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Absrrucr-Multiband (or multi-carrier) CDMA is a promising ap- 
proach to increasing the capacity of CDMA systems. The MBA algo- 
rithm was recently proposed for allocating new calls to bands based 
on measured path gains. MBA introduces asymmetry between bands. 
This paper calculates the average other-cell interference in MBA sys- 
tems and shows that the system capacity can be increased by loading 
different bands unequally. It also investigates the interaction of band 
allocations in neighbouring cells. 

I. INTRODUCTION 

One promising approach to increasing the capacity of 
code division multiple access (CDMA) systems is multi- 
band CDMA, a hybrid of frequency division multiple access 
(FDMA) and CDMA [ 1-41. Like FDMA, multiband CDMA 
divides the available spectrum into distinct bands, and allo- 
cates each connection to a single band. The system is thus 
composed of several independent CDMA systems which can 
be managed as a single unit. This has been proposed for the 
down link of third generation systems [ 5 ] .  

One of the keys to getting good performance from a multi- 
band system is the allocation of new calls to bands. This pa- 
per investigates the recently proposed Measurement Based 
Allocation (MBA) algorithm, based on path gain measure- 
ments for the arriving call, which is described in Section 11. 
The signal to interference ratio is calculated for arbitrary 
loads on the different bands in Section 111, and this is used in 
Sections IV and V to determine the optimal loads to allocate 
to each band. 

11. MEASUREMENT BASED BAND ALLOCATION 

CDMA requires all competing users to be received at ap- 
proximately the same power. Power control is used to adjust 
users’ transmit powers to ensure this. However, users near 
the boundary of a cell will have a low path gain to their con- 
trolling base station, and thus have a high transmit power, 
but will have a comparatively high path gain to the neigh- 
bouring base stations, and thus cause undue interference. 
The MBA algorithm reduces this interference by separating 
strong users and weak users into separate bands. When a 
new call arrives, the band it uses is determined by its mea- 
sured path gain. Following [4], a group of users within a cell 
allocated to the same band will be called a “ring”, and the 
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Fig. 1.  Alternating arrangement with two bands in two dimensions 

rings containing stronger users will be referred to as the “in- 
ner” rings. Neglecting fading, grouping mobile stations by 
distance from the base station is approximately equivalent to 
grouping them in order of average path gain. For reasons of 
analytic tractability, this paper will examine systems which 
allocate bands based on position. 

In order to reduce the interference, bands used for “weak” 
rings in one cell must be used for “strong” rings in neigh- 
bouring cells [4]. Thus there must be different “types” of 
cells, with different ring-to-band allocations (Figure 1). In 
general, there are N !  possible types of cells with N bands. 
In this study, two arrangements of cells will be considered: 
cyclic and inversion. In the “cyclic” arrangement, there are 
N types of cells, corresponding to the N cyclic permutations 
of the bands. The “inversion” arrangement is most easily de- 
scribed in one dimension. In this case, there are two types of 
cells: in one, band 0 is allocated to the strongest users and 
band N - 1 to the weakest users, with intermediate bands 
allocated in decreasing order of path gain; in the other, band 
0 is allocated to the weakest users and band N - 1 is allo- 
cated to the strongest users. This will be explained in more 
detail in Sections IV and V. 

111. OTHER-CELL INTERFERENCE 

This section will derive expressions for the other-cell in- 
terference using MBA with rings of variable sizes. Follow- 
ing [6], the other-cell interference can be approximated by 
determining the ratio of other-cell to same-cell interference, 
f, under a fluid approximation. With MBA, this ratio must 
be evaluated separately for each ring. The bands will be 
numbered so that in the cell of interest, ring i uses band i. 
Let Ici be the (constant) number of users in ring i, which is 
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where a is the common SIR, kT = xi  ki is the total num- 
ber of users per cell, and P = ( P O , .  . . , p ~ . . - ~ ) ~  is the vec- 
tor of received powers. Matrix F = ( f i , j )  is the (non- 
negative) matrix of other-cell interference, which depends 
on the assignment of bands to rings within each cell, and 
A = diag(a0,. . . apf-1) where ai = k i / k T  is the propor- 
tion of the cell area covered by ring i. 

When F is irreducible, Perron-Frobenius theory [7] guar- 
antees the existence of a unique positive eigenvector of 
A(I  + F ) ,  corresponding to a dominant real eigenvalue, A. 
By (4), the maximum number of users which can be accom- 
modated per cell with SIR at least a is given by = so.0  ~ 0 , o . o  m ~o ,o , ,  

Fig. 2. Regions S0,o. go,o,oand so,o, l  for the alternating arrangement 
with two bands. kT = G / d .  ( 5 )  

proportional to the area of ring i. 
For a constant SIR, different received powers, p i ,  must be 

used for each ring. Let  SO,^ denote ring i in the cell of in- 
terest, cell 0. Let 30, i ; j  be the union of ring j of all those 
cells, except cell 0, in which users in ring j transmit on band 
i. The regions ~,-,,o,o and So,o,l  are illustrated in Figure 2. 
Assuming symmetry so that for each neighbouring cell type, 
j, each cell of type i will have the same number of neigh- 
bours of type j at the same distances, the total other-cell to 
same-cell interference ratio, f a ,  is given by 

N-1 

k i p i f i  = k j p j f i , j ,  (1) 
j = O  

where f i , ,  is the interference to band i in the cell of interest 
from users in region &,i,j  transmitting at unit power, and is 
given by 

The factor eb2(flu)2 x 5.455 is due to shadowing: b2 x 
1/2 is the fraction of far-field shadowing, (T x 8dB is the 
standard deviation of the log-normal shadowing in dB and 
p = In(lo)/lO. Thequantity R~(z,y) = TI(~,~)/TO(Z,Y) 
is the ratio of the distance from (z,y) to the base station 
nearest the interfering mobile, r1 (2, y), to the distance from 
(2, y) to the base station of interest, TO(Z ,  y). 

The SIR in band i is then 
- p i G  - P i G  

( k i  - 1)Pi -I- k i P i f i  
ai = 

(ki  - 1)p i  + E,”&’ k jp j  f i , j  ’ 
(3) 

where G is the processing gain per band. Taking k i  - 1 x ki 

in (3), the SIR for all users will be equal if 

Thus X - 1 corresponds to f in [6].  
Cases where F is reducible arise when the rings can be 

partitioned into subsets such that each subset has its own 
set of bands, disjoint from those of the other subsets. Rut 
f i , j  = 0 e$ f j , i  = 0. Thus F can be transformed into a 
block diagonal matrix with irreducible square blocks on the 
diagonal, F = diag(J’1, . . . Fn). Each of these blocks cor- 
responds tal one of the disjoint sets of bands. In this case, 
it is not generally possible to ensure that bands in different 
blocks have the same SIR. However, the capacity of the ith 
subset of bands is determined by the dominant eigenvalue of 
F i .  The capacity of the cell is determined by the smallest ca- 
pacity of any of these subsets of bands, given by substituting 
the largest eigenvalue of F in (5 ) .  

The potential interference reduction achievable by MBA 
can be calculated by solving (2)  and (4) numerically. This 
will be done in the following sections for several geometric 
arrangements . 
Iv. O N E  DIMENSIONAL “INVERSION” ARRANGEMENTS 

When using the cyclic arrangement in one dimension, the 
interference reduction decreases markedly when using more 
than two bands. That is because the band used in a “weak” 
(susceptible) ring, i, in cell j will also be used in a “weak” 
(highly interfering) ring, i f 1, in the adjacent cells, j f 1. 

An alternative arrangement of bands in one dimension is 
to use only two types of cells and invert the allocation in 
adjacent cells (Figure 3). There would thus be only two cell 
types, one using allocation (0, 1 , 2 , .  . . N - 1) and the other 
using (A’ - 1, N - 2, .  . . 1 , O ) .  Thus bands used in weak 
rings in one cell would always be used in strong rings in the 
two adjacent cells. 

For the “inversion” allocation, F will consist of (NI%] 
irreducible blocks of size 2, corresponding to rings i and 
N - 1 - i, and a block of size 1 if N is odd. The normalised 
SIR for this arrangement is shown as “inversion” in Figure 4. 
This shows that the performance steadily increases as the 
number of bands increases, although arrangements with an 
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ring i ring i 
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Fig. 3. One dimensional “inversion” arrangement. 
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Fig. 4. Normalised SIR for one dimensional arrangements: cyclic and 

inversion. 

odd number of bands perform consistently worse than those 
with an even number. For comparison, the results for the 
“cyclic” permutations of bands are also shown. These are 
obtained by solving (4) numerically when there are N cell 
types, in which the allocation of bands to rings follows a 
cyclic permutation. For example, in the case N = 4, the 
band allocations for the four cell types, from the strongest 
ring to the weakest, would be (0, 1, 2, 3), (1, 2, 3, 0),  (2, 
3, 1, 0) and (3, 0, 1, 2). Cells of these types are then be 
arranged so that a “type i” cell had no neighbours of type i, 
for i=O,1 ,2 ,3 .  

A. Analytic model 
Because the capacity of the system is determined by the 

eigenvalues of the individual blocks of A(I  + F ) ,  there is 
the possibility of optimising the system by adjusting A (the 
areas of the rings, or equivalently the offered load on the 
bands) to give less load to blocks with higher per-user inter- 
ference. The eigenvalues of each of the irreducible blocks of 
I+  F are shown in Figure 5 for systems with three to twelve 
bands. The rings with the largest eigenvalues (which limit 
the system capacity) are the “middle” rings: ring (N - 1)/2 
or rings N / 2  - 1 and N/2. 

In order to quantify this, consider a one dimensional array 
of base stations, with spacing 1, so that ring i consists of two 
intervals,each of width ai/2, centred at distance ~i from the 
base station, as shown in Figure 6. Bands i and N - 1 -i will 
form an irreducible pair. Denote the received power in band 
i by p i .  Assuming the majority of the other-cell interference 
comes from the immediate neighbours, and users in ring i 
are all at distance ~i from the base station, the other-cell 
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Fig. 5. Maximum eigenvalues of the irreducible blocks of I + F for the 
one dimensional inversion arrangement. 

Fig. 6. Base station geometry for simplified one dimensional model. 

interference caused by band i is approximately 

which means the SIR in band N - 1 - i is 

P N -  I - i G / b  
CXN-1-i = m .  

aN- l - ipN-1- i  + eb2(8u)2UiPi (e) 
Without loss of generality, set p ~ - ~ - i  = 1 for i < N/2. 

We will consider only the case when a i  = a N - l - i ,  since 
the asymmetry between these rings can be countered by un- 
equal power allocation. Thus TN-1-i = 1/2 - Ti ,  and 

Equating all of the SIRS, ai = C X N - ~ - ~  = a, then gives 

- ai (1 + eb2(Bu)2 ( Ti )mi? (E) m‘2) 
hff 1 - Ti 1 + 2Ti 

(6) 
for all i < N / 2 .  The largest rings will be the outermost 
and innermost (TO x 0) (if only the interference from di- 
rectly adjacent cells is considered) and the smallest will be 
the middle ( T N / ~  x 1/4). Assuming m = 4 and = 8 dB, 

Global Telecomrnunicotions Conference - Globecom’99 2727 

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on February 4, 2010 at 01:37 from IEEE Xplore.  Restrictions apply. 



Future Wireless Communication System 

0.42 [I 
0.4 

+ 
5 0.38 

G 0.36 

2 0.34 

0.32 

z“ 0.3 

l-- v 

cn 

.- - b. .. 
optimised +- .--..... 

.-. cyclic -+--. B- ... 
- - /  inversion .a-- 

0.28 ‘ I I I I I 1 
0 2 4 6 8 1 0 1 2  

Number of bands 
Fig. 7. Normalised SIR for N = 3n bands for two dimensional layout 

with cyclic and inversion arrangements, and inversion with optimised 
ring sizes. 

Since these areas are approximately equal, there is limited 
scope for optimising performance by loading the bands un- 
equally. 

Equation (6) also gives a useful expression for the SIR in 
the case of equal ring areas, ai = l/N. In this case, the SIR 
of the worst (middle) band isa M 0.937Glki.The coefficient 
0.937 is in close agreement with the limiting value obtained 
by Monte Carlo simulation shown in Figure 4. 

v. TWO DIMENSIONAL “INVERSION” ARRANGEMENTS 

The inversion arrangement is less straightforward in two 
dimensions. There are now three types of cells. Bands and 
rings are each grouped into threes, with two “strong” rings 
being grouped with one “weak” ring. The band used for 
the weak ring in one type of cell is used for the two strong 
bands in the other two types. In the case of three bands, this 
is identical to the cyclic permutation. In general, rings 2i, 
2i + 1 and N - 1 - i will use bands (24 2i + 1, N - 1 - i) 
in type 0 cells, (2i + 1, N - 1 - i, 2i) in type 1, and ( N  - 
1 - i, 2i, 2i + 1) in type 2. 

Figure 7 shows the normalised SIR for the cyclic ar- 
rangement (“cyclic”) and inversion arrangement with equal 
ring sizes (“inversion”) for two dimensions. This shows 
a marked decrease in performance using the inversion ar- 
rangement with equal ring sizes. This is because the capac- 
ity is severely limited by the middle rings, as can be seen 
in Figure 8, which shows the maximum eigenvalue of each 
irreducible block of I + F for different numbers of bands. 
However, this means that using unequal ring sizes can pro- 
vide substantial benefits. 

A. Analytic model 

In the limit of a large number of rings, the two dimen- 
sional rings will reduce to concentric circles of radius r1 

around the base stations (circle C in Figure 9). The edge 
effects due to hexagonal cells will be ignored. Thus the in- 

4.5 I I I I I I I I I 
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9bands -*.- 

10 bands -0- -.  
11 bands -+--- 
12 bands -B -- 

0.5 

0 
0 1 2 3 4 

Band number i 
Maximum eigenvalues of the irreducible blocks of I + F in two 

dimensions. 

Y 1 I 

t- 

Fig. 9. Interference at the basestation of one cell from a ring ‘C’ or radius 
T in another cell at distance Lj . 

terference from a base station in tier j is 

where Lj i s  the distance from a jth tier base stations to the 
base station of interest. For the first two tiers, L1 = fi and 
L2 = 3. 

By changing to co-ordinates centred on the interfering 
cell and taking m = 4, (7) can be reduced to the standard 
integral s<a  - b cos O)-2d0 [SI, giving the interference from 
a ring at radius r and width dr in any cell as 

As shown in Figure 8, the capacity is limited by the other 
cell interference in the groups of rings with roughly equal 
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N 

3 

path gains. These will be those 213 of the way from the cell 
centre. That is, 2/3 of the area of the cell will be within these 
rings. Thus the radius is r = JZ, whence L l / r  = 

and L2/r = m. For these bands, the powers 
pi will also be approximately equal. 

The ratio of other cell interference from the first two tiers 
to the interference from his  band is then 

ao,l,aN--l a2,aN-2  a4 ,aN-s  ~ 6 ~ a N - 4  -1 - 
a 2 N / 3  

1.000 1 

2nr dr 
x 2.810 (8) 

using the standard value of [T = 8dB. This is higher than the 
value of 2.38 for the average over the whole cell. Thus, us- 
ing equal sized bands, this approach will perform worse than 
uniform allocation for large numbers of bands, as seen in 
Figure 7. However, using unequal band sizes this approach 
does provide an improvement. 

The optimal ring sizes can be determined by equating the 
SIR of each irreducible group of bands. (Within a group, 
ring sizes will be equal and the SIR will be equalised by 
adjusting the receive powers.) Thus by (3) 

I 

6 I 
9 1 

G 
Ui(1 + fi) = - 

kTQ 

I 

0.200 0.133 I 1.5 
0.148 0.104 I 0.081 1.8 

for all i. For the most congested bands, f 2 N / 3  x 2.810 by 
(8). The least congested bands are bands 0 , l  and N - 1. For 
band N - 1, the interference from the first tier is negligible 
since it comes from rings which have extremely high same- 

cell path gains. Thus f N - 1 ,  with r = JM, can be 
calculated as 

2ar  dr 
x 0.805. 

Thus 

indicating that the outer-most and inner-most bands should 
be twice as large as the middle bands. 

The actual normalised SIR using optimised ring sizes is 
shown for 3n bands in Figure 7 as curve “optimised”. This 

I 12 11 0.118 1 0.089 I 0.069 I 0.058 11 2.0 1 
TABLE I 

OPTIMAL RING SIZES FOR 2-D INVERSION ARRANGEMENT. 

shows a steady though slow increase as the number of bands 
increases, and consistently outperforms the cyclic alloca- 
tion. If the number of bands is not a multiple of three, then 
the performance is substantially worse. The actual sizes 
of the rings used are shown in Table I. Note that the ratio 
~ ~ - ; / a 2 ~ / 3  is tending towards the predicted value of 2.1 1 .  

VI. CONCLUSION 
When measurement based allocation [4] is used with 

many bands, bands must be allocated to users with widely 
differing path gains in neighbouring cells. This can be 
achieved by having three types of cells, with weak users in 
one type sharing the band of strong users in the two other 
types. The performance is optimised when the strongest and 
weakest bands are allocated twice as many calls as the bands 
with intermediate path gains. 
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