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Abstract—MaxNet is a distributed congestion control architec-
ture. This paper analyzes the stability properties of MaxNet. We
show that MaxNet is stable for networks with arbitrary delays,
numbers of sources, capacities, and topologies. Unlike existing pro-
posals, MaxNet does not need to estimate the number of bottleneck
links on the end-to-end path to achieve these scaling properties.

Index Terms—Congestion control, network flow control, sta-
bility, scalability.

I. INTRODUCTION

T HE problem of network flow control is to control source
rates so that link capacities are utilized. For Internet-like

networks, where links and sources can only have local informa-
tion, the challenge is to control the source rates in a fully dis-
tributed manner. There are many different possible source rate
allocations that fulfill the requirement of utilising the capacity.
It has been shown [1] that the source rate allocation achieved by
TCP Reno maximizes a utility function. Most other flow control
schemes also maximize (different) utility functions [1]. In [2],
we showed that it is possible to achieve a different, fairer rate
allocation by altering the way the network signals congestion
information.

Models of Internet-like networks control the source rate by
a scalar feedback congestion signal. This signal is generated
by aggregating the congestion prices of links on the end-to-end
connection path of the source. For networks which achieve max-
imum utility, including TCP Reno networks, the signal is aggre-
gated by summing all of the link prices on the path. We refer
to such networks as SumNets. In [2] we introduced MaxNet,
where the aggregation function isMax, whereby only the max-
imum link price along the connection path controls the source
rate. In [2], we showed that MaxNet results in the Max-Min fair-
ness criteria for sources with homogenous demand functions.

This letter focuses on the stability properties of MaxNet. In
[3], the gains required at sources and links were found such
that SumNet remains stable for arbitrary capacities, delays and
routing. Here we adopt the approach of [3] to prove that, with
a suitable choice of gains, MaxNet is also stable for arbitrary
capacities, delays and routing, but with fewer requirements on
the source and link gains.
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Fig. 1. MaxNet logical feedback loop.

In Section II, we start by briefly describing the MaxNet ar-
chitecture presented in [2], and Section III recalls the steady
state rate allocation properties. Section IV describes the control
model, whose stability is analyzed in Section V.

II. M AXNET ARCHITECTURE

In a MaxNet network, the congestion signal,, commu-
nicated to source is the maximum of all link prices on the
end-to-end transmission path, as illustrated in Fig. 1. Letbe
the price at link and be the set of links sourceuses. Then

The controlling bottleneck link of the source is defined as the
link, , maximizing . If multiple links achieve the maximum,
then one is selected arbitrarily.

To determine , the packet format must include sufficient
bits to communicate the complete congestion price. Each link
replaces the congestion price in the packet with its own conges-
tion price if its own price is larger than the one in the packet.
(This was shown in [4] to be more efficient than the single-bit
signaling typically used in SumNets.) The congestion signal is
relayed back to the source by the destination host in acknowl-
edgment packets.

The behavior of sourceis governed by an explicit demand
function, , such that its transmit rate is

(1)

for a congestion signal . The link Active Queue Management
(AQM) algorithm is the well studied integrator process [3]:

(2)

where is the aggregate arrival rate for link
at time is the control gain, and is the target capacity of

link which is related to its physical capacity by the target
utilization such that .
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III. STEADY–STATE RATE ALLOCATION

In steady state, when , the rate allocation to
source will depend on the magnitude of its demand function
relative to those of other sources sharing the controlling bottle-
neck link of source . If is the set of sources traversing link
, then the rate allocation tois

(3)

MaxNet can achieve a Max-Min fair rate allocation. A vector
of rates, , is defined as Max-Min fair if, for every feasible rate
vector with for some source, there exists a source

such that and . Put simply, a rate vector is
Max-Min if it is feasible and no flow can be increased while
maintaining feasibility without decreasing a smaller or equal
flow.

The following proposition is proved in [2].
Proposition 1: Let be positive, continuous, and

decreasing. The rate allocation for a MaxNet network of
homogenous sources with is Max-Min fair.

IV. CONTROL SYSTEM MODEL

This section derives the model of MaxNet which will be
shown, in the following section, to be stable. The analysis
applies the stability and robustness results derived in [3] for
SumNet, and shows that MaxNet congestion control is also
arbitrarily scalable and maintains stability for arbitrary network
topologies and arbitrary amounts of delays.

We also show that MaxNet does not require knowledge of
, the number of bottleneck links (links with ) on the

end-to-end path of source. SumNets require to be estimated
and communicated to the source in order to achieve stability
under arbitrary network scaling [3]. Eliminating removes the
additional signaling infrastructure required to determine, as
proposed for SumNet in [3]. To remain stable without this sig-
naling infrastructure, SumNets must assume an upper-bound on

and have a slow conservative control policy. With MaxNet,
the number of controlling bottleneck links is always 1, which
avoids these problems.

We will now describe the multi variable control system,
shown in Fig. 2. Note that Fig, 2, for illustration only, shows
a large-signal source, and small-signal links and network.
The interconnection of sources with links is described in the
Laplace domain by forward and backward routing matrices.
The matrices specify the interconnection and the delay incurred
in signal flow from source to link and vice versa. The forward
routing matrix is

if source uses link
otherwise

(4)

where is the forward delay between sourceand link .
Let be the index of the controlling bottleneck link of source
. The backward routing matrix, which describes the flow of

congestion information from each link back to sources, depends
on , and is given by

otherwise.
(5)

Fig. 2. Flow control structure.

Note that the round-trip time of source’s connection is
. Let be the number of links in the network. Without

loss of generality, order the link prices such that

(6)

The backward routing matrix remains static over a period
where the variations in link prices do not change the ordering
of link prices (6). The overall multi variable feedback loop in
the configuration of Fig. 2 is

(7)

(8)

We can construct a small signal model as in [3]. Consider
small perturbations around equilibrium,

, where are the steady
state values and are the perturbations. When all
link prices are distinct, the vector of controlling bottleneck links,

, is unchanged by a sufficiently small perturbation. In this case,
is only nonzero for controlling bottleneck links and the small

signal model (10) applies. A reduced small-signal model can
then be written as

(9)

(10)

where the matrices , and the vectors are ob-
tained by eliminating the rows corresponding to noncontrolling
links.

The small-signal gain of perturbations in that determines
the resulting perturbation in is

(11)

To achieve stable control for networks of arbitrary dimen-
sions, the gains that sources, and links introduce need to be pre-
scribed as detailed in [3]. Because the control signal in MaxNet
is not scaled up by , the source gain

(12)

yields a stable system for any . The selectable
parameter controls the magnitude of the demand function to
reflect the source’s need for capacity. The termmakes the
stability invariant to delay. To make stability invariant to the
number of sources, a gain is introduced in the closed-
loop, with the component put into the source and the
component in the link as . In the Laplace domain,
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the integrator AQM of (2) with the required gain between the
coupling of and is

(13)

Note that (11) implicitly assumes a static demand function.
As discussed in [3], the requirement (12) determines the shape
of the static demand function. However, recent work in [5]
provides dynamic source algorithms which allow arbitrary
demand functions, whilst preserving the control gain required
for stability invariance. They separate the high-frequency AC
gain from the DC gain.

The open-loop transfer function that describes the
small-signal system is

(14)

where

(15)

V. STABILITY

In this section, we show that the linearised closed loop
MaxNet system (14) is stable for networks with arbitrary
capacities, delays, numbers of sources, and links. The key is
that the ordering (6) causes to be block lower triangular,
while is block diagonal. This leads to Propositions 2 and
3 that bypass a critical symmetry requirement in the stability
proof of [3], making the main result also hold for MaxNet.

Consider a standard unity feedback loop, with
. In [3], it is shown that the feedback system is stable

for all , given the following conditions:
1) is analytic in , and there exists a such

that in .
2) has strictly positive eigenvalues.
3) For all is not an eigenvalue of for

and .
Here we prove the stability of MaxNet by showing that all of

these conditions hold for MaxNet. Note that, as in [3], condition
1 is automatically satisfied. To prove that MaxNet satisfies the
remaining conditions, we will first show that , and hence

, is a lower triangular matrix.
For MaxNet, the mapping from sources to their controlling

bottleneck links is many to one and onto. Without loss of gener-
ality, label the sources such that ,
where is again the index of the controlling bottleneck link of
source and is the total number of sources. Each linkcon-
trols a nonempty set of sources, .

For MaxNet, is block diagonal since the only nonzero
element of column is in the th row. Thus the th diagonal
block has size , where denotes the cardinality of .
Since and are both diagonal, is block diagonal
with the th diagonal block having size . Let denote
the th diagonal block of .

By definition, a source does not use links with higher con-
gestion prices than that of its controlling bottleneck link, i.e.,

if . That is, is block lower trian-
gular, with the th diagonal block, , having size .

A block triangular matrix multiplied by a block diagonal ma-
trix with conformable block structure is again block triangular.
Thus is block lower triangular. The
th diagonal block is , which is the scalar

(16)

The stability of (14) now follows from the following two
propositions.

Proposition 2: The eigenvalues of are strictly positive.
Proof: The eigenvalues of a triangular matrix are the di-

agonal elements. By (16), the eigenvalues of are

(17)

which are nonempty sums of strictly positive real numbers, and
hence strictly positive.

Proposition 3: For all is not an eigenvalue of
.

Proof: Since is lower triangular, so is , with
eigenvalues

(18)

where

(19)

Note that is a weighted sum of the s, with
weights . Moreover, , since the

s are all steady state flow rates through link, whose sum
cannot exceed the capacity, by (2). In [3], it was shown that
if then for . Thus their
weighted sum must also have real part greater than, whence

is not an eigenvalue of for .

VI. CONCLUSION

We have shown a set of control laws for MaxNet that provides
local stability for arbitrary network routing, delays, and link ca-
pacities. Unlike SumNet, MaxNet can achieve this invariant sta-
bility without estimating the number of bottleneck links on the
end-to-end path. MaxNet also produces a fairer steady state rate
allocation than SumNet.
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