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Abstract— Peer-to-peer (P2P) file distribution is a scalable
way to disseminate content to a wide audience. This paper
presents an algorithm by which download times are sequentially
minimized; that is, the first peer’s download time is minimized,
and subsequent peers’ times are minimized conditional on
their predecessors’ times being minimized. This objectivegives
robustness to the file distribution in the case that the network
may be partitioned. It is also an important step towards the
natural objective of minimizing the average download time,
which is made challenging by the combinatorial structure ofthe
problem. This optimality result not only provides fundamental
insight to scheduling in such P2P systems, but also can serve
as a benchmark to evaluate practical algorithms and illustrate
the scalability of P2P networks.

I. I NTRODUCTION

Peer-to-peer (P2P) networking utilities are among the
most frequently used applications on the Internet and have
often been observed to consume large fractions of available
Internet bandwidth. In fact, studies [19], [20] have shown
that upwards of45% of Internet traffic can be attributed to
P2P applications. They have also generated a great deal of
research activity in the last couple of years; see e.g., [3]–[6],
[8], [12], [20], [22], [24] and the references therein.

The fundamental advantage of peer-to-peer architectures
compared with classic client-server architectures is their
scalability. As every peer is both a client and a server at
the same time, a P2P network can potentially distribute data
to a large number of peers in a much shorter period of time.
This paper considers a classical situation, in which a file isto
be distributed as quickly as possible to a known set of peers.
This can be used as a basic model for many scenarios such as
distributing a software patch to an existing subscriber base. It
is also a standard model used to illustrate the scalability of
P2P networks [9], in which one can calculate the amount
of time needed to distribute a file of certain size to all
peers under both P2P and client-server architectures. The
calculation is typically done using the last finish time metric,
which is defined to be the time when the last peer gets the
complete file. Another natural fundamental metric is average
finish time, which is the sum of finish times of all peers
divided by the number of peers. However, minimizing it
brings significantly more analytical challenges and this paper
is devoted to the intermediate step of finding an explicit
scheduling procedure to sequentially minimize the download
times.

Several papers have explored performance of P2P net-
works [1], [8], [13], [15]–[17], [21], [23], [25]. Several of
these deal with optimal scheduling algorithms. For example,
Mundinger et al. [16], [17] characterize the problem of file
sharing in networks with heterogeneous upload capacities
and discrete file divisions. They also explore initial results for
cases where the file to be shared can be divided into infinitely
small pieces. Another example is [8] which discusses optimal
strategies for file distribution when multiple classes of ser-
vice exist. Recently, Mehyar et al. [15] extended Mundinger’s
upload-constrained result and look at average finish time
problems. They provide solutions for all cases in which
the number of nodes is three or less, as well as solutions
to a special class of larger cases. Building upon all this
work while identifying new inductive structures and using
new techniques such as water-filling, this paper provides a
complete explicit algorithm to minimize average finish time
with an arbitrary number of peers.

The main difficulty of the design of optimal file-
distribution algorithms is the need to keep track ofdata
identity. In other words, a node must receive a whole file,
rather than just an amount of data equal to the file size
which could include much duplication. This complicates the
problem of how a node should choose to send a piece
of data from “who most needs thisamount of data?” to
“who most needs thisparticular pieceof data?” Ignoring
this constraint significantly reduces the complexity of the
problem [18] but results in unrealistic results. In general,
how the overall network benefits from the decision to send a
particular piece of data to a particular node depends on the
optimality criterion, as well as the physical constraints of the
nodes involved.

This paper is a step towards addressing the problem of
designing explicit file dissemination scheduling algorithms
which provably minimize average finish time. To overcome
the above mentioned difficulty, our overall strategy is to
use an intermediate step by introducing another concept
(min-min time), which has an inherent inductive structure
that facilitates algorithm design. This sub-problem is of
independent interest when there is a chance that the network
will be partitioned by network failures; by minimizing the
time until another node has an entire copy of the file,
this schedule improves the probability that all nodes will
eventually be able to recieve the complete file [11].

The paper is organized as follows. Section II reviews the



solution that achieves the optimal last finish time and then
formulates the min-min and average finish time problems.
After that, we present the main result in section III, where
an explicit solution to achieve the optimal min-min times
is provided, along with a water-filling interpretation. We
conclude in section IV and discuss some possible interesting
extensions.

II. PROBLEM FORMULATION

A. Model and notation

Consider a single node, referred to as the server, which
needs to distribute a file of size|F | to N peer nodes. The
system is assumed to be churn-free, in that peers neither
arrive nor leave. We assume that there are no topological
constraints; each node, including the server, can communi-
cate with each other node with no bottlenecks other than
the nodes’ upload constraints. Finally, the file can be broken
into infinitesimally small pieces; thus, there is no forwarding
delay, and a node can immediately relay what it receives to
another node.

This paper uses the following notation:

• |F |: size of the file
• Fi(t): portion of the file that peeri has at timet
• |Fi(t)|: size of that portion
• N : total number of peer nodes (not including the server)
• C0: server upload capacity
• Ci: nodei upload capacityC1 ≥ C2 ≥ . . . ≥ CN

• C = C0 +
∑N

i=1
Ci: total system capacity

• Rij(t, t + τ): data sent from nodei to nodej in the
interval (t, t + τ).

• rij(t) = d
dt
|Rij(0, t)|: rate at which nodei sends to

nodej at time t
• Finish timeti for peeri: the smallestt with |Fi(t)| =

|F |
• |F |/C0 – bottleneck time: the time it takes for one node

to directly receive the entire file from the server, and a
lower bound on the time for all nodes to receive the file

We consider an upload-constrained scenario in which each
node can receive information with unlimited data rate, but the

Fig. 1. A diagram showing the constraints on communication between
nodes in a 3-node plus server configuration. The dashed linesrepresent the
sum rate constraints

∑N
j=0

rij(t) ≤ Ci ∀i.

sum rate of any uploads from each node must be no greater
than that node’s given upload capacity. Mathematically,

N
∑

j=1

rij(t) ≤ Ci ∀i, t.

The “data identity” constraint can now be expressed as
• Rij(t, t + τ) ⊆ Fi(t + τ) (received data constraint; can

only send data already received)
• Rij(t, t + τ) ∩ Fj(t) = ∅ (only receive new data)
• Rij(t, t + τ)∩Rkj(t, t + τ) = ∅ ∀i 6= k (only receive

non-duplicate data)
• rii(t) = 0 (a node can’t send data to itself)
• Fj(t) =

⋃N

i=0
Rij(0, t), whence

•
d
dt
|Fj(t)| =

∑N
i=0

rij(t) ∀j, t.

B. Average Finish Time

We first briefly review the problem of minimizing the last
finish time (the time for all nodes in the network to receive
the entire file). Clearly, this time,T ∗

L, can’t be less than
|F |/C0, which is the time it takes for the server to send
the file to one recipient, or less than the time it would take
to share the file with all nodes if every node in the network
was fully utilized for all time,N |F |/C. Formally,

T ∗
L ≥ max(|F |/C0, N |F |/C) (1)

Mundinger et al. [16] show that this lower bound is tight by
looking at the following two possibilities.

1) Case 1 – Fast Server:WhenC0 ≥
∑N

i=1
Ci/(N − 1),

each peer is assigned server capacity of rateCi/(N−1), and
each peer can then re-upload to the remainingN − 1 peers
at rateCi/(N − 1). The excess capacity is shared equally.
This results in each peer receiving total capacityC/N on
the time interval(0, T ∗

L).
2) Case 2 – Slow Server:WhenC0 ≤

∑N

i=1
Ci/(N −1),

the server can allocate to each peeri an upload rate of

CiC0
∑N

j=1
Cj

which does not exceed that peer’s upload capacity. Each node
can forward on what it receives to every other peer; thus,
each peer effectively receives at rateC0 from the server.

It turns out that forcing all the nodes to finish receiving
the file at T ∗

L might artificially limit the performance of
the network by other metrics. In other words, by allowing
small increases inTL > T ∗

L, we can potentially substantially
decrease the average finish time,TA, and thus improve the
overall performance of the network. This is illustrated with
the following simple numerical example.

Example 1: Potential improvement over minimizing last
finish time.

Let N = 4, with C0 = 12, C1 = 6, C2 = 4, C3 = 2, C4 =
1, and |F | = 144. We calculate the optimal last finish time
T ∗

L and the optimal average finish time,TA. The results are
summarized in Fig. 2. By allowing a very small upward shift
in finish time t4, substantial improvements in other finish
times can be achieved. For example, with the selected set



of upload capacities and specified file size, an average finish
time decrease of28.9% corresponds to a0.91% increase in
last finish time.

It is now clear that the average finish time is an important
performance metric. Formally, we have

TA =

∑N

i=1
ti

N
. (2)

In general, to minimize the average finish time, we want
to maximize the rate at which information is exchanged in
the network for all times, and attempt to minimize the finish
times of nodes with high capacity as quickly as possible.
However, due to the combinatorial structure of the problem
and especially the data identity constraint, it is hard even
to write down the optimization problem for general case.
The following example illustrates this difficulty with a very
simple 2-peer network.

Example 2: Direct minimizing average finish time for a two-
peer network.

Consider the 2-peer case, we can set up a linear program
which optimizes the average finish time by adjusting the sizes
of the blocks of data the nodes send to each other in each
time interval within the constraints of the problem.

min
R01,R02,R12

t1 + t2

subject to t1 = |R01(0, t1)|/(λC0)

t2 = t1 + (|R01(0, t1)| − |R12(0, t1)|

−
|R01(0, t1) ∩ R02(0, t1)|)

(C1 + C0)

λ = |R01(0, t1)|/(|R01(0, t1)| + |R02(0, t1)|)

|R01(0, t1) ∪ R02(0, t1)| = |F |

|R21(0, t1)| ≤ C2t1

|R12(0, t1)| ≤ C1t1

|R01(0, t1)| + |R02(0, t1)| = C0t1

|R21(0, t1)| = |R02(0, t1)\R01(0, t1)|

|R12(0, t1)| ≤ |R01(0, t1)|

Here the data identity constraint forces us to keep track of
the sizes of many distinct pieces of data even whenN = 2
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Fig. 2. Results for theN = 4 case, withC0 = 12, C1 = 6, C2 = 4,
C3 = 2, C4 = 1, and|F | = 144. TA is the associated average finish time,
andT ∗

L
is the optimal last finish time.

(the last six constraints in the above optimization). In general,
similar optimizations can be written for largerN , but the
number of variables and constraints grows exponentially with
the size of the problem. This difficulty motivates us to look
for inductive structures which allows us not to optimize all
data pieces at the same time. The min-min times that will
be introduced in section II-C serve this role.

C. Min-Min Times

The min-min time sequentially minimizes the individual
finish times. Besides its relation to the optimal average finish
time, it is also of independent interest, since minimizing the
completion times of early flows improves the robustness to
disconnection of the network [11].

Formally, let tsi be the finish time of peeri under rate
schemes.

• Let S1 be the set of schemes which minimize timet1.
• Let Si+1 be the set of schemes which minimize the

i + 1st finish time, given that all previous finish times
are minimized.

A scheme ins ∈ SN is said to achievemin-min times, and
the timestsi are called the min-min times.

The inductive structure imposed by sequential minimiza-
tion allows us to find an explicit schedule to achieve min-
min times. This will be shown in section III. Before delving
into our main results, we introduce the useful concept of
multiplicity [15], which will be used to classify problems.
Define multiplicity, M , as the maximum number of nodes
which can receive a file with size|F | in bottleneck time
|F |/C0. The following lemma is proved in [14].

Lemma 1:Let M be the largest value ofK such that there
exists a schedule with

Fi

(

|F |

C0

)

= F, ∀i ≤ K.

ThenM is the largest integer such that

C0 ≤
M
∑

i=1

Ci

M − 1
+

N
∑

M+1

Ci

M
. (3)

III. SCHEDULING TO ACHIEVE M IN-M IN TIMES

When the multiplicityM = N , all nodes can finish by
|F |/C0 using the schedule reviewed in section II-B. We now
study optimal schedules for the remaining cases (M < N ).

The main difficulty in achieving min-min times is when
we try to minimizeti, how to use the extra capacities of
some peers. It will be shown that they only need to minimize
ti+1. In other words, scheduling for more than one step
ahead is not useful. Another difficulty is how to schedule all
peers to minimizeti given they all have different capacities
Ci. A “water filling” technique will be used to decide
optimal scheduling for all peers. The potential contributions
of finished nodes to the next finishing node can be thought
of as “water”, and the data scheduled to be shared by other
nodes forms an uneven floor.

This is illustrated in Fig. 3(a). During the interval
(ti−1, ti), the jth column has widthCj , and areaFj(t1) \



Fi(ti−1). Thus, the depth is the minimum time it would take
for nodej to upload all of the data it could to nodei.

Note that the setsFj(t1) \ Fi(ti−1) are disjoint forj >
i. (This will be guaranteed by our scheduling algorithm.)
Thus, the region in columnsj > i is exactly the data which
must be transmitted to nodei in the interval(ti−1, ti), and
the question is who should transmit what to minimize this
interval. If the server and completed nodes did not send any
further data to nodei, the maximum depth is the minimum
possible value ofti−ti−1 (column N in Fig. 3). The optimal
way is to let nodes0 ≤ j < i send the shaded data in
Fig. 3(b), equalizing the finish timesti − ti−1 = |Fj(t1) \
Fi(ti−1)|/Cj .

The only remaining question is what nodei should do
when others are uploading data to it. Due to the “data
identity” constraint, rii(t) = 0, and therefore it cannot
transfer data to itself. The optimal way is to use nodei’s
capacity to send data toi + 1. The specific data to be sent
will be determined by “helium-filling” for the following time
interval, (ti, ti+1) as follows: DataUij , sent at rateγij, is
chosen such that it would have been in columnj at time ti
had it not been sent to nodei + 1 in interval (ti−1, ti), but
it instead “comes off the top” of the columns, in proportion
to their capacities (Fig. 3(b)). (Note thatUi0 corresponds
to data which would have been sent by the server on the
interval (ti, ti+1), and thus is represented by “water,” but
is instead sent by nodei on the previous interval.) In later
proofs, we will provide specialized water-filling figures for
different cases (Figures 4 and 5).

The actual scheduling algorithm is stated in Algorithm 1.
It usesC∗

0 , which is an upper bound on the range ofC0, for
a particular given multiplicityM , for which exactly one set
of optimal valuesFi(|F |/C0), ∀i > M +1, is able to achieve
first M + 1 min-min times. Formally, it is the solution to

M(C∗
0 − CM+1

M
−
∑M

i=1

Ci

M−1
) + C∗

0

C∗
0 +

∑M

i=1
Ci

(4)

=
(M + 1)

(

C∗
0 − CM+1

M
−
∑M

i=1

Ci

M−1

)

∑N

i=M+2
Ci

.

WhenC0 > C∗
0 , there could be multiple sets ofFi(|F |/C0),

∀i > M + 1 that all achieve the firstM + 1 min-min times.
Then Algorithm 1 also uses the following linear program to
select the only set ofFi(|F |/C0) values which allows all
min-min times to be achieved.

max
N
∑

i=M+2

(N − i)λi (5)

s.t.

Ci

M + 1
< λi ≤

Ci

M
∀i ≥ M + 2

N
∑

i=M+2

λi = C0 −
CM+1

M
−

M
∑

i=1

Ci

M − 1

(M + 1)λi − Ci

Ci

≥

1

M−1

∑M

i=1
Ci + (M + 1)

∑N

i=M+2
λi −

∑N

i=M+2
Ci

C − CM+1

The following theorem characterizes Algorithm 1.
Theorem 1:Algorithm 1 achieves min-min times.

Proof: We state the proof forM = 1 here; the proof
for 1 < M < N can be found in Appendix I.

Note first that Algorithm 1 is feasible. In particular, until
time ti, all nodesj > i have disjoint data, while nodesj < i
have all data. Similarly,Ui,j can be forwarded byi as it is
received from nodej, sinceγi,j ≤ Cj , allowing the three
claimed conditions to be satisfied.

It remains to establish optimality. Letti denote the min-
min finish time of nodei. The proof of optimality first
establishes lower bounds ont1 and t2, and shows that
Algorithm 1 achieves those times, and that theλi are the
unique values which can achieve that. It then inductively
shows that subsequent times are minimized.

Let C′ =
∑N

i=3
Ci. This can be thought of as the capacity

of a “virtual node” consisting of nodes3, . . . , N . As in [15],
the amount of information that can go into nodes1 and2 on
(0, t2) is bounded above as

F1(t2) + F2(t2) ≤ (C0 + C1)t2 + C2t1 +
C′

2
t2. (7)

The first terms shows that the server and node 1 can con-
tribute on the whole time interval. The second term reflects
node 2’s transmission to node 1 on(0, t1); on (t1, t2), it
cannot contribute, since it cannot upload to itself, and on
(t1, t2) node 1 has already received the whole file. The term
t2C

′/2 arises as follows. Nodei ≥ 3 can send information

(a) (b)

Fig. 3. Water filling. The width of columnj is capacityCj , and the
depth is the time to transmitFj(t1) \ Fi(ti−1) at rateCj . In (a), node
N takes longer to transmit its information. In (b), the serverhas water-
filled, decreasing the time for all to complete transmission to node i, and
allowing full utilization for the interval. Thehelium-filling by (ti−ti−1)γij

in interval (ti−1, ti) reduces the heights of all columns equally.



Algorithm 1 Optimal scheduling to achieve min-min times
If M=1

• On (0, t1), let r0i = λi, ri1 = min(λi, Ci), ri2 = Ci −
min(λi, Ci), whereλi satisfy

N
∑

i=1

λi = C0 λ2 = C2

2λi

Ci

=
C0 + λ1

C0 + C1

, ∀i > 2.

(6)
• On (ti−1, ti), 2 ≤ i < N :

rji(t) = Cj ∀j 6= i, with Rji(ti−1, ti) ∩
Rki(ti−1, ti) = ∅ and (Rji(ti−1, ti) ∪ Rki(ti−1, ti)) ∩
Fi(ti−1) = ∅ for all k 6= j. Node i sends dataUij

(helium) to nodei + 1 with ri,i+1(t) = Ci such that

1) Uij ∩ Uik = ∅ for all k 6= j (data is disjoint)
2) Uij ∈ Fj(ti−1) (data is held atti−1 by nodej)
3) for all j ≥ 0, j 6= i + 1,

|Uij |

ti − ti−1

= γij =
Cj

(

∑N

k=0,k 6=i+1
Ck

)Ci.

Else

• If M = N − 1 or C0 ≤ C∗
0 , given by (4),

Then letλi solve

N
∑

i=1

λi = C0

λi

Ci

=







λ1/C1 if i ≤ M
1/M if i = M + 1
λM+2/CM+2 if i ≥ M + 2

λM+2

CM+2

=
M +

∑M

i=1
λi + C0

(M + 1)
∑M

i=0
Ci

Else let λi = Ci/(M − 1), ∀i ≤ M , and letλi for
i ≥ M + 2 satisfy the LP (5).
EndIf

• On (0, tM ):
r0i = λi, ∀i; rij(t) = λi for j ≤ M, j 6= i; rij(t) = 0
for j > M + 1; ri,M+1(t) = Ci −

∑

j 6=M+1
rij(t).

• On (ti−1, ti) for M + 1 ≤ i < N :
rji(t) = Cj for j 6= i, such that

|R0i(ti−1, ti) ∩ Fj(ti−1)| = µji(ti − ti−1),

for j < i, where

µj,M+1 =
C0

(
∑N

k=1
Ck) − CM+1

Cj , ∀j 6= M + 1,

µj,i = λit1 − Ci

(C0 − λi)t1
C0 + C − Ci

, ∀j 6= i 6= M + 1.

Also ri,i+1(t) = Ci, such that |Ri,i+1(ti−1, ti) ∩
Fj(ti−1)| = γji where

γji =
CiCj

(
∑N

k=1
Ck) − Ci+1

, ∀j 6= i + 1

EndIf
On (tN−1, tN ), riN (t) = Ci for i < N , andrik(t) = 0 ∀k.

Fig. 4. A visual depiction of the waterfilling argument for the case when
M = 1. Note that the bottoms of columnsM + 2, . . . , N are level.

which it has received up to timet2 to both nodes 1 and 2, but
it cannot exceed its own upload capacity, and cannot upload
to t1 data which it does not have untilt1. Thus, its uploads to
1 and2 are bounded above bymin {Cit2, Fi(t1) + Fi(t2)}.
However, the data obtained by nodei from the server comes
at the expense of data that the server could have sent to node
1 or 2 directly, giving a net contribution of

min {Cit2, Fi(t1) + Fi(t2)} − Fi(t2). (8)

Note that

min {Cit2, Fi(t1) + Fi(t2)} ≤
Cit2 + 2Fi(t2)

2
(9)

with equality only if

2Fi(t1) = 2Fi(t2) = Cit2. (10)

Substituting (9) into (8) and summing overi ≥ 3 gives
C′T2/2, establishing (7).

A lower bound ont2 results from substitutingF1(t2) +
F2(t2) = 2F into (7), and substituting the known valuet1 =
|F |/C0, giving

t2 ≥
2|F | − C2|F |/C0

C0 + C1 + C′/2
. (11)

This is achieved by Algorithm 1.
To see that the choice ofλi is the only one which achieves

t2, note that (10) is a necessary condition for alli ≥ 3.
Dividing by Cit1 and substitutingλi = |Fi(t1)|/t1 gives

2λi

Ci

=
t2
t1

(12)

for all i ≥ 3. Similarly, the data known only to node 1 and the
server att1, of which there is an amount(λ1 −C1)t1, must
also be delivered at rateC1 + C0 in time t2 − t1. Dividing
by t1 and adding 1 gives

λ1 + C0

C0 + C1

=
t2
t1

. (13)



Combining (12) and (13) shows thatλi, i > 2, must
satisfy (6) to achievet2. Thus, Algorithm 1 achievest1 and
t2, and (6) are necessary for any scheme which does.

Given that (6) must hold in order to achievet1 and t2, it
can be shown by induction oni that: (a) nodei receives no
data in the interval(t1, ti−2), and (b)ti is tightly bounded
below by

ti ≥
|F | − λit1 − Ci−1(ti−1 − ti−2)

C − Ci

+ ti−1. (14)

The termλit1 is the amount of data received by nodei
from the server during the first interval,(0, t1), and the term
Ci−1(ti−1− ti−2) is the data received from nodei−1 in the
interval (ti−2 − ti−1). Minimizing the latter term requires
that nodei + 1 receives no data in the interval(t1, ti−1).
Algorithm 1 satisfies that and hence establishes the inductive
step.

IV. CONCLUSION

This paper has considered the transmission scheduling
issue in an upload-constrained peer-to-peer file distribution
system. Under the assumptions that the network is static and
that the file is infinitely divisible, an explicit transmission
scheduling algorithm has been proposed which provably min-
imizes the average finish time for all peers. New inductive
concepts like min-min times and novel techniques such as
water-filling are used in obtaining the result.

There are a number of related directions in which to
extend this work. First, it would be useful to investigate
how the optimal results change when download constraints
are introduced. Second, understanding the behavior of our
optimal scheduling when nodes dynamically enter and leave
upon completion [5], [24] would be necessary before its
application in practice. Another interesting direction isto
look at similar optimality results under peer-to-peer stream-
ing [4], [6] context. Finally, this paper only gives the best
possible centralized solution without any coding. Exploring
corresponding distributed solutions or the effect of toolslike
network coding [2], [7], [10] can be potentially fruitful.
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APPENDIX I
PROOF OFTHEOREM 1 WITH 1 < M < N

Proof: The proof begins by establishing conditions for
appropriateλ values. It then finds the exact values ofλ and
min-min timest1, . . . , tM+1, and applies the water/helium-
filling concept to establish all remaining min-min times.

In order to achieve minimumt1 . . . tM , each node must
relay whatever it receives from the server on(0, tM ) to nodes
i ∈ {1, . . . , M}. Thus, an upper bound on what each node
can receive from the server on(0, tM ) is

λi ≤
Ci

M − 1
∀i ≤ M (15)

λi ≤
Ci

M
∀i > M (16)

Since Algorithm 1 keepsλi values in these ranges,
and relays all server streams to nodes{1, . . . , M}, times
t1, . . . , tM = |F |/C0 are minimized.

To establish a lower bound ontM+1, consider first how
much data nodeM + 1 can receive on(0, tM ), from the
server, nodes{1, . . . , M}, itself, and nodes{M +2, . . . , N}:

|R0,M+1(0, tM )| = λM+1tM
∣

∣

∣

∣

∣

M
⋃

i=1

Ri,M+1(0, tM )

∣

∣

∣

∣

∣

≤

(

M
∑

i=1

Ci − (M − 1)

M
∑

i=1

λi

)

tM

|RM+1,M+1(0, tM )| = 0
∣

∣

∣

∣

∣

N
⋃

i=M+2

Ri,M+1(0, tM )

∣

∣

∣

∣

∣

≤

(

N
∑

i=M+2

Ci − M

N
∑

i=M+2

λi

)

tM

On (tM , tM+1), each nodei ∈ {0, 1, . . . , M} could send
to M + 1 with rateri,M+1(t) = Ci, giving
∣

∣

∣

∣

∣

M
⋃

i=0

Ri,M+1(tM , tM+1)

∣

∣

∣

∣

∣

≤ (tM+1 − tM )

M
∑

i=0

Ci. (17)

The contribution
⋃N

i=M+2
Ri,M+1(tM , tM+1) of nodes

{M+2, . . . , N} is limited both by their sum upload capacity,
∑N

i=M+2
Ci, and by the amount of information they received

on (0, tM ). Thus

∣

∣

∣

∣

N
⋃

i=M+2

Ri,M+1(tM , tM+1)

∣

∣

∣

∣

≤ min

(

N
∑

i=M+2

Ci(tM+1 − tM ),

N
∑

i=M+2

λit1 −

[

N
∑

i=M+2

Ci −
N
∑

i=M+2

λiM

]

tM

)

. (18)

These combine to form the upper bound on the amount
of information which can be received by nodeM + 1 by
time tM+1 shown in (19). Also note that by definition,
FM+1(tM+1) = F .

Considering each term of themin in (19) separately, and
solving for tM+1 yields two lower bounds ontM+1 in terms
of
∑M

i=1
λi, λM+1, and

∑N
i=M+2

λi.

When
∑N

i=M+2
CitM+1 ≤

∑N

i=M+2
(M + 1)λit1,

tM+1(C − CM+1) ≥ tM (M − 1)
M
∑

i=1

λi − tMλM+1 (20)

+ tMC0 + tMM

N
∑

i=M+2

λi + |F |



|FM+1(tM+1)| ≤

(

M
∑

i=1

Ci − (M − 1)

M
∑

i=1

λi

)

tM − M

N
∑

i=M+2

λitM + λM+1tM (19)

+(tM+1 − tM )

(

C0 +

M
∑

i=1

Ci

)

+ min

(

N
∑

i=M+2

CitM+1,

N
∑

i=M+2

(M + 1)λit1

)

and in the converse case

tM+1

M
∑

i=0

Ci ≥ tM (M − 1)

M
∑

i=1

λi − tMλM+1 (21)

+ tMC0 − tM

N
∑

i=M+2

λi + |F |.

Note that in both cases, the lower bound is decreasing in
λM+1, and so is minimized by maximizingλM+1 by setting

λM+1 =
CM+1

M
. (22)

Since the bound given by (20) is increasing in
∑N

i=M+2
λi

and that given by (21) is decreasing, themin in (19) is
minimized, for a givenC0 =

∑N

i=1
λi, when the two bounds

coincide. This gives the fundamental lower bound

tM+1 ≥
(M2C0 − M2λM+1 + 2MC0 − MλM+1 + C0)|F |

C0

(

(M + 1)(
∑M

i=0
Ci) + M

∑N
i=M+2

Ci

) .

(23)
When C0 > C∗

0 , the value of
∑M

i=1
λi necessary to

achieve this bound violates (15). In this case, the algo-
rithm setsλi, i < M , to its upper bound ofCi/(M −
1), and (18) becomes|

⋃N

i=M+2
Ri,M+1(tM , tM+1)| =

∑N
i=M+2

CitM+1.
When C0 > C∗

0 , nodesi ∈ {M + 2, . . . , N} need not
uploadall of their informationFi(tM ) to nodeM to achieve
the lower bound (18); it is sufficient thatλi, i ∈ {M +
2, . . . , N}, be large enough thatri,M+2(t) = Ci for all t ∈
(tM , tM+1). The LP (5) ensures that condition is met, while

Fig. 5. A visual depiction of the waterfilling argument for the case when
1 < M < N and C0 > C∗

0
. Note the tiered structure of the columns for

i > M .

sequentially providing as much server capacity on(0, tM ) as
possible to nodesM + 2, . . . , N .

In either case, Algorithm 1 achieves the lower bound on
tM+1 while maintainingt1, . . . , tM = |F |/C0.

Finally, we claim aftertM+1, each nodei receives at
rate C − Ci on its finishing interval, andCi−1 on the
previous interval. To confirm, consider the fictional time
interval when another nodek /∈ {1, . . . , N}, needs to receive
all information held by nodes{1, . . . , N} (i.e., it has no
portion of the file). In this case, the amount of time it takes
to transmit if all nodes have access to the entire file,|F |/C,
is less than the amount of time it takes for any individual
node to upload its assigned portion of the file,λit1/Ci.

Under Algorithm 1,

λN ≤ λi, ∀i ∈ {1, . . . , N}, (24)

including in the case thatC0 > C∗
0 . To show that each node

has enough information to transmit fully on any time interval,
it is sufficient to show that

∑M
i=1

λi

C0 +
∑N

i=1
Ci

≤
λN

CN

(25)

which can be reformed as

C0

C
≤

∑N

i=M+2
λi

∑N

i=M+2
Ci

(26)

and results in a bound of

C0 ≥
CM+1(C − C0)

MCM+1 +
∑N

i=M+2
Ci

. (27)

This lower bound onC0 for the condition to hold is strictly
less than the lower bound due to the multiplicity constraint.
Thus, full utilization is maintained for all time intervalsprior
to (tN−1, tN ) when following the suggested optimal scheme.
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