measurement period (such as from server logs, traffic traces, or
active probing). Each data source is a sample of the whole used IP address space (the
total population), but may be biased, e.g., towards certain geographical areas or certain
types of hosts. We can group addresses into three categories:

• Observable addresses that were sampled (type 1)

• Observable addresses that were not sampled (type 2)

• Unobservable addresses (type 3)

Type 3 addresses are those that cannot be observed for “structural” reasons, such as
being in space that is not publicly routed, or being assigned to a device, such as a
firewalled printer, that neither initiates external traffic nor responds to pings. In con-
trast, type 2 addresses are those that simply happen not to appear in our data sources,
but may appear in other server logs, for example. Note that types 1 and 2 include
firewalled hosts that initiate Internet traffic.

Since sampling type 3 addresses is impossible, we focus on estimating the observ-
able portion of the IP space (the typical approach with CR). Our goal is to estimate
type 2 addresses with CR and get an estimate of the actively used addresses that is
more accurate than merely counting observed addresses.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.3 Assumptions for Capture-Recapture 6

3.3. Assumptions for Capture-Recapture

Four assumptions are commonly made by CR techniques.

1. Each individual has a unique and consistent identifier across different data
sources;

2. The population is the same for each data source (closed population);
3. All individuals have the same probability of being observed (homogeneous pop-

ulation);
4. Appearance of an individual in one source does not affect its inclusion in other

sources (source independence).

Assumption 1 clearly holds for IP addresses, as we only care whether an address was
used and not who used it.

We make assumption 2, with all type 1 and type 2 addresses being potentially
observable by each source. While address usage may be intermittent [5], addresses
still remain in the population and can be observed. Likewise, previously unallocated
addresses that become used can be observed. Assumption 2 is usually stated in terms
of temporal variation (as “closed population”), but that only applies when data sources
correspond to measurements at different times. In our study, the data sources measure
concurrently during the same time periods and so temporal changes in the number of
addresses do not result in each data source sampling a different population size (an
“open population”). An “open” population would arise if a new dataset arrived whose
first measurement occurred later than the last measurement of the existing datasets.
Since most IP datasets are accumulated continually, the natural response to this new
dataset would be to update all datasets before re-running CR, which again gives a
“closed” population.

We cannot make assumption 3. The population of IP addresses is heterogeneous;
for example, servers are more likely to respond to pinging, while client machines may
be more likely to appear in certain traffic logs.

For our data sources, we believe there is no significant causal relationship to intro-
duce source dependence. While some samples are dependent, i.e., IPs observed by our
NetFlow source and one of the log-file sources, their number is insignificant (< 1%
of the total). Nevertheless, heterogeneity gives rise to what is called apparent source
dependence. For example, two sources that are biased towards client machines will ap-
pear to be positively correlated given another source that is less biased towards clients.
Heterogeneity and source dependence are confounded and cannot be clearly separated
[18]. So we cannot make assumption 4.

However, assumption 3 and 4 are usually violated in almost any real scenario.
Because of this, a number of CR techniques have been developed that do not require
assumptions 3 and 4 and can deal with heterogeneous populations and source depend-
ence, for example, techniques based on log-linear models [17, 19] or latent class mod-
els [21]. We use these more advanced techniques.

Another implicit assumption is that a data source only samples IP addresses that
were actually used. Addresses can be considered actively used when collected via
active probing or from server logs of TCP-based applications (e.g., web server logs)
for which a three-way handshake is completed. In other cases (e.g., passively captured

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.4 Capture Histories 7

traffic traces) it is necessary to filter out observed IP addresses that were not actually
used, such as spoofed IPs [7, 10].

Finally, CR assumes all individuals have a non-zero (but possibly very small) prob-
ability of appearing in any of the data sources. Individuals with zero sample probability
(i.e., type 3 addresses) are not part of the CR estimate. We argue that all of our datasets
sample IPs used by routers, servers/proxies, clients, but miss IPs used by specialised
devices, such as printers. Sample probabilities for client IPs are non-zero even for ‘nar-
row’ data sources, because we measure over long time windows in which a single IP
address is likely used by multiple devices/persons due to dynamic address assignment,
NAT, or administrative changes.

3.4. Capture Histories

In ecology CR data is collected by repeatedly sampling populations. In other fields,
such as epidemiology, CR is used with lists of individuals (data sources) that often were
collected for purposes other than CR [18]. In our case we use data sources such as web
server logs, a black list of senders of spam and active probing. The “capture history” of
an individual, here an IP address, is the set of data sources in which it appears [17, 19].
This term, like “open” and “closed” populations, originates from ecology and suggests
that sources are ordered chronologically, which is not the case in our application. The
table of capture histories contains all possible capture histories and the total number of
IP addresses for each capture history. To compute this table we need to know the sizes
of all data sources and the sizes of all combinations of intersections of datasets.

Let N be the unknown number of distinct used IP addresses. Let t denote the
number of data sources, and index sources by 1, 2, . . . , t. For each IP address, define s1

to st such that si = 1 if the address occurs in source i and si = 0 otherwise. Then the
string s1s2 . . . st denotes the capture history of an IP address. The observed outcome
of all measurements can then be represented by variables of the form zs, which are
the numbers of IPs with each capture history s = s1s2 . . . st. These are assumed to be
instances of random variables Zs.

Note that IPs with the capture history 00 . . . 0 are unobserved. Our goal is to use
CR to estimate Z00...0. If M =

∑
S \{00...0} Zs is the total number of observed IPs, then the

estimated population size is N̂P = M + Ẑ00...0. We assume the number of IP addresses
in source i, Ni, is not secret for most sources. Then our private protocol described
in Section 4 can be used to compute all Zs, except Z00...0, based on the intersection
cardinalities of combinations of sources and the known Ni. (Section 4.8 discusses
approaches when some Ni are secret.)

Table 1 shows the case of t = 3, in which there are seven known capture counts
Z001,Z010, . . . ,Z111. For example, Z111 is the number of IPs captured by sources 1,
2 and 3 (say server logs, spam list and active probing), so Z111 is computed as the
cardinality of the intersection of sources 1, 2 and 3. To compute the counts of IPs in
only one source i we need to know Ni. For example, the number of IPs only in source
3 is Z001 = N3 − Z011 − Z101 − Z111.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.5 Lincoln-Petersen (L-P) Population Estimation 8

Table 1: Example three-source capture history table

Source 1 Source 2 Source 3 Count

0 0 0 Z000 =?

0 0 1 Z001

0 1 0 Z010

0 1 1 Z011

1 0 0 Z100

1 0 1 Z101

1 1 0 Z110

1 1 1 Z111

3.5. Lincoln-Petersen (L-P) Population Estimation

The L-P method works only with two sources and makes all four assumptions de-
scribed in Section 3.3. Nevertheless, it provides a useful introduction to CR due to its
simplicity.

Given a first source with ZA sampled IPs, the size of the population would be known
if we knew what fraction of the population had been sampled. To estimate this, L-P
uses a second source of ZB sampled IPs. Of these, Z11 IPs occur in both samples,
Z10 = ZA − Z11 occur only in the first and Z01 = ZB − Z11 occur only in the second.
If the fraction of “recaptured” IPs in the second sample equals the fraction of the total
population captured in the first sample, then the population N can be estimated by
[12, 13]:

Z11

ZB
=

ZA

N
, N =

ZAZB

Z11
=

Z01Z10

Z11
+ Z01 + Z10 + Z11 .

3.6. Log-linear CR Models

Just as L-P uses a second sample to estimate the fraction of the population of the
first sample, a third sample can be used to compensate the correlation between the
first two samples (and this approach can be generalised to more than three samples).
One way to use this additional information is to fit log-linear models (LLMs) [17,
19], which can model (apparent) source dependence among arbitrarily many sources.
For each history s, let h(s) be the set of samples in which an IP address occurs – for
example, h(101) = {1, 3}. Define the indicator function 1A = 1 if statement A is true
and 0 otherwise. We can now write the following system of equations in 2t variables
u, u1, u2, . . . , ut, u12, . . . , u1t, u23, . . . up to u12...t:

log(E (Zs)) =
∑

h⊆h(s)

uh =
∑

h

uh1h⊆h(s) .

For example, for t = 3, the system is

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.7 Direct Models of Heterogeneity 9

log
(
E
(
Zi jk

))
=u + u11i=1 + u21 j=1 + u31k=1

+ u121i=1∧ j=1 + u131i=1∧k=1

+ u231 j=1∧k=1 + u1231i=1∧ j=1∧k=1 .

The estimate of Z00...0 is then Ẑ00...0 = exp(u). If we take E[Zs] = zs then this system
has 2t unknowns but only 2t − 1 equations, as Z00...0 is unknown. Hence it is customary
to assume u12...t = 0 [17]. The uh model the apparent dependencies between sources
(also referred to as model parameters that describe source “interactions”). Using all uh

usually results in over-fitting. The final model (“best model”) is selected by trading off
between the model complexity and a goodness of fit measure [10]. Model complexity
is reduced by forcing some uh to 0, which treats sources as conditionally independent.
For example, appearance of an IP address in a server log may be independent of its
responding to active probing, conditioned on knowing whether or not it is in the spam
black list.

3.7. Direct Models of Heterogeneity

Apparent source dependency is caused by the heterogeneity between different
hosts. An alternative is to use a latent class model (LCM) [21], which assumes that
there are C classes of hosts, and the Nc hosts within each class c have approximately
equal probability θct of being captured in each data source t. For example, classes may
match “servers”, “home PCs” and “corporate PCs”. Note that this technique does not
require the classes to be chosen in advance, and does not provide an interpretation for
the classes it chooses. For a single class c, the probability of observing a particular
Zc = (Zc,00...0, . . . ,Zc,11...1) comes from the appropriate multinomial distribution, and is

P(Zc; N, θ) =
Nc!

(Nc − Dc)!
∏

s∈P Zcs!

T∏

t=1

θxct
ct (1 − θct)

Nc−xct (1)

where xct is the total number of observations of class c in source t, Dc is the total num-
ber of distinct observations in class c and P is the set of all capture histories except
00...0. However, the xct and Dc must also be estimated, by nominally allocating each
observation to one of the classes. A locally maximum likelihood estimate can be ob-
tained by the EM algorithm [21]. This algorithm alternately performs an M-step in
which (the log of) the probability P (Zc; N, θ) is maximised with respect to the distribu-
tion parameters θct and Nc, and an E-step, which re-estimates the number sampled from
each class, Zcs, as the means given the current estimates of the distribution parameters.
With the approximation log(N!/(N − D)!) ≈

∫ N

N−D
log(y)dy, the EM algorithm for (1)

becomes

M-step


θct = xct/Nc

Nc = Dc/
(
1 −∏T

t=1(1 − θct)
)

E-step Zcs = D.,s
Θcs∑
c′ Θc′ s

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10

where D.,s is the total number of IPs with observation history s, and Θcs =

Nc
∏T

t=1 θ
1(t∈s)
ct (1−θct)1(t<s) is the expected number of IPs of class c with observation his-

tory s under the current model. The M-step calculates both θct and Nc given the partition
of observations into classes, say by repeated substitution, and the E-step re-partitions
the observations by calculating Zcs, from which xct =

∑
s:st=1 Zcs and Dc =

∑
s,00...0 Zcs.

There are many classes of Internet users, but two problems arise when using large
C. First, the error surface becomes corrugated, and thousands of restarts of the EM
algorithm are required to find the true maximum likelihood estimate. More subtly,
a positive bias develops. Specifically, Nc is badly over-estimated when any one of the
classes has too many observations that occur in only a single data source, relative to the
number that occur in multiple sources. As the number of classes grows, it is increas-
ingly common for this to occur in at least one of the classes, giving the bias. Chapman
proposed an unbiased estimator for the single class case [22], but there appears to be
no known unbiased estimator for multiple classes.

Note again that all of these CR models require only the sizes of the n-way intersec-
tions of the data sources, which can be found in a privacy-preserving manner using the
methods of the following section.

4. Privacy-preserving Protocol

In this section, we first describe the goals and requirements for the protocol and the
assumed adversary model. Then we provide a brief overview of the existing private set
intersection cardinality protocols and select the one most suitable for our application
as basis for our protocol (called the basic protocol). Next, we provide an overview of
the basic pairwise private set intersection cardinality (PSIC) protocol which we show
not to be scalable without sampling. Then, we introduce a more scalable version based
on sampling. Next, we discuss the security and complexity of the protocol. Finally, we
briefly describe two protocol extensions – one can be used to defend against so-called
probing attacks, and the other is a partial solution to hide the sizes of datasets. We will
also refer readers to our extended technical report for supplementary details [23].

4.1. Goals and Requirements
The protocol must ensure that no IP addresses are revealed to collaborators. How-

ever, we assume that usually the sizes of datasets can be revealed to collaborators (in
Section 4.8 we discuss a partial solution to hide sizes). It must be possible to run the
protocol repeatedly without reducing its security. For example, we may want to run the
protocol every month or so with the latest data to estimate the population trend over
time. While our main goal is to get a total estimate of the used space, ideally we also
want to estimate different sub-populations, such as different geographic regions.

Our protocol works with sub-populations, but in this case some information leakage
is inevitable. The data sources can be stratified by all collaborators before executing the
protocol and then population estimates can be computed separately for each stratum.
For example, IP addresses can be grouped by their allocating RIR to compute regional
estimates. This stratification leaks how many addresses were observed by a collabor-
ator in each region. We think the leakage is tolerable if the stratification is coarse – the
collaborators decide a priori on an acceptable level of stratification.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.2 Adversary Model 11

The protocol must: (a) not rely on additional trusted third parties, (b) work with
two or more parties (but the maximum number of parties would be relatively small, say
5–10 parties2), and (c) work with large datasets of over a billion IPs. Not all parties
may want to compute the intersections, but at least one party must be able to do so.
The protocol must be computationally-secure and it must be easy to verify its security.

4.2. Adversary Model

We assume that all collaborators participating in the protocol are potential honest-
but-curious adversaries; they run the protocol correctly, but they try to learn as much in-
formation as possible. We also assume that one or more honest-but-curious adversaries
may collude in order to obtain more information. With a small number of collaborators,
none of which is anonymous, security under the honest-but-curious adversary model is
sufficient. Our protocol can be protected against man-in-the-middle or eavesdropping
attacks by running it over properly configured secure communication protocols, such
as Secure Shell/Copy (SSH/SCP) or Transport Layer Security (TLS).3

4.3. Protocol Selection

Several techniques for the computation of private set intersection and private set
intersection cardinality exist. For space reasons we refer to Pinkas et al. [24], which
provide a recent overview of existing techniques grouped by public key / commutative
encryption approaches, e.g. Vaidya et al. [25], techniques based on Yao’s garbled
circuits, e.g. Bellare et al. [26], and techniques based on Oblivious Transfer (OT), e.g.
Pinkas et al. [24]. Pinkas et al. compared the performance of the different techniques
and also developed their own efficient OT-based scheme [24].

There are three criteria for protocol selection: communication complexity, com-
putational complexity and algorithm (i.e., code) complexity. In our scenario commu-
nication complexity is most important, as IP datasets are very large and need to be
transported over the public Internet. Algorithm complexity is also important, as the
simpler the algorithm is, the easier it is to convince parties to join the scheme (as they
can more easily verify the security of the code). Computational complexity is not of
primary concern as in our case the computations are done infrequently (e.g. once each
month).

All garbled circuit schemes have very high communication complexity, two orders
of magnitude above that for public key and OT schemes [24], and the amount of data
exchanged is excessive for our scenario. Public key and OT schemes have similar
communication overhead – OT schemes are better for 80 bit or higher security, but
public key schemes are better for lower security. OT schemes perform computation
much faster than public key schemes, but public key schemes are fast enough for our
purposes.

2We assume a relatively small number of parties as the CR models do not scale well with the number of
datasets in terms of computational complexity. Also, our protocol does require some initial manual setup, so
a large number of parties is impractical.

3Note that the “no additional trusted third parties” requirement does not apply to SSH or TLS. SSH or
TLS may require trusted third parties, i.e. certificate authorities, but these trusted third parties already exist
and do not have to be created as in the case of our protocol.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.4 Basic Protocol 12

Also, note that the higher performance of OT schemes comes at the price of high
memory requirements. According to [24] a machine with 4 GB of RAM could only
handle datasets of 218 entries, but our datasets are 3–4 orders of magnitude larger than
that (SeFaSI can process datasets of over a billion entries with less than 4 GB; see
Section 5.5). Finally, public key schemes have the lowest algorithm complexity and
implementations of these are the easiest to verify.

We opted to use a public key scheme as basis for our protocol as it best meets our
requirements.

4.4. Basic Protocol

Our basic protocol is based on the commutative encryption approach [25]. Our
protocol differs from the protocol in [25] in a number of respects, such as it computes
all combinations of intersections and not just the intersection between all sources, it
does not use dummy elements to mask dataset sizes (as that would make it impossible
to compute the capture histories), it deals with multisets that break the security of [25],
it uses sampling as [25] does not scale with the number of items, and optionally our
protocol provides protection against probing attacks. While our protocol can use the
same ring topology as in [25] we also propose a star message-passing topology which
is more suitable for our application. (Note this is distinct from the underlying network
topology, which is arbitrary.)

Below, we recall the concept of commutative encryption – the basis of the protocol.
Then, we describe the basic protocol for two parties before extending it to multiple
parties.

4.4.1. Commutative encryption
Let E be an encryption function and Ki be the secret encryption key of party i. Let

EKi (m) denote the encrypted version of plaintext m with key Ki. Then E is commutative
if EKi

(
EK j (m)

)
= EK j

(
EKi (m)

)
for all m, i and j. We say E is computationally secure

if decryption requires the secret key, it is resistant to plaintext attacks and it is collision-
resistant, unless a computationally infeasible problem is solved. Specifically:

• Given EKi (m) without Ki it is computationally infeasible to derive m (even if the
set of possible m is small).

• Given m and EKi (m) it is computationally infeasible to derive Ki, for all m and
Ki.

• Given two plaintexts m1 and m2 it is computationally infeasible to find keys Ki

and K j such that EKi (m1) = EK j (m2).

Two equivalent commutative encryption schemes are Pohlig-Hellman (PH) [27] and
commutative RSA (cRSA) [28]. The encryption function is

EKi (m) = mKi (mod p) ,

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.4 Basic Protocol 13

����������	�

���
�
��

�
�����

�
��

�
��

���
�
����

�
��

�
����

����
���

��������

�������

���
�
����

�
��

�
����

�����	�
������	�
�

����� �	�

Figure 1: Basic protocol for two parties. Here P and E denote the permutation and encryption of the dataset
D created by (A)lice or (B)ob.

where the modulus p is a large safe prime number4 shared by all parties and where
gcd (Ki, p − 1) = 1. It is easy to see that this function is commutative since

EKi

(
EK j (m)

)
= mKiK j (mod p)

= mK jKi (mod p) = EK j

(
EKi (m)

)
.

From [27, 28] we know that this function is computationally-secure if the key and
modulus are sufficiently large (for secure key and modulus sizes see [29]). Note that
the selection of key and modulus sizes also provides a simple and convenient way to
trade off security against overhead.

4.4.2. Two-party protocol
Let the two parties be (A)lice and (B)ob with datasets DA and DB. Both DA and

DB should be sets and not multisets but our protocol also enforces this constraint. The
algorithm has three main steps:

1. Configuration (agree on parameters)
2. Dataset encryption and permutation (main step)
3. Intersection cardinality computation

For each party i, let Ei be the encryption function, which maps a sequence of plaintexts
(IPs) to the sequence of ciphertexts (encrypted IPs). Let P be a procedure that maps
a sequence of values to a random permutation of that sequence.5 Figure 1 shows an
overview of the protocol.

In Step 1, A and B negotiate the configuration: the key and modulus sizes (depend-
ing on the level of security required), and the modulus value used for encryption (which
must have the properties described in Section 4.4.1). Then, A and B each generate their
own secret encryption key Ki independently.

4A safe prime is a prime of the form p = 2q + 1, where q is also a prime.
5Note that P is not a mathematical “permutation function”, since the permutation can depend on its

argument, or even be non-deterministic.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.4 Basic Protocol 14

1

2

3

Figure 2: Ring topology for three parties – encrypted and permuted datasets are only passed in one direction

In Step 2, A and B encrypt and permute their own datasets, and then send the en-
crypted permuted sets to each other. A sends P (EA (DA)) to B, and B sends P (EB (DB))
to A. Then, A and B filter out any duplicate ciphertexts in the received encrypted data-
sets. This step is completed by the parties returning the double-encrypted datasets to
each other: A sends P (EA (P (EB (DB)))) to B, B sends P (EB (P (EA (DA)))) to A.

In Step 3, A and/or B compute the intersection cardinality by counting the number
of ciphertexts that are present in both double-encrypted sets. Since the encryption is
commutative, any IPs that are in both sets will have the same ciphertexts in both double-
encrypted datasets. Then, A and B know the sizes of the datasets and intersections, and
can compute the capture histories.

4.4.3. Multi-party protocol
The scheme works with more than two parties as follows. Let k be the number

of parties. Each party i has one6 dataset Di with Ni = |Di| IP addresses and a private
encryption key Ki. Define a “fully-encrypted” data set to be the result of all parties
successively applying their encryption to each of the IP addresses in one party’s dataset.
Parties form a unidirectional ring topology, as shown in Figure 2 for three parties.

In Step 1, all parties agree on the parameters listed in the two-party protocol de-
scription, and each party chooses its secret Ki.

In Step 2, each party encrypts the IPs of its own dataset using Ki, randomly per-
mutes the encrypted IPs, and then passes the encrypted permuted dataset to the next
party. The next party encrypts and randomly permutes the received dataset with its
own Ki, passes it to the next party that has not yet processed this dataset, and so on
until all datasets are fully-encrypted.

In Step 3, each party sends its fully-encrypted dataset to all other parties interested
in the intersection. Then all interested parties can perform the intersection cardinality
computation. Since E is commutative, for each combination of sources, the cardinality
of the intersection of the ciphertexts is identical to the cardinality of the intersection of
the plaintexts. This allows all interested parties to compute the capture histories.

The ring topology has the disadvantage that it requires many relationships between
different parties. This can be addressed with a star topology, as shown in Figure 3 for
four parties. With a star topology each party only needs a relationship with the hub and
the hub controls the passing of the datasets to ensure each dataset is encrypted by every
party. The hub has increased communication complexity, but we assume this is not a

6For simplification we assume one dataset per party, but in practise each party can have multiple datasets.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.5 Protocol with Sampling 15

1

2

34

Figure 3: Star topology for four parties – encrypted and permuted datasets are passed via party 1

problem as the hub is also the party most interested in the intersection results (e.g. the
researchers).

Note that in our case the ring or star topologies are logical topologies. Redundancy
can be employed for both the PCs that handle the communication and computation
and the network connections to guard against accidental failures of any of the nodes,
including the hub. However, if any party chooses to drop out of the protocol during
the operation of the protocol, the protocol will fail and will have to be rerun with the
remaining parties. The rerun could be optimised by using some partial results obtained
until the party dropped out, but this is left for future work.

4.4.4. Lack of Scalability
The basic protocol does not scale to large datasets. Encrypting each IP separately

leads to significant space overhead. For example, assuming a modulus of 1024 bits, an
encrypted list of a billion IPv4 addresses consumes 128 GB (storage and communic-
ation overhead). The computational overhead is also high, since the exponentiation-
based encryption function (Section 4.4.1) is much slower than commonly used sym-
metric encryption techniques. Recall that the participating parties are often companies
who have datasets, but limited incentive to collaborate. Minimising the disincentives
(such as storage, network and computational costs) to collaborate is crucial to maxim-
ising the number of potential collaborators.

4.5. Protocol with Sampling

To make the protocol scale to datasets with large numbers of IP addresses, we
propose that initially each party generates a sampled dataset of smaller size. How-
ever, simple random sampling cannot sample entries consistently across the different
datasets of all parties. We resolve this by using hash-based sampling [30, 31]. The
cardinalities of the intersections between the original datasets can be estimated based
on the intersection cardinalities of the sampled datasets. We discuss in [23] how to
choose the sample rate.

4.5.1. Hash-based sampling
The goal of our hash-based sampling is to sample randomly from multiple IP data-

sets so that if an IP address is selected, it is selected from all datasets that contain that
address.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.5 Protocol with Sampling 16

Let H be a good integer-valued hash function – one that generates different output
even for very similar input and maps the inputs as uniformly as possible over its output
range, which we denote [0,RM]. We do not require cryptographic properties. Let the
hash function be salted [32] (to obtain different independent samples for the same in-
put) by appending a random “salt” s to the hash input m before applying the hash func-
tion. Also, choose integers r and R such that 0 < r ≤ R ≤ RM and RM(mod R) ≪ RM .
We can then sample the same elements from different lists at rate approximately7 r/R
by selecting only the elements with

H (m ⊕ s) (mod R) < r ,

where ⊕ denotes string concatenation.

4.5.2. Multi-party protocol with sampling
In Step 1, all parties also need to agree on H (which must have the properties as

described in Section 4.5.1), s, and the sample rate pD = r/R. The sample rate pD must
be large enough to prevent intended or accidental probing attacks, but our optional
probing attack detection also prevents these (see Section 4.9). We are not aware of
any further attacks an attacker could mount by influencing the choice of H, s, and pD.
However, as precaution we recommend that the salt s is computed in a shared fashion,
e.g. each party contributes some bits, to prevent one party from controlling which IPs
are sampled (a mechanism that is simple to implement).

In Step 2, each party hash-samples its own dataset before executing Step 2 as de-
scribed in Section 4.4.

In Step 3, A and B compute an estimate of the intersection cardinality. Let C =
|D1 ∩ D2 ∩ . . . ∩ Dk | denote the cardinality of the intersection of the datasets, D̃i ⊆
Di the sampled datasets, and Ĉ =

∣∣∣D̃1 ∩ D̃2 ∩ . . . ∩ D̃k

∣∣∣ /pD be an estimator for C.
Since the probability that an element of the intersection is in the sample is pD, Ĉ is an
unbiased estimator for C.

A confidence interval can be constructed as follows. The number of items X in a
sampled set of size N follows a Binomial distribution with a mean of n̄ = N p and a
variance σ2

n̄ = N p (1 − p). Assuming N is large, we can approximate the Binomial
distribution with a Normal distribution and omit the continuity correction [33]. Let
zα = Φ−1(1 − α) where Φ is the cumulative distribution of the standard Gaussian (with
µ = 0 and σ = 1). Then

Pr
(
n̄ − zα/2σn̄ ≤ X ≤ n̄ + zα/2σn̄

)
= 1 − α , (2)

which states that with a probability of 1 − α the size of the sampled dataset is
between n̄ − zα/2σn̄ and n̄ + zα/2σn̄.

By (2) a two-sided confidence interval for C is8

Pr
(
Ĉ − zα/2σĈ/pD ≤ C ≤ Ĉ + zα/2σĈ/pD

)
= 1 − α . (3)

where σ2
Ĉ
= CpD (1 − pD) ≈ ĈpD (1 − pD).

7The rate is exact if R is a factor of RM and the hash function maps perfectly uniformly onto [0,RM].
8C is unknown; we use its estimate Ĉ to get an estimated standard deviation.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.6 Security 17

4.6. Security

In Step 1 there are no direct security issues as no datasets are exchanged. If the
protocol parameters are chosen as described in the previous sub sections, e.g. the key
sizes are appropriately chosen, then the security of the later steps is not compromised.

In Step 2 all parties exchange the encrypted and permuted IP datasets. Since the en-
cryption is computationally secure, no party can decrypt another party’s dataset without
knowing the other party’s encryption key. This includes finding the plaintexts for other
parties’ ciphertexts by brute-force (encrypting the whole IP address space and find-
ing matching ciphertexts). The random permutation prevents any party from knowing
which IPs map to which ciphertexts in any (encrypted) version of its own dataset en-
crypted by another party. Since in order to do step 3 each party’s dataset must be
encrypted by at least one other party, the permutation thus prevents any party from
detecting the presence of its IPs in other parties’ datasets.

In Step 3 the only information the parties can learn are the sizes of intersections of
different datasets and the sizes of the datasets, since the encryption is computationally-
secure and no party can map any ciphertexts to IP addresses.

The protocol is protected against third parties by using properly configured secure
communication protocols, such as SSH/SCP or TLS.

An attacker could construct a dataset where certain IPs occur multiple times and
the counts of these selected IPs are unique numbers. For example, only one specific
IP occurs twice, while all other IPs are present once. Since the counts are preserved
in the fully-encrypted datasets, this would create a side channel allowing the attacker
to probe the existence of certain IPs in other parties’ sets. Our protocol prevents this
attack by filtering out duplicate ciphertexts in received datasets before performing any
other actions.

An attacker could also try to probe for existence of certain IPs in another party’s
dataset. This can be prevented by an optional extension of the protocol described in
Section 4.9.

4.7. Complexity

Since every party needs to encrypt and permute the datasets of all parties, the total
computational complexity of the scheme is O

(
k2N
)
, where k is the number of parties

and N is the average size of the datasets. However, for a single party the complexity
is linear O (kN). In the ring topology the communication complexity is O

(
k2N
)

over-
all and O (kN) for each party. In the star topology the communication complexity is
O
(
2k2N

)
overall, O (kN) for non-hub parties and O

(
k2N
)

for the hub.

4.8. Hiding Dataset Size

Above we assumed that the sizes of the datasets can be revealed, but there may be
cases where the sizes of some datasets should be kept secret. Vaidya and Clifton [25]
proposed to hide the size by padding a dataset with dummy values (random strings
disjoint from the item space). However, this does not work with CR where we need to
know the number of IP addresses observed only by a certain source, which we can only
compute if the dataset size is known (see Section 3.4). We propose a partial solution if
some parties want to hide their dataset size.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.9 Probing Attack Prevention 18

If one or more parties are willing to divulge the sizes of their datasets (or even the
contents) to another party, then merging multiple datasets prior to running the privacy-
preserving protocol algorithm can hide the dataset sizes from non-trusted parties while
allowing CR computations. Merging datasets also obfuscates trends in the intersections
of unmerged datasets. Let us consider two cases.

In the first case, one of the parties, say A, is willing to divulge its actual dataset
to party B. Party B then simply combines its own dataset(s) with A’s dataset, and A
does not take part in the protocol. Since the encryption and permutation is irreversible
and assuming the merged datasets have roughly similar sizes (enforceable by dataset
subsampling) unknown to other parties, the original sizes of the merged datasets cannot
be recovered.

In the second case, neither A nor B is willing to divulge actual data, but both are
willing to divulge the sizes of their datasets to each other (but not to third parties).
In this case A and B initially perform the two-party protocol with each other to ob-
tain double-encrypted versions of their datasets, which they then combine. Then when
running the protocol with other parties, A and B each send this double-encrypted com-
bined dataset as their own dataset in the first round of Step 2. When party A receives
the dataset initially sent by party B, it does not re-encrypt it, but simply forwards a
permuted copy. Party B does the same when receiving A’s dataset. At the end of the
process, each dataset will still have been encrypted exactly once by each party.

For CR, mergers should only occur between datasets with similar expected biases,
such as client IP addresses collected by different web sites. Still, the merging may
result in some information loss for CR.

If datasets cannot be linked to parties just based on their sizes, another mitigation
technique is to anonymise dataset ownership (see description in [23]).

4.9. Probing Attack Prevention
The preceding protocol cannot resist probing attacks, where one party generates

datasets with mostly invalid IPs to test whether a few valid IPs are in another party’s
dataset. Since no party can decrypt the fully-encrypted datasets, it is impossible to
check whether the original data were valid IPs. Reasons for mounting a probing attack
are to learn the number of active addresses and whether some specific IP addresses are
likely to be in another party’s dataset. At worst, an attacker could discover the precise
address of active hosts and something about the structure of an organisation’s network,
thus breaching our protocol’s security.

A technique to prevent probing attacks for k > 2 was presented in [25]. However,
this approach cannot distinguish between probing and legitimate datasets with small
overlap, and is unusable for CR where we have small intersections. We propose a
novel defence, which can be applied to all situations where the set of permitted (valid)
items is known and is not prohibitively large. In this scheme, all parties provide a
dataset of a minimum size and agree on a valid set of IPv4 addresses. All parties create
a fully-encrypted version of the valid set (using the same keys as for dataset encryption)
which is then used by each party to check that a fully-encrypted dataset consist mainly
of valid IP addresses (before forwarding the dataset to any other party).

The minimum dataset size prevents obvious probing attacks and accidental probing
with small datasets. The valid set prevents probing attacks with crafted datasets that

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19

mainly contain invalid IP addresses and only a small number of IP addresses to be
probed. A detailed description is in [23].

5. Prototype Evaluation

Now we describe our prototype implementation, describe the datasets used for the
evaluation (and analysis in Section 6), analyse the accuracy of CR, analyse the impact
of dataset sampling and the prototype’s performance.

5.1. Implementation

We implemented a publicly available open source prototype (SeFaSI) [11] based
on a mix of tools written in Python and C. The prototype consists of separate tools
implementing basic functions, such as sampling or encryption, and a “main” tool that
implements the privacy-preserving protocol using the basic tools. SeFaSI creates the
capture histories that are used as input by our CR population estimation tools written
in R and Matlab.

SeFaSI implements the whole protocol in Python, since Python source code is small
and readable, allowing all parties to easily verify the security of the implementation.
We also implemented faster versions of the sampling, encryption, and set intersection
cardinality computation tools in C as optional substitutes for the Python equivalents.
Encryption is based on the PyCrypto library’s RSA functions [34] and libopenssl’s
modular exponentiation function [35]. We use the Murmur hash function [36] for
sampling as it is fast and has a good distribution that passes the usual tests for hash
functions.

The results in Section 5.5 show that SeFaSI’s performance is sufficient for prac-
tical use. Future work will include improvements, such as multi-threading support for
parallel sampling or encryption.

5.2. Datasets

Table 2 summarises the datasets we collected from multiple sources of unique IPv4
addresses between July 2013 and December 2014.9 We actively probed the whole al-
located IPv4 Internet using ICMP echo requests (IPING) and TCP SYN packets to port
80 (TPING). Passively observed IPv4 data includes addresses from Wikipedia’s page
edit histories10 (WIKI), potential spam email senders from [37] (SPAM), addresses
of clients tested by Measurement Lab [38] tools (MLAB), web clients participating
in an IPv6 readiness test [39] (WEB), anonymised server logs of game clients con-
necting to Valve’s Steam online gaming platform (GAME), and NetFlow records from
incoming traffic of Swinburne University of Technology’s access router (SWIN)11. The
pre-processing of the datasets is described in more detail in [10].

9The datasets were collected as part of the Australian Research Council-funded MAPPING project
(http://caia.swin.edu.au/mapping/), which finished at the end of 2014.

10Modification times and IPv4 addresses of edits by unregistered users.
11Excluding all traffic flows of our active prober.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.3 Validation against Ground Truth 20

Table 2: Datasets, collection time window, and number of unique IPv4 addresses and /24 subnets

Dataset Description Time Window Unique IPv4 [M] Unique /24 [M]

WIKI Clients editing Wikipedia Jul 2013 - Dec 2014 8.8 2.5

SPAM Potential spam email senders Jul 2013 - Dec 2014 19.2 1.8

MLAB Clients tested [38] Jul 2013 - Dec 2014 27.0 3.0

SWIN Swinburne access router NetFlow Jul 2013 - Jul 2014 73.9 3.3

TPING TCP port 80 census of IPv4 Internet Jul 2013 - Dec 2014 124.2 4.2

WEB Web clients observed [39] Jul 2013 - Dec 2014 150.4 4.5

NFLIX Netflix clients Jul 2013 - March 2014 202.6 2.1

GAME Online game clients Jul 2013 - Dec 2014 conf 4.8

IPING ICMP ping census of IPv4 Internet Jul 2013 - Dec 2014 541.5 5.4

Since [10] we have added a significant new dataset based on encrypted IP addresses
of clients connected to Netflix (NFLIX). Our privacy-preserving technique allowed
Netflix to contribute their IP addresses without violating their policies. We used SeFaSI
with a key size of 160 bit, a modulus size of 1024 bit and a sample rate of 100% (a
Netflix employee visited our research centre, minimising communication overhead).

The only dataset that can include spoofed IPs is SWIN, and we used the heuristic
from [10] to eliminate potential spoofed addresses. We generate datasets of unique /24
subnets by processing the IPv4 datasets and setting the last octet of each address to
zero and then filtering out the duplicates. Table 2 shows the sizes after pre-processing.
For GAME the number of IP addresses is confidential, but it is a big dataset as the large
number of /24 suggests.

5.3. Validation against Ground Truth

As with any real-world CR application, it is not possible to validate the overall
accuracy of our CR approach, since we do not know the ground truth. However, we
can compare the observed and estimated IPv4 addresses, from our IP data sources de-
scribed in Section 5.2, with the ground truth known for several networks. For privacy
reasons we cannot reveal the identity of the networks (and use letters A–G as identifi-
ers). The largest network is two /16 subnets and the smallest network is roughly one /20
in multiple allocations. For most networks, our ground truth is the number of actively
used IPv4 addresses at peak times (high watermarks). We compare this number against
the observed and estimated numbers of IPv4 addresses for a 12-month time window,
where the high watermarks occurred between the middle and the end of the window.
For networks B and G we know the actual numbers of unique addresses used in the
time window.

For each network, Figure 4 shows the number of addresses that responded to ICMP
ping, the number of addresses observed, the number of addresses estimated with LLM
using a truncated Poisson distribution and the Bayesian Information Criterion [10] (ver-
tical bars), and the ground truth (horizontal lines), all as percentages of the sizes of the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.4 Sampling Error 21

A B C D E F G

Network

P
er

ce
nt

ag
e

0

10

20

30

40

50

60

70

A B C D E F G

Network

P
er

ce
nt

ag
e

0

10

20

30

40

50

60

70
Ping Observed LLM

Figure 4: Comparison of LLM estimates, observed and pingable addresses (vertical bars) against the number
of reported used IPv4 addresses (horizontal lines)

networks. Note that for network C we only have a range for the ground truth, and
network F blocked our active probing, so we do not have ping data for network F.

The results show that the LLM estimates are close to the ground truth – much closer
(up to 10 times closer) than the number of pingable or observed addresses. Notably
the difference is smallest in cases where the ground truth corresponds closely to what
we estimate (B, G). The number of observed addresses is relatively close to the ground
truth for some networks (B, F), but far below the ground truth for most networks. How-
ever, the number of observed addresses is still a much better metric than the number of
pingable addresses, especially for heavily firewalled networks (A, G) or networks that
block pinging (F). Note that for each network, at least five of our data sources provide
substantial numbers of addresses, which allows CR to work.

5.4. Sampling Error

Here we analyse the impact of the sampling on the LLM CR population estimates.
In [23] we present a more detailed analysis and also verify that the sampling error of
our prototype is consistent with (3).

For each sampling rate, we repeatedly sampled all data sources, each time with dif-
ferent sample salts (100 runs for each sampling rate). Then, we computed the LLM CR
estimates from the sampled data sources and compared them against the CR estimates
for the unsampled data sources we treat as true values. The estimated range is de-
termined based on the profile likelihood confidence interval [40] and we used Akaike’s
Information Criterion (AIC) and Bayesian Information Criterion (BIC) [41] for fitting.

We first investigate the case where the “best model” is selected in each run from
the sampled data. This reflects the case where we never have the unsampled data and
hence do not know the best model based on the unsampled data. Figure 5 shows the
relative errors for the LLM estimates of the total number of addresses (lower and upper
values of LLM estimated ranges) for different sampling rates with AIC. The relative
errors are below 5%, and with sampling rates of 1% or higher the error is usually within

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.5 Performance 22

●
●●

●●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●●
●
●

●●

●
●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
● ●

●●
●
●●

●●●
●●

●

●●●
●●

●

E
st

. r
el

at
iv

e
er

ro
r

[%
]

−1

0

1

2

3

4

5

L U L U L U L U L U

Lower/Upper estimates and sample rate [%]

0.1 0.5 1 5 10

●
●●

●●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●●
●
●

●●

●
●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
● ●

●●
●
●●

●●●
●●

●

●●●
●●

●

E
st

. r
el

at
iv

e
er

ro
r

[%
]

Figure 5: Relative error of (L)ower and (U)pper values of CR estimated ranges depending on the sample rate
for LLMs with AIC, deriving the best model from the sampled datasets

2%. With the BIC, errors are usually below 2% even for sample rates as low as 0.1%
[23].

The larger errors are mainly caused by model inconsistencies, since the model was
selected independently for each set of sampled datasets. For sampling rates of 5% and
10% the selected models are quite consistent. For sampling rates of 1% and lower,
models for different samples start to diverge. We can also see some bias in the LLM
estimates. The bias is very small for sampling rates of 5% or higher, but increases
significantly with decreasing sampling rate. It is caused by the systematic inclusion
or exclusion of some parameters not used in the benchmark model built from the un-
sampled data. Since our data sources have mainly apparently positively correlated data
sources, increasing (decreasing) the number of model parameters typically results in
higher (lower) population estimates.12 The effect is dominated by parameters that rep-
resent interactions between fewer sources.

To demonstrate that the bias in the LLM estimates is caused solely by the model
selection process, we conducted another experiment where the model was fixed – in
each run the model used was the model selected by AIC for the unsampled data. Figure
6 shows the relative errors for the LLM estimates of the total number of addresses
(lower and upper values of LLM estimated ranges) depending on different sampling
rates, treating the estimates for the unsampled data sources as true values. It shows that
with a fixed model the LLM estimate is unbiased and has substantially smaller error.

5.5. Performance

We measured the performance of our prototype on a PC with an Intel i7 2.8 GHz
CPU, 24 GB RAM and a file cache on a solid state disk (SSD) running FreeBSD 9.0
and Python 2.7.3. Note that for all performance measurements we used a single CPU
core only and RAM used by SeFaSI never exceeded 1 GB. In this section we summarise

12Positively correlated data sources lead to underestimates with L-P. LLMs correct for this with positive
model parameters. The more positive parameters the selected best model has, the higher is the estimate.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.5 Performance 23

●

●

●●

●

●●

●

● ●

● ●

E
st

. r
el

at
iv

e
er

ro
r

[%
]

−2

−1

0

1

2

L U L U L U L U L U

Lower/Upper estimates and sample rate [%]

0.1 0.5 1 5 10

●

●

●●

●

●●

●

● ●

● ●

E
st

. r
el

at
iv

e
er

ro
r

[%
]

Figure 6: Relative error of (L)ower and (U)pper values of CR estimated ranges depending on the sample rate
for LLMs with AIC, using the AIC model selected for the unsampled data

the results for the C implementation (averages over 10 runs); more details can be found
in [23].

The sampling speed of our prototype depends on the sample rate (file-write over-
head increases with higher sample rates). However, for realistic sample rates of 10%
or lower, the speed is nearly constant in the range of 5.2 to 5.4 million IPs per second.
Even with an unrealistically high sample rate of 50% our prototype can sample about
4.35 million IPs per second. Hence, it would take no more than 4 minutes to down-
sample a dataset with 1 billion IPv4 addresses.

The encryption and permutation speed depends on the key and modulus sizes.
While it takes longer to encrypt already-encrypted IPs (due to longer input data), the
difference is relatively small, which we attribute to libopenssl’s modular exponenti-
ation being the bottleneck13. With 160 bit keys and 1024 bit modulus (NIST 2010
Legacy [29]) our prototype can encrypt and permute 3,600 IPs per second. This re-
duces to 1,100 IPs per second with 224 bit keys and 2048 bit modulus. So with NIST
2010 it takes a little over 3 days to encrypt and permute 1 billion IPv4 addresses. How-
ever, with a dataset sample rate of 10% the time reduces to only 8 hours (including
the sampling). The encryption and permutation speed is dominated by the encryption,
which takes 97–98% of the time.

The set intersection cardinality speed depends on the number of encrypted datasets
and the overlap. An overlap of 100% represents the best case (highest performance)
and an overlap of 0% represents the worst case (lowest performance). Computing the
set intersection cardinality of five datasets with 1 billion IPv4 addresses each takes 18–
50 minutes depending on the overlap. However, with a dataset sample rate of 10% this
reduces to 2–5 minutes.

13libopenssl implements modular exponentiation based on Montgomery multiplication, where the original
multipliers are transformed into Montgomery space. Transformed multipliers are always of the size of the
modulus in bits.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24

WIKI
WEB
PING

TPING
MLAB
SPAM
GAME
SWIN
NFLIX

W
IK

I
W

E
B

P
IN

G
T

P
IN

G
M

LA
B

S
PA

M
G

A
M

E
S

W
IN

N
F

LI
X

NA

NA

NA

NA

NA

NA

NA

NA

NA

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Estimated correlations between data sources

6. Estimated Used IPv4 Space

Now we illustrate our technique by presenting an estimation of the used IPv4 space
based on the datasets described in Section 5.2. We are interested in not only the number
of used IPv4 addresses, but also the number of used /24 subnets (the minimal allocation
size).14 Note that in cases where we stratified the data, a separate SeFaSI run was
performed for each stratum (as mentioned in Section 4.1).

6.1. Correlations Between Datasets
We first demonstrate that no pair of our datasets are sufficient by themselves. Recall

that CR using two datasets requires them to be uncorrelated. Figure 7 shows the estim-
ated correlations between our data sources. These are Yule’s Y computed based on 2x2
capture frequency tables for each source combination with Z00 estimated by CR. Most
of the correlations are positive, although there are a few slightly negative correlations
(TPING-GAME, TPING-NFLIX, SWIN-NFLIX, SPAM-NFLIX). TPING and IPING,
which include servers, are strongly correlated with each other, but are less correlated
with the other sources. TPING is less correlated with the client-centric passive sources
than IPING is, as TPING requires an active service running. Most client-centric data-
sets (WIKI, WEB, MLAB, GAME) are highly correlated. SPAM also shows a high
correlation with the client datasets (since most spam is sent by clients coerced into bot-
nets). NFLIX shows less correlation with the other sources, possibly since it is more
geographically limited.

6.2. Used IPv4 space
We now present our estimates for the used IPv4 space at the end of 2014. Unless

otherwise noted results are for LLMs. For LLMs we are using the adaptive divisor
approach and the BIC for the model fitting [10]. For LCMs we use a model with
C = 7, chosen as a balance between unreliability due to many local optima for large C,
and negative bias (indicated by leave-one-out cross validation) for small C. We exclude
NFLIX for AfriNIC and African countries due to a lack of coverage.

14Until 2014 RIRs never allocated less than a /24 (256 addresses), e.g. see APNIC’s policy [42].

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6.2 Used IPv4 space 25

Table 3: Observed and estimated used IPv4 addresses and /24 subnets at the end of December 2014

Ping

[M]

Observed

[M]
Stratified

Est. Used

LLM [M]

Est. Used

LCM [M]

Unseen

[M]

Routed

[M]

IP addresses 542 842
No 1167 1239

300–400 2753

RIR 1187 1219

/24 subnets 5.4 6.3
No 6.6 6.4

0.1–0.4 10.8

RIR 6.7 6.4

6.2.1. Totals
Table 3 shows the total number of pingable, observed and estimated IPv4 addresses

and /24 subnets for both LLM and LCM, as well as the number of publicly routed IPv4
addresses and /24 subnets for comparison. We show the estimates without stratification
and when stratifying by RIR. The estimates for LLMs and LCMs are broadly consist-
ent (both within 6% of the average of 1.2 billion addresses). With RIR stratification,
the IPv4 address estimates of both models are closer, but the /24 subnet estimates are
further apart. This indicates that further research into confidence intervals for these
estimators will be worthwhile.

A potential benefit of LCMs over LLMs is that meaningful classes of users can
sometimes be identified. One identified class appears to correspond to servers, since
it frequently appears in TPING and seldom appears in client-based sources such as
NFLIX and GAME, but no other classes stood out as clearly identifiable.

To get an idea of the error of the estimate, we computed the population estimate n
times, each time leaving out one of the n sources and then computed the standard de-
viation for the n population estimates.15 The standard deviation is roughly 110 million
addresses. However, if we consider only cases that include the largest dataset, IPING,
then it reduces to 45 million, less than 4% of the mean. Note that without NFLIX the
standard deviation is about 60 million, so the inclusion of the new dataset reduced the
variance of the estimate. For /24 subnets the n estimates are very consistent, and the
standard deviation is only 65,000 subnets.

6.2.2. Usage by region
Figures 8 and 9 show the pingable, observed and estimated used IPv4 addresses and

/24 subnets for the five RIRs at the end of 2014 as absolute numbers and percentages
of the routed space. Note that the top of each bar segment indicates the number of
pingable, observed and estimated used IPv4 addresses or /24 subnets. The results show
that most /24 subnets are observed and CR estimates that the fraction of used but unseen
/24 subnets is small (especially for LCMs). However, for IPv4 addresses the fraction of
unseen IP addresses estimated by both CR methods is significant. It is expected that the

15This is more realistic than using the standard confidence interval methods for CR that likely underes-
timate the error due to our large sample size.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6.2 Used IPv4 space 26

U
se

d
/2

4
su

bn
et

s
[M

]

Obs. ping Obs. all Est. used

U
se

d
/2

4
su

bn
et

s
[M

]

0.0

0.5

1.0

1.5

2.0

U
se

d
/2

4
su

bn
et

s
[%

]

LLM LCM LLM LCM LLM LCM LLM LCM LLM LCM

AFRINIC APNIC ARIN LACNIC RIPENCC

U
se

d
/2

4
su

bn
et

s
[%

]

0

20

40

60

80

Figure 8: Pingable, observed and estimated /24 subnets at the end of 2014 for the different RIRs

fraction of unobserved addresses is larger than that for /24s, since the latter is a logical
OR of all of the addresses it contains. For both IPv4 addresses and /24 subnets, APNIC
(Asia-Pacific), ARIN (North America) and RIPE (Europe) have the highest numbers of
used addresses/subnets, whereas LACNIC (Latin America) has the highest utilisation.

6.2.3. Usage by allocation year
Figures 10 and 11 show the pingable, observed and estimated used IPv4 addresses

and /24 subnets depending on the allocation year (estimates for the LLM model only,
since the overall trends for both models are similar). The allocation year of an IP
address or a /24 is the year the IP or /24 was allocated based on the RIR allocation
data.

The figures show that IP space allocated in the earlier period until and including
1998 has much lower utilisation than IP space allocated from 1999 onwards. This
suggests a significant part of the IPv4 space allocated in the earlier years is either
not used or underutilised – an observation consistent with the findings by Cai et al.
[5]. The difference in utilisation between these two periods is more pronounced for IP
addresses than for /24 subnets, which indicates that parts of the earlier allocated space
are underutilised.

Furthermore, only 55% of the addresses allocated between 1982 and 1998 are pub-
licly routed, whereas 94% of the IPv4 space allocated between 1999 and 2014 is pub-
licly routed (based on Routeviews [43] data).

6.2.4. Usage by country
Figures 12 and 13 show the LLM estimated used IPv4 addresses for each country

(with sufficient sample size) against the country’s gross domestic product (GDP) and
population size on a log-log scale for the different regions (RIRs). Results for /24s are

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6.3 Discussion 27

U
se

d
IP

v4
 [M

]

Obs. ping Obs. all Est. used

U
se

d
IP

v4
 [M

]

0

100

200

300

400

U
se

d
IP

v4
 [%

]

LLM LCM LLM LCM LLM LCM LLM LCM LLM LCM

AFRINIC APNIC ARIN LACNIC RIPENCC

U
se

d
IP

v4
 [%

]

0

10

20

30

40

50

60

Figure 9: Pingable, observed and estimated IPv4 addresses at the end of 2014 for the different RIRs

broadly similar. The correlation can be estimated by the width of the minor component
of the scatter plot. The correlation between the number of estimated used addresses
and GDP is greater than the correlation with population. Especially for the African,
Asian and South American regions, we see countries with large populations that use a
comparatively small part of the IPv4 space. The is consistent with a strategy of allocat-
ing IPv4 addresses proportional to the demand for Internet access, which is correlated
more with GDP than with population.

6.2.5. Impact on IPv6 deployment
Figure 14 plots the fraction of allocated used IPv4 addresses for each country

against the percentage of hosts that are IPv6-capable according to July 2015 APNIC
data [44] (the x-axis is logarithmic). Results for /24s are similar. Surprisingly, there is
no correlation between the fraction of used IPv4 addresses (or /24 subnets) and IPv6
readiness. A plot against the percentage of hosts that prefer to use IPv6 over IPv4 also
shows no correlation [23].

6.3. Discussion

Using only ping underestimates the number of used IPv4 addresses. With addresses
from other data sources the number of observed used IPs increases from 550 to 850
million. However, with CR we estimate that the number of actually used IPs is much
higher – around 1.2 billion addresses at the end of 2014. Without complete ground
truth, which is impossible to obtain, we do not know the accuracy of this estimate, but
based on samples of ground truth we have shown that CR estimates are usually much
closer to the ground truth than the number of observed addresses. We also showed that
the estimates of two very different CR models are broadly consistent, which indicates
that there is not a high uncertainty in our estimates due to using one specific CR model.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6.3 Discussion 28

U
se

d
/2

4
su

bn
et

s
[M

]

Obs. ping Obs. all Est. used

U
se

d
/2

4
su

bn
et

s
[M

]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

U
se

d
/2

4
su

bn
et

s
[%

]
U

se
d

/2
4

su
bn

et
s

[%
]

1984 1988 1992 1996 2000 2004 2008 2012

U
se

d
/2

4
su

bn
et

s
[%

]

0

20

40

60

80

Figure 10: Pingable, observed and estimated /24 subnets depending on the allocation year

For the number of /24 subnets the CR estimates (6.4–6.7 million) are much closer to
the observed number (6.3 million), and so the number of observed /24 subnets already
appears to be a good indicator of /24 subnet usage. Again, the estimates of our two
different CR models are broadly consistent.

When investigating the different regions based on the RIRs, for both IPv4 ad-
dresses and /24 subnets, APNIC, ARIN and RIPE have the highest numbers of used
addresses/subnets, whereas LACNIC has the highest utilisation. When investigating
the used space depending on when it was allocated, it is clear that IPv4 space allocated
until 1998 is much less used than space that has been allocated after 1998.

Our CR estimates are likely below the actual used space due to the data sources we
used. In future work we aim to include additional sources that could not be accessed
previously without the privacy-preserving protocol. On the other hand we know that
out of the 3.58 billion allocated addresses only 2.75 billion IP addresses were actu-
ally publicly routed at the end of 2014 [43]. Furthermore, there are clear signs of low
utilisation in networks where we have ground truth (see Section 5.3) and older IP al-
locations (see Section 6.2.3). It appears that large parts of the IPv4 space were either
not used or underutilised at the end of 2014.

The apparent shortage of IPv4 addresses is heavily influenced by fragmentation of
the address space. IPv4 space is hierarchical due to the need for efficient management
and routing. The RIRs (and prior to the RIRs the central Internet Registry) allocated
large contiguous blocks of addresses (defined by address prefixes) to organisations,
who then subdivided the blocks to allocate to smaller bodies, and so on.

Until 1993, prefixes had to be /8, /16 or /24, and allocations were often larger than
needed, because initially the IPv4 space was perceived as plentiful and the strategy
was to err towards shorter rather than longer prefixes so that organisations could grow
within their allocated space. The problem with this approach was the huge effect of

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

29

U
se

d
IP

v4
 [M

]

Obs. ping Obs. all Est. used

U
se

d
IP

v4
 [M

]

0
20
40
60
80

100
120
140

U
se

d
IP

v4
 [%

]
U

se
d

IP
v4

 [%
]

1984 1988 1992 1996 2000 2004 2008 2012

U
se

d
IP

v4
 [%

]

0
10
20
30
40
50
60
70

Figure 11: Pingable, observed and estimated IPv4 addresses depending on the allocation year

upsizing. For example, an organisation for which a /16 (65,536 addresses) was a little
bit too small was allocated a /8 (16.7 million addresses). Demand for the Internet arose
earlier in wealthier countries (consistent with Section 6.2.4), so these benefited more
from the ‘generous’ allocation sizes handed out in early years. From 1993 onwards
Classless Inter-Domain Routing (CIDR) removed the “three prefix sizes fit all” restric-
tion, but the minimum allocation size of RIRs remained /24 or larger in order to limit
the size of the global routing table. For example, until the year 2000 APNIC’s min-
imum allocation size was /19 and it was only gradually reduced to /24 in the year 2011
[42].

The hierarchical structure, ‘generous’ allocation sizes given out in early years and
the minimum allocation sizes cause many addresses to be unused at the end of 2014.
Ongoing periodic analysis is required to observe longitudinal trends. Our proposed
technique allows doing this while keeping observed IP addresses private.

7. Conclusions

A better understanding of IPv4 address space exhaustion, and likely pressures for
IPv6 adoption, requires estimating how much allocated IPv4 space is actively used.
As no single online service has complete visibility into IP address space utilisation,
such estimates require diverse parties to share private datasets of active IP addresses.
Sharing raw data can reveal a party’s business scope and compromise a party’s user
base.

This paper has presented a new collaborative and privacy-preserving capture-
recapture (CR) technique for estimating address space utilisation from multiple sources
of observed IP addresses while guaranteeing the privacy of the addresses. Our tech-
nique is much more accurate than assuming all used addresses are observed and bal-

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

30

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

GDP (billion $)

1 10 100 1000 10000

1e−03

1e−01

1e+01

U
se

d
IP

v4
 a

dd
re

ss
es

 (
M

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

● RIPE APNIC AfriNIC ARIN LACNIC

Figure 12: Estimated used IPv4 addresses vs. GDP for each country

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

Population (M)

1e−01 1e+00 1e+01 1e+02 1e+03

1e−03

1e−01

1e+01

U
se

d
IP

v4
 a

dd
re

ss
es

 (
M

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

● RIPE APNIC AfriNIC ARIN LACNIC

Figure 13: Estimated used IPv4 addresses vs. population for each country

ances performance against precision of the estimated population size. Using a publicly
released prototype we show our technique scales well up to 5–10 collaborators and
datasets of up to over one billion IPs while the impact on CR estimation accuracy is
small (with a sample rate of 1%, the relative error does not exceed 2%). Our technique
allowed Netflix to contribute their IP addresses in a privacy-preserving manner.

Another contribution of this paper is an additional CR model. We compare the new
model with the log-linear model we introduced previously and show that the estimates
of both models are broadly consistent: approximately 1.2 billion IPv4 addresses and
6.5 million /24 subnets were actively used at the end of 2014. The broadly consistent
estimates indicate that there is not a high uncertainty in our estimates due to using one
specific model. We also present estimates of the number of used IPv4 addresses and /24
subnets for the different regions and different allocation years. Finally, we show that
on a per-country basis the number of used addresses is highly correlated with GDP, but
seemingly uncorrelated with estimated IPv6 capability.

While our CR estimates may still be lower than the actually used space, there are
clear signs of underutilisation at the end of 2014. The IPv4 space is “exhausted”,

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

REFERENCES 31

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

IPv6 capable (%)

U
se

d
IP

v4
 a

dd
re

ss
es

 (
%

)

0.01 0.10 1.00 10.00 50.00

0

20

40

60

80

100

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

● RIPE APNIC AfriNIC ARIN LACNIC

Figure 14: Fraction of allocated used IPv4 addresses vs. percentage of IPv6-capable hosts

because hierarchical allocation, generous allocation sizes given out in early years and
minimum allocation sizes to limit the global routing table size cause many addresses to
be unused. However, while parts of the unused IPv4 space may be reclaimed, this could
only provide short-term relief, given the number of networked devices will rapidly
increase due to the Internet of Things (IoT) [2]. A long-term solution exists in the form
of IPv6.

Acknowledgements

This research was supported by Australian Research Council grants LP110100240
(co-funded by, and in collaboration with, APNIC Pty Ltd) and FT0991594. We thank
G. Huston, G. Michaelson, D. Buttigieg, C. Tassios, A. Reynolds, L. Stewart, Valve
Corporation, Swinburne ITS, and Netflix Inc. for providing IP data. We thank the area
editor, L. Iannone, and the anonymous reviewers for their insightful comments.

References

[1] G. Huston, IPv4 Address Report, http://www.potaroo.net/tools/ipv4/
index.html, retrieved 18 Mar 2016.

[2] J. Bradley, J. Barbier, D. Handler, Embracing the Internet of Everything To Cap-
ture Your Share of $14.4 Trillion, Cisco White Paper, http://www.cisco.
com/c/dam/en_us/about/ac79/docs/innov/IoE_Economy.pdf, retrieved
23 Aug 2016 (2013).

[3] Y. Pryadkin, R. Lindell, J. Bannister, R. Govindan, An Empirical Evaluation of
IP Address Space Occupancy, Technical Report ISI-TR 598, USC/ISI (2004).

[4] J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G. Bartlett, J. Bannis-
ter, Census and Survey of the Visible Internet, in: ACM Conference on Internet
measurement (IMC), 2008, pp. 169–182.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

REFERENCES 32

[5] X. Cai, J. Heidemann, Understanding Block-level Address Usage in the Visible
Internet, in: ACM SIGCOMM Conference, 2010, pp. 99–110.

[6] Anonymous, Internet Census 2012 – Port scanning /0 using insecure embed-
ded devices, http://internetcensus2012.bitbucket.org/paper.html,
retrieved 18 Mar 2016.

[7] A. Dainotti, K. Benson, A. King, kc claffy, M. Kallitsis, E. Glatz, X. Dimitro-
poulos, Estimating Internet Address Space Usage Through Passive Measure-
ments, ACM Computer Communication Review (CCR) 44 (1) (2014) 42–49.

[8] A. Dainotti, K. Benson, A. King, k. claffy, E. Glatz, X. Dimitropoulos, P. Richter,
A. Finamore, A. Snoeren, Lost in Space: Improving Inference of IPv4 Address
Space Utilization, Tech. rep., Center for Applied Internet Data Analysis (CAIDA)
(Oct 2014).

[9] S. Zander, L. L. H. Andrew, G. Armitage, G. Huston, Estimating IPv4 Address
Space Usage with Capture-Recapture, in: 7th IEEE Workshop on Network Meas-
urements (WNM), 2013.

[10] S. Zander, L. L. H. Andrew, G. Armitage, Capturing Ghosts: Predicting the Used
IPv4 Space by Inferring Unobserved Addresses, in: Internet Measurement Con-
ference (IMC), 2014.

[11] S. Zander, L. L. H. Andrew, G. Armitage, MAPPING (Measuring And Practically
Predicting INternet Growth) Tools, http://caia.swin.edu.au/mapping/
tools.html, retrieved 18 Mar 2016.

[12] C. G. J. Petersen, The Yearly Immigration of Young Plaice into the Limfjord from
the German Sea, Rept. Danish Biol. Sta. 6 (1895) 1–77.

[13] F. C. Lincoln, Calculating Waterfowl Abundance on the Basis of Banding Re-
turns, U.S. Dept . Agric. Circ. 118 (1930) 1–4.

[14] Z. E. Schnabel, The estimation of the total fish population of a lake, Amer. Math.
Mon. 45 (1938) 348–352.

[15] R. McCrea, B. Morgan, Analysis of Capture-recapture Data, CRC Press, 2014.

[16] K. H. Pollock, J. D. Nichols, C. Brownie, J. E. Hines, Statistical Inference for
Capture-Recapture Experiments, Wildlife Monographs (107) (1990) 3–97.

[17] E. B. Hook, R. R. Regal, Capture-Recapture Methods in Epidemiology: Methods
and Limitations, Epidemiol. Rev. 17 (2) (1995) 243–264.

[18] A. Chao, P. K. Tsay, S. H. Lin, W. Y. Shau, D. Y. Chao, The Applications of
Capture-Recapture Models to Epidemiological Data, Statistics in Medicine 20
(2001) 3123–3157.

[19] A. Chao, An Overview of Closed Capture-Recapture Models, J. Agric. Biol. En-
vir. S. 6 (2) (2001) 158–175.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

REFERENCES 33

[20] G. C. M. Moura, C. Gãnán, Q. Lone, P. Poursaied, H. Asghari, and M. van Eeten,
How Dynamic is the ISPs Address Space? Towards Internet-Wide DHCP Churn
Estimation, in: IFIP Networking Conference, 2015.

[21] S. Pledger, Unified maximum likelihood estimates for closed capture-recapture
models using mixtures, Biometrics 56 (2) (2000) 434–442.

[22] A. Chao, P. K. Tsay, A Sample Coverage Approach to Multiple-System Estima-
tion with Applications to Census Undercount, Journal of the American Statistical
Association 93 (1998) 282–293.

[23] S. Zander, L. L. H. Andrew, G. Armitage, Collaborative and Secure Estimation of
IP Address Space Utilisation – Extended Version, Tech. Rep. 150909A, Centre for
Advanced Internet Architectures, Swinburne University of Technology, http://
caia.swin.edu.au/reports/150909A/CAIA-TR-150909A.pdf (September
2015).

[24] B. Pinkas, T. Schneider, M. Zohner, Faster Private Set Intersection Based on OT
Extension, in: Proceedings of the 23rd USENIX Conference on Security Sym-
posium, 2014, pp. 797–812.

[25] J. Vaidya, C. Clifton, Secure Set Intersection Cardinality with Application to As-
sociation Rule Mining, J. Comput. Secur. 13 (4) (2005) 593–622.

[26] M. Bellare, V. T. Hoang, S. Keelveedhi, P. Rogaway, Efficient Garbling from
a Fixed-Key Blockcipher, in: IEEE Symposium on Security and Privacy (SP),
2013, pp. 478–492.

[27] S. Pohlig, M. Hellman, An improved algorithm for computing logarithms over
and its cryptographic significance, IEEE Transactions on Information Theory
24 (1) (1978) 106–110.

[28] A. Shamir, R. Rivest, L. Adleman, Mental Poker, MIT/LCS/TM-125, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA
(1979).

[29] E. Barker, W. Barker, W. Burr, W. Polk, M. Smid, Recommendation for Key
Management, Special Publication 800-57 Part 1 Rev. 3, NIST (July 2012).

[30] A. Z. Broder, On the Resemblance and Containment of Documents, in: Compres-
sion and Complexity of Sequences 1997, 1997, pp. 21–29.

[31] N. G. Duffield, M. Grossglauser, Trajectory sampling for direct traffic observa-
tion, IEEE/ACM Trans. Netw. 9 (3) (2001) 280–292.

[32] R. Morris, K. Thompson, Password Security: A Case History, Bell Laborat-
ories, Murray Hill, NJ, USA, http://cm.bell-labs.com/cm/cs/who/dmr/
passwd.ps (April 1978).

[33] W. Feller, On the normal approximation to the binomial distribution, The Annals
of Mathematical Statistics 16 (4) (1945) 319–329.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

REFERENCES 34

[34] D. C. Litzenberger, PyCrypto – The Python Cryptography Toolkit, https://
www.dlitz.net/software/pycrypto/, retrieved 17 Jun 2016.

[35] OpenSSL Software Foundation, OpenSSL - Cryptography and SSL/TLS Toolkit,
https://www.openssl.org/, retrieved 17 Jun 2016.

[36] A. Appleby, MurmurHash, https://sites.google.com/site/
murmurhash/, retrieved 17 Jun 2016.

[37] DNS-based Blacklist of NiX Spam, http://www.dnsbl.manitu.net/, re-
trieved 18 Mar 2016.

[38] Measurement Lab, http://www.measurementlab.net/, retrieved 18 Mar
2016.

[39] S. Zander, L. L. H. Andrew, G. Armitage, G. Huston, G. Michaelson, Mitigat-
ing Sampling Error when Measuring Internet Client IPv6 Capabilities, in: ACM
Internet Measurement Conference (IMC), 2012.

[40] S. Baillargeon, L.-P. Rivest, Rcapture: Loglinear Models for Capture-Recapture
in R, J. Statistical Software 19 (5) (2007) 1–31.

[41] E. Cooch, G. C. White, Program MARK: A Gentle Introduction, Cornell Univer-
sity, 2009.

[42] APNIC, Minimum prefix and delegations sizes, https://www.apnic.net/
manage-ip/manage-resources/address-status/min-prefix, retrieved
23 Aug 2016.

[43] University of Oregon Route Views Project, http://www.routeviews.org/, re-
trieved 18 Aug 2016.

[44] APNIC, IPv6 Capable Rate by Country, http://stats.labs.apnic.net/
ipv6, retrieved 18 Mar 2016.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Sebastian Zander received the Dipl.-Ing. degree from Technical University Berlin, Germany

in 1999 and the PhD degree from Swinburne University of Technology, Australia in 2010. He

is currently a Lecturer at Murdoch University, Australia. From 1999 to 2004 he worked as

researcher and project manager at Fraunhofer FOKUS, Germany and from 2010 to 2015 he

was a research fellow at Swinburne University. He co-authored “Information Hiding in

Communication Networks” (Wiley, 2016). His research interests include the IPv4 to IPv6

transition, network measurement, traffic classification, covert channels and network

security. He is a member of the IEEE and the Australian Computer Society (ACS).

Lachlan Andrew received the B.Sc., B.E. and Ph.D. degrees in 1992, 1993, and 1997, from

the University of Melbourne, Australia. He is currently with Monash University, Australia.

From 2010 to 2014 he was an ARC Future Fellow. From 2008 to 2013 he was with Swinburne

University of Technology, Australia. From 2005 to 2008, he was a senior research engineer

at Caltech. Prior to that, he was at the University of Melbourne and RMIT, Australia. He was

co-recipient of the best paper award at IGCC2012, IEEE INFOCOM 2011 and IEEE MASS

2007, and the 2014 William Bennett paper award.

Grenville Armitage received the B.Eng. degree (Hons.) in electrical engineering and the

Ph.D. degree in electronic engineering from the University of Melbourne, Melbourne,

Australia, in 1988 and 1994, respectively. He is currently a Professor of telecommunications

engineering, Swinburne University of Technology, Melbourne, Australia. He authored

Quality of Service In IP Networks: Foundations for a Multi-Service Internet (Macmillan,

2000) and co-authored Networking and Online Games—Understanding and Engineering

Multiplayer Internet Games (Wiley, 2006). Prof. Armitage is a member of the IEEE, the

Association for Computing Machinery (ACM) and the ACM Special Interest Group on Data

Communication (SIGCOMM).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Sebastian Zander

Lachlan Andrew

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Grenville Armitage

