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Abstract. MaxNet is a distributed congestion control architecture in which only the most severely bottlenecked

link on the end-to-end path generates the congestion signal that controls the source rate. This is unlike SumNet

networks, such as the current Internet or REM, where all of the bottlenecked links on the end-to-end path add to

the congestion signal. This paper shows that the small-signal convergence speed of MaxNet is higher than that

of the SumNet architecture. It also shows that MaxNet decouples the control, so that each pole position depends

only on parameters of one bottleneck link and of the sources controlled by that bottleneck, enabling optimal pole

placement.
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1 Introduction

Network flow control aims to control source rates so that link capacities are utilised. Internet-like

networks, where links and sources can only have local information, must use fully distributed

control.

Models of Internet-like networks control the source rate by a scalar feedback congestion

signal which aggregates the congestion prices of links on the end-to-end connection. The sugnals,

such as loss, used by current flow control algorithms such as TCP, are implicitly summed over

all links by the network. We refer to these networks as SumNets. In [1], we introduced MaxNet,

where the aggregation function isMax, and only the maximum link price along the connection

path controls the source rate. In [1], we showed that MaxNet results in Max-Min fairness for

sources with homogeneous demand functions.

Sufficient conditions for the stability of MaxNet are known [2], but its transient dynamics

are yet to be studied. The convergence time of network flow control impacts on the Quality of

Service of the network. A slow response results in long traffic transients which are responsible

for packet delay, delay-jitter, under-utilisation and buffer-overflow. Reducing the duration and

overshoot of transients improves these performance measures and makes smaller buffer sizes

possible.

In this paper we compare the convergence times of MaxNet and SumNet, using a common

framework introduced in Section 2. The first part of the investigation involves a local analysis

for which we develop small-signal linearized models in Sections 3 and 4. Using these models,

Section 6 finds the position of poles which determine the convergence time of MaxNet. Section 7

compares the convergence time of MaxNet with a lower bound of the performance of SumNet,

and shows that a faster pole placement is possible with MaxNet than with SumNet. This makes



it possible for MaxNet to achieve better QoS performance. In the second part of this paper,

Section 8 investigates the global performance by simulating the full non-linear system, and relate

the local analysis to these simulation results.

2 Control Architecture

The following is a brief overview of the MaxNet and SumNet control algorithms. For a fuller

description, see [1, 3]. In both MaxNet and SumNet networks, a single congestion signal,qi, is

communicated to sourcei summarising the prices,pl, of all links, l, on the end-to-end transmis-

sion path,Li. In MaxNet the congestion signal is the maximum of all link prices,

qi = max{pl : l ∈ Li}. (1a)

In contrast, SumNet uses the sum

q̂i =
∑
l∈Li

pl. (1b)

(Throughout this paper, variables with a hat pertain to SumNet, and the corresponding variables

without a hat pertain to MaxNet.)

The behaviour of sourcei is governed by an explicit demand function,Di(·), such that its

transmit rate is

xi = Di(qi) (2)

for a congestion signalqi. The Active Queue Management (AQM) algorithm in a router sets the

price of an outgoing link according to the well studied integrator process [3]:

pl(t + 1) = pl(t) + (yl(t)− cl)ϕl, (3)



whereyl(t) =
∑

i:l∈Li
xi(t) is the aggregate arrival rate for linkl at timet, ϕl is the control gain

andcl is the target capacity of linkl which is related to its physical capacity,Cl by the target

utilisation,0 < µl < 1, such thatcl = µlCl.

3 MaxNet Control System Model

This section describes the MaxNet model from [2] which will be used in subsequent sections to

investigate convergence time. This model makes a number of simplifications of the network. The

first is to use a fluid-flow approximation of the packet based information flow. The second sim-

plification is that the global non-linear system is linearized about its equilibrium point. MaxNet

contains two sources of non-linearity. The first is the Max operation itself and the second is the

non-linear demand function,D. These will be linearised separately.

Using these simplifications, the network is represented as a multi-variable control system,

shown in Figure 1. Note that Figure 1, for illustration only, shows a large-signal source, and

small-signal links and network. The interconnection of sources with links is piecewise linear, due

to the Max operation. It is described in the Laplace domain by forward and backward routing

matrices. The matrices specify the interconnection and the delay incurred in signal flow from

source to link and vice versa. The forward routing matrix is

[Rf (s)]l,i =


e−τf

i,ls if sourcei uses linkl

0 otherwise,

(4)

whereτ f
i,ls is the forward delay between sourcei and link l. Note that the bar notation inRf (s)

indicates it has a row for every link in the network. We later reduce this to a matrix representing

only bottleneck links, which does not have the bar.



Letni be the bottleneck link that controls sourcei. Then the backward routing matrix depends

onn, and is given by

[Rb(s; n)]l,i =


e−τb

i,ls if ni = l

0 otherwise.

(5)

Note that the round-trip time of sourcei’s connection isτi = τ f
i,l + τ b

i,l. Let L be the number of

links in the network. Without loss of generality, order the link prices such that

p1 ≥ p2 ≥ . . . ≥ pL. (6)

Fig. 1.Flow Control Structure.

The backward routing matrix remains static over a period where the variations in link prices

do not change the ordering of link prices (6). The overall multi-variable feedback loop in the

configuration of Figure 1 is

y(s) = Rf (s)x(s) (7)

q(s) = Rb(s; n)T p(s). (8)



We can construct a small signal model as in [3]. Consider small perturbations around equi-

librium, x = x0 + δx, y = y0 + δy, p = p0 + δp, q = q0 + δq, where subscript 0 denotes a steady

state value and prefixδ denotes a perturbation. Note that the bar notation still denotes variables

that contain non-bottleneck links andδpl is only non-zero for bottleneck links. Note also that

when all link prices are distinct, the vector of bottlenecks,n, is unchanged by a sufficiently small

perturbation. In this case, the small signal model does not explicitly involven. This is the first

linearisation. Form the vectorsδp(s), δy(s) and the matricesRf , Rb by eliminating the elements

(or rows) corresponding to non-bottleneck links. This gives the reduced small signal model

δy(s) = Rf (s)δx(s) (9)

δq(s) = Rb(s)
T δp(s). (10)

To achieve stable control for networks of arbitrary dimensions, the gains that sources and

links introduce need to be prescribed as detailed in [2]. The second linearisation replaces the de-

mand function of a source by a small-signal gain at the source. That gain, between a perturbation

in δqi and the resulting perturbation inδxi, is

κi = D′
i(qi). (11)

For robust stability, this gain must be scaled such that

κi =
αix0i

τi

. (12)



The selectable parameterαi ∈ (0, 1) controls the magnitude of the demand function to reflect

the source’s need for capacity. The termτi makes the stability robust to delay. To make stability

robust to the number of sources, a gainx0i/cl is introduced in the closed-loop, with thex0i

component put into the source and the1/cl component in the link asϕl = 1/cl.

Note that (11) implicitly assumes a static demand function. As discussed in [3], the require-

ment (12) determines the shape of the static demand function. However, recent work in [4] pro-

vides dynamic source algorithms which allow arbitrary demand functions, whilst preserving the

control gain required for robust stability. They separate the high-frequency gain AC from the DC

gain.

In the Laplace domain, the integrator AQM of (3) with the required gain between the coupling

of δpl andδyl is

δpl =
1

cls
δyl. (13)

The open-loop transfer function for the small signal MaxNet model is

H(s) =
1

s
Rf (s)KRb(s)

TC, (14)

where

K = diag(κi), C = diag

(
1

cl

)
. (15)

4 SumNet Control System Model

This section describes the model from [3] for a SumNet network, by highlighting the difference

from the MaxNet model. Recall that the hat symbol identifies SumNet variables which have a

related variable in MaxNet.



The SumNet forward routing matrix is the same as that of MaxNet,R̂f = Rf . The back-

ward routing matrix, which describes the flow of congestion information from each link back to

sources, becomes independent of the current transmission rates:

[R̂b(s)]l,i =


e−τb

i,ls if sourcei uses linkl

0 otherwise.

(16)

Thus (8) becomes

q(s) = R̂b(s)
T p(s). (17)

The small signal variables also take on the hat notation:x̂ = x̂0+δx̂, ŷ = ŷ0+δŷ, p̂ = p̂0+δp̂,

q̂ = q̂0 + δq̂.

For SumNet, the routing matrices can again be reduced to contain only bottleneck links.

These reduced matrices are applicable so long as the bottlenecks remain the same throughout the

perturbations. The reduced small-signal model has the same form as (9), (10), in the variables

R̂f = Rf , R̂b δp̂(s) andδŷ(s).

To achieve stable control for networks of arbitrary dimensions, the gains that sources and

links introduce need to satisfy the bounds detailed in [3]. For SumNet, a sourcei requires a gain

κ̂i of

κ̂i =
α̂ix̂0i

Miτi

, (18)

whereMi is the number of controlling bottleneck links on the end-to-end path, andα̂i ∈ (0, 1) is

again an adjustable parameter.

Note that MaxNet has the advantage over SumNet of not requiring knowledge ofMi, the

number of bottlenecked links on the end-to-end path of sourcei. SumNets requireMi to be es-



timated and communicated to the source in order to achieve stability under arbitrary network

scaling [3]. EliminatingMi has several advantages. Firstly, it removes the additional signaling

infrastructure required to determineMi, as proposed for SumNet [3]. To remain stable without

this signaling infrastructure, SumNets must assume an upper-bound onMi and have a slow con-

servative control policy. With MaxNet,Mi is always 1, which avoids the need for either signaling

infrastructure or a conservative control policy.

The complete SumNet open loop small signal transfer function has the same form as (14),

(15).

5 Root Loci

Despite their non-linear nature, the small signal convergence behaviour of MaxNet and SumNet

can be characterised by the positions of the dominant poles of their linearisation. The MaxNet

case is described; the equations for SumNet are analogous.

The closed-loop transfer function is

T (s) = G(s)(Is + G(s))−1, (19)

whereG(s) = sH(s). The poles ofT (s) are values ofs satisfying either of the equivalent

equations

det(I + H(s)) = 0 or eig(H(s)) = −1. (20)

For non-zero poles, corresponding conditions are

det(Is + G(s)) = 0 or eig(G(s)) = −s. (21)



The root loci of MaxNet and SumNet have many similarities, but some important differences.

The open loop transfer function of each hasL poles at zero. In MaxNet, these correspond directly

to the sources controlled by theL links. In SumNet, there is intrinsic coupling between the links,

and it is not helpful to think of poles as belonging to particular links.

For very small, but positive, loop gain, the poles at the origin move left on the real line.

Meanwhile,L infinite sets of poles appear with real part−∞, and with imaginary parts uni-

formly spaced [5]. These poles move right in the complex plane as the loop gains are increased.

Importantly,L of these poles move along the real axis. For MaxNet, it is once again possible to

associate each pole with a specific link, while for SumNet, the poles can only associated with

eigenvalues of a less structured matrix.

The point at which the rightmost of the poles coming from infinity meets the leftmost of the

poles coming from zero is called a breakpoint. At this point, the two poles become a complex-

conjugate pair, and start moving at right angles to the real axis, before going right again to

eventually cross the imaginary axis and cause instability. As the gains increase further, subse-

quent pairs of real poles will meet at their respective break points, and also eventually become

unstable. Under MaxNet, the pairs of poles which meet at break points always belong to the same

link.

The value of the maximum real pole is minimised at the break point, when two real solutions

of (20) coincide. At that point,s∗l , not only are the left and right hand sides equal, but their

derivatives are also equal [6].



6 MaxNet Convergence Time

This section will derive bounds on the fastest possible convergence time of MaxNet; that is, the

most negative value the real part of the dominant pole as the feedback gain is varied. These results

hold for MaxNet networks with arbitrary topology, delay, number of sources and capacity.

Lemma 1. For sufficiently small gain, each link,l, introduces a pair of real poles. The minimum

value achieved (by increasing the gain) of the maximum of these poles is the break point,s∗l ,

which lies between−1/tmaxl
and−1/tminl

, wheretmaxl
andtminl

are the maximum and minimum

round trip times (RTTs) of all of the sources being controlled by linkl.

Proof. SinceG(s) is lower triangular under MaxNet, the eigenvalues are simply the diagonal

elements, each of which corresponds to a particular link. Thus (21) decouples, and we get one

equation per link. From (14), poles associated with linkl satisfy

−s =
∑
k∈ml

aie
−τis

cl

, (22)

where

ai =
αix0i

τi

. (23)

Each of these equations clearly has a real solution for sufficiently smallai, establishing the first

part of the lemma.

Differentiating (22) to find the break point,s∗l , yields the condition

1 =
∑
k∈ml

aiτie
−τis

∗
l

cl

=
∑
k∈ml

bi, (24)



where

bi =
aiτie

−τis
∗
l

cl

. (25)

Substituting (25) into (22) gives

−s∗l =
∑
k∈ml

bi

τi

. (26)

Since1 =
∑

k∈ml
bi, then (26) is a weighted sum of1/τi. A weighted sum is between the

maximum and minimum elements in the sum, giving

− 1

τminl

≤ s∗l ≤ − 1

τmaxl

. (27)

Proposition 1. At the break point,s∗l is the dominant pole associated with linkl.

Proof. Except for the pole at the origin, all poles of (19) start with infinitely negative real part

for low loop gain. Thus it suffices to show that, as the loop gain is increased, no complex pole

crosses the lineRe(s) = s∗l before the real pole starting at−∞ does.

Substitutings = −σ + jω into (22) yields the implicit equation for pole positions at linkl

∑
k∈ml

ake
στk(cos(ωτk)− j sin(ωτk)) = σcl − jωcl. (28)

Taking the real part of (28) gives

∑
k∈ml

ake
στk cos(ωτk) = σcl. (29)



Consider a line on the complex plane whereRe(s) = σ. If we fix the operating point for

parametersx0k andτk, then by (28),a is element-wise minimized whenω = 0. Since complex

poles begin at negative infinity fora = 0, and for the minimumamin that satisfies (28) there is

only a real pole on the lineRe(s) = σ, it follows that the real pole is the first to cross this line

as the gain is increased. Complex poles, withω 6= 0, that cross this line have an element-wise

highera, and are therefore to the left of the real pole when the gain isamin. Thus the real pole at

the break point will be the dominant pole for that link, since no complex poles have crossed to

its right.

Remark 1.A key conclusion from this analysis is that because the links are independent, it is

possible to adjust the control gains such that all links are simultaneously at their break points.

That implies that the fastest operation of MaxNet is governed by poles satisfying (27).

7 Bound on SumNet Convergence Time

This section will show that, at least for the specific case analysed, MaxNet has a faster transient

response than SumNet.

Due to the complexity of the SumNet analysis, we will consider a two link SumNet network

only, where all sources have a common round trip time,τ , and only one source traverses both

links. The assumption of a common round trip time is expected to favour SumNet by reducing

the coupling between link. Thus we have no reason to believe that any other SumNet will be

able to achieve a faster transient response than the equivalent MaxNet. It is sufficient to consider

only the real pole, even though there may be complex poles which are slower, since this gives a

lower bound for the transient response time. We do not consider whether there are complex poles

further to the right of the fastest real position, since this would only result in a slower response.



The SumNet system can be described by a2 × 2 open-loop transfer function matrix,̂H.

Expanding the SumNet form of (14) gives the elements ofĤ as

Ĥij(s) =
1

scj

∑
k∈Ui∩Uj

e−(τF
ki+τB

kj)sâk, (30)

whereUi is the set of sources that uses linki and

âk =
α̂kx0k

Mkτk

. (31)

The following lemmas are proved in the appendix.

Lemma 2. For a two link SumNet, where only one source traverses both links, and all sources

have the same RTTτ , the unique break point is at−1/τ .

Lemma 3. Unlessα̂k = 0 for all k, Ĝ(s) for a two link SumNet does not have a repeated

eigenvalue for reals.

Together, these two lemmas imply that there must be a pole to the right of−1/τ . Therefore

SumNet must have a slower transient response than MaxNet.

8 Numerical results

In this section we simulate the full non-linear SumNet and MaxNet networks to compare their

transient response speeds. The results of this section serve to give evidence that the small signal

linearized properties proven analytically in the previous sections are relevant to the practical

non-linear system.

The system simulated in this section is intended to reflect a physically realisable system.

Whilst it may be possible to devise a control strategy where each source measures network prop-



Fig. 2.Network Simulated.

erties and tunes its own gains (equation (18) for SumNet or (12) for MaxNet) to optimize tran-

sient speed, an online algorithm to achieve this is not trivial. In this paper we consider a practical

strategy where all sources use the same demand function. We simulate sources with the same

static demand function

xi(t) = xmaxe
−ρqi(t) (32)

whereρ is a network wide parameter andxmax is the maximum transmission rate. A similar

demand function was introduced in [3], and was shown to be able to satisfy the gain requirements

(12). For MaxNet, the parameterρ relates to the small-signal source gain (12) such that

ρ =
αix0i

τi

(33)

and for SumNet the equivalent relationship is with (18)

ρ =
α̂ix0i

Miτi

(34)

Note thatρ may be tuned to improve transient performance. This strategy will in general

not result in the fastest possible transient response for MaxNet or SumNet, as the poles are



not necessarily placed at their closet position to the break-points. Nevertheless it allows us to

demonstrate some important properties.

A small network of 5 sources and 3 links, shown in Figure 2, is simulated using both SumNet

and MaxNet congestion signaling. SourcesS0 . . . S4 transmit to destinationsD0 . . . D4 respec-

tively.

We model traffic by a fluid flow approximation, that is, the source transmission rate and

congestion price are continuous. At each time step in this discrete time simulation, the flow

rate values and price feedback move one unit along in the forward and backward delay paths

between sources and links. Acknowledgements are assumed to traverse the same links in the

reverse direction, and consume negligible bandwidth. The numbers near each line in Figure 2

represent delays, in simulation time step units. Note that every source has a RTT of 160 units,

and for all sourcesxmax is set to 15. The MaxNet or SumNet link control law (3) is at the head

of the link, represented by the rectangle inside each link in Figure 2.

In the simulation scenarios, we assume that the best-effort congestion controlled traffic is

receiving only a portion of the link’s physical capacity. This represesents the situation of hav-

ing higher-priority constant-bit-rate (CBR) traffic occupying some capacity. We simulate two

scenarios with different proportions of CBR traffic and different link capacities.

In Scenario 1, the physical link capacities arec0 = 5, c1 = 3 andc2 = 5. To generate a

transient, we assume that initially the capacities available to best-effort traffic are 5, 3 and 2 at

links L0, L1 andL2 respectively. A transient occurs when the CBR traffic source usingL2 stops

and the available capacities become 5, 3 and 5. Throughout the whole experiment the link gains

are, as stipulated in [3],1/cl such thatϕ0 = 1/5, ϕ1 = 1/3 andϕ2 = 1/5.



Scenario 2 is the same as scenario 1 except that the physical link capacity of link 1 isc1 = 12,

and correspondinglyϕ1 = 1/12. The available capacities again start at 5, 3 and 2, and link 2’s

available capacity increases to 5.

(a) Simulation scenario 1 (b) Simulation scenario 2

Fig. 3.SumNet and MaxNet Convergence Time.

The transient response metric used is the settle time, which is the time from the change of

capacity to when the last source is within±1% of its final value. The settle time is measured in

simulation time steps. Figures 3(a) and 3(b) show this convergence time for both SumNet and

MaxNet for gainsρ = 0.0015 to ρ = 0.009 for scenario 1, andρ = 0.002 to ρ = 0.012 for

scenario 2.

9 Conclusion

This paper has shown that MaxNet flow control has favourable convergence properties compared

with traditional SumNet flow control. For small perturbations from the operating point, MaxNet

permits a pole placement that has a faster transient response than that possible with SumNet.



Numerical results for the complete nonlinear system confirm the conclusions drawn from the

analysis of the linear model.

Appendix

The proof of Lemma 2 is as follows.

Proof. This proof will again use the fact that, at the point a which a pair of real poles meet and

become complex conjugates, the derivative ofX = det(I + Ĥ(s)) with respect tos is zero. It

also uses the fact that values ofs for whichdX/ds = 0 butX 6= 0 are not breakpoints.

Since the round trip time of each route is equal,τF
ki + τB

ki = τ for all k, (30) implies

Ĥii(s) =
1

sci

∑
k∈Ui

e−τsâk =
e−τs

s
Ri, (35)

for i = 1, 2, whereRi =
∑

k∈Ui
âk/ci.

The fact that only one source traverses both links implies that, fori 6= j, the sum in (30)

contains a single term. Without loss of generality, let that source be source 1. Then

Ĥ12(s)Ĥ21(s) =
â2

1

s2c1c2

e−(τF
11+τB

12+τF
12+τB

11)s

=
e−2τs

s2
R3, (36)

whereR3 = â2
1/(c1c2).

From (20), the2× 2 SumNet poles are atX = 0, where

X = Ĥ11(s)Ĥ22(s)− Ĥ12(s)Ĥ21(s) + Ĥ11(s) + Ĥ22(s) + 1.



Substituting (35) and (36) into this gives

X =
e−2τs

s2
(R1R2 −R3) +

e−τs

s
(R1 + R2) + 1. (37)

Differentiating (37) to find the break point gives

dX

ds
=(τs + 1)

(
2e−2τs

s3
(R1R2 −R3)−

e−τs

s2
(R1 + R2)

)
=(τs + 1)A

2e−τs(R1R2 −R3)− s(R1 + R2)

s3
, (38)

where

A ≡ e−τs

s
.

This derivative, (38), is zero whens = −1/τ . The root locus occupies the entire negative real

axis, and thuss∗ = −1/τ corresponds to an actual breakpoint. It remains to show that there are

no other breakpoints.

Assume, with a view to obtaining a contradiction, that there is another breakpoint,s′. At s′,

the final factor of (38) must be zero. That implies

e−τs

s
=

R1 + R2

2(R1R2 −R3)
. (39)

Substituting (39) into (37) gives

X =
3(R1 + R2)

2

4(R1R2 −R3)
+ 1.

But the left had side is positive, sinceR3 is one of the terms in the positive-term sumR1R2, and

soX 6= 0. Thuss′ is not a pole, and cannot be a breakpoint. This establishes the result.



The proof of Lemma 3 is as follows.

Proof. The eigenvalues of̂G(s) are

Ĝ11(s) + Ĝ22(s)±
√

(Ĝ11(s)− Ĝ22(s))2 + 4Ĝ21(s)Ĝ12(s). (40)

Equating the two solutions to (40) gives the condition for poles being co-incident as

0 = (Ĝ11(s)− Ĝ22(s))
2 + 4Ĝ21(s)Ĝ12(s). (41)

Whens is real,Ĝij(s) is also real. A real solution to (41) is only possible whenĜ21(s)Ĝ12(s) ≤

0. For SumNet,Ĝ21(s)Ĝ12(s) > 0 for reals, unlessα̂k = 0 for all k. Thus (41) cannot be satis-

fied.
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