
1

MaxNet: Theory and Implementation
Lachlan L. H. Andrew∗, Krister Jacobsson†, Steven H. Low∗, Martin Suchara∗, Ryan Witt∗, Bartek P. Wydrowski∗

∗California Institute of Technology † Royal Institute of Technology (KTH)
Pasadena, CA 91125, USA Stockholm, SE-129 32, Sweden

{lachlan,slow,suchara,witt,bartek}@cs.caltech.edu, krister.jacobsson@s3.kth.se

Abstract— This paper presents the first implementation of
the MaxNet TCP network congestion control protocol. MaxNet
uses explicit multi-bit signalling from routers to achieve high
throughput and low latency over networks of arbitrary capacity
and topology, and virtually any delay. The MaxNet algorithm
is extended in this paper to give both provable stability and
rate fairness. The implementation is based on the Linux Traffic
Control framework. The system consists of a sender and receiver
TCP algorithm as well as a router module. Performance was
tested for capacities up to 1Gbit/s and delays up to 180 ms using
the WAN-in-Lab facility. With no overhead but 24-bit price
signals, MaxNet can scale from 32 bit/s to 1 Peta-bit/s with a
0.001% rate accuracy. The MaxStart algorithm introduced in this
paper allows MaxNet to fill the transmission pipe with data just
one round trip time (RTT) after the SYN packet. We detail the
MaxNet TCP architecture and discuss various implementation
challenges.

I. I NTRODUCTION

The aim of network congestion control is to adjust source
rates so that they fully utilize and fairly share the network path
capacity. Asides from efficiency and fairness, good congestion
control performance also requires stable rates to reduce delay
jitter, and a fast response to adapt to changes in network load.
For Internet-like networks, where links and sources can only
have local information, the challenge is to control the source
rates in a fully distributed manner.

The approach by most new Transmission Control Protocol
(TCP) proposals is to control the source rate based on a
congestion signal fed back by the network. Each bottleneck
link on the path generates a congestion signal to control the
aggregate of traffic on the link. The signal can be computed
actively, by an Active Queue Management (AQM) algorithm
or it can be generated passively, such as by packet loss or
queuing delay in a drop-tail queue.

For ‘loss-based’ congestion control algorithms such as TCP
Reno [1], BIC [2], HS-TCP [3], H-TCP [4], S-TCP [5] and
TCP Westwood [6] this congestion signal is the packet loss
rate. Other ‘delay-based’ proposals such as Vegas [7] and
FAST TCP [8] use the queuing delay as the congestion signal.

Explicit-signalling protocols use additional fields in the
packet header to communicate the congestion level explicitly.
The Explicit Congestion Notification (ECN) standard [9] uses
a single bit mark; the rate of sending ECN marks signals
the congestion level. Several protocols use multi-bit feedback.
XCP [10] explicitly signals the requiredchangesin congestion
windows. In contrast, RCP [11] and JetMax [12] signal the
desired source rate. MaxNet [13] communicates the congestion

level of themostcongested bottleneck link on the path, from
which the desired rate is calculated. All of these except
MaxNet require extra fields in addition to the congestion level
field, as discussed in Section IX.

Using an explicit multi-bit signal instead of packet loss
or delay improves congestion control in several ways. The
variability of source rates is reduced compared to using binary
loss information due to the increased resolution of the signal.
This improves link utilization and delay jitter. An explicit
signal also allows periods of congestion to be decoupled from
increased packet latency or loss; source rates can be forced to
decrease before the onset of these impairments.

As observed in [14], the signal received by a sender using a
TCP scheme based on packet loss, delay or ECN marking to
signal congestion, is approximately the sum of the signals gen-
erated by each bottleneck link on the end-to-end path. These
are called SumNet networks. It has been shown [14] that the
source rate allocation achieved by SumNet networks maximize
a utility function. MaxNet, on the other hand, communicates
only the maximum congestion level from the most congested
link on the path. In [15] it was proven that MaxNet has faster
convergence properties than SumNet networks. This results in
low delay jitter and high efficiency.

MaxNet has been shown to have desirable fairness and
stability properties. The original MaxNet [13] yields max-min
fairness for a network of homogeneous sources, or general
weighted max-min fairness for heterogenous sources. How-
ever, using homogeneous source functions sacrifices either
performance at low Round Trip Times (RTTs) or stability
at high RTTs. Alternatively, MaxNet can be made stable on
networks of arbitrary capacities, delays and routing by varying
the source function with the RTT [16]. However, this approach
loses the fairness of the original proposal [13]. The theoretical
contribution of this present paper is to add a source dynamic
adapted from [17] to achieve both stability and fairness.

Simulation studies of MaxNet have also demonstrated that it
is possible to combine MaxNet with other explicit-signalling
protocols [18] and that its faster dynamics improve fairness
relative to SumNet networks [19].

MaxNet operates with very low queuing delays as it is able
to target a controlled link utilization. This results in signif-
icantly lower RTTs than loss-based protocols such as Reno
which operate with full buffers due to the Additive Increase
Multipicative Decrease (AIMD) probing action. Furthermore,
unlike delay based schemes such as Vegas or FAST, the
queueing delay does not grow with load.

2

Whilst many properties of MaxNet have been proven,
an implementation of MaxNet for a real network has been
lacking. This paper describes an implementation of MaxNet
based on the Linux operating system. The implementation
includes a Linux router AQM module that can mark packets
with an explicit signal, and modifications to TCP to control
the window and echo the explicit signal. To address the short
flow and low traffic aggregation case, we also integrate the
MaxStart concept into MaxNet to allow sources to attain a
high transmission rate within two RTTs.

After a description of the principles behind MaxNet in Sec-
tion II, Sections III and IV describe the MaxNet framework. In
Section V and VI the framework’s implementation in the Linux
Kernel is introduced. Experimental results demonstrating the
stability, fairness and convergence speed are presented in
Section VII. Section VIII describes how to select provably-
stable parameters giving rapid convergence. MaxNet is then
compared with related protocols in Section IX.

II. M AX NET BACKGROUND

In this section we summarize the key features of MaxNet
introduced in [13], [15], [16]. We will describe the control
framework and highlight the main results concerning the
equilibrium and stability properties.

The MaxNet control loop consists of the traffic source
and the router AQM algorithm. The source rate is controlled
by a congestion signal or ‘price’, denotedqi(t), which is
communicated explicitly from the AQM algorithms on the
network. The source rate is set according to

xi(t) = Di(qi(t)), (1)

where D(·) is the demand function. The demand function
is a convex function that describes the source’s bandwidth
requirement. If all sources have the same demand function, it
was shown in [13] that MaxNet achieves max-min fairness.
Weighted max-min fairness can be achieved by scaling the
demand function.

As illustrated by Figure 1, the price communicated to the
source isqi(t), the maximum of all link pricespl(t) on the
source to destination path of the connection,

qi(t) = max{pl(t); l ∈ Li}, (2)

whereLi is the set of links on sourcei’s path. To communicate
the maximum price, each packet has a price field. If linkl’s
current congestion pricepl(t) exceeds the valueqj in the

Pn

Source Link1

Max
Function

DestinationLink2 Linkn

P1 P2max{P1,...,Pn}

Fig. 1. Conceptual price communication scheme of MaxNet. The price at
each link,P1, P2, · · · , Pn, is fed back to the sender, which then uses the
max of the values.

price field of packetj, the router overwrites the price field
with pl(t). The receiver echoes back the final valueqj in
acknowledgements.

A link l computes its price signalpl(t) using the AQM
algorithm

pl(t + dt) = pl(t) + dt
yl(t)− µlCl

Cl
, (3)

whereyl(t) is the traffic rate traversing linkl, Cl is the link’s
capacity andµl is the target link utilization. Note that in
equilibriumyl(t) = µlCl, leaving(1−µl)Cl capacity to absorb
traffic bursts. This makes the buffer empty in equilibrium and
results in very low network latency.

In [20] it was shown that control-theoretic stability is
achieved for a network of any topology, RTT or capacity if
price updates have the form (3) and the slope of the demand
function

δDi

δqi
≤ −αixi

τi
, (4)

whereτi is the RTT of sourcei and αi ∈ (0, π/2) is a gain
parameter. As discussed in [17], the second condition places
a constraint on the shape of the demand function which is
satisfied by the demand function

xi(t) = Di(qi(t)) = xmaxe
−αiqi(t)/τi . (5)

Whilst (5) satisfies the stability constraints, the rate now
depends not just onqi(t) but also onτi which means that
sources with different RTTs will not achieve max-min fair-
ness. In [17] a dynamic source algorithm was introduced to
implement fairness on slow time scales separately from the
fast time scale response which determines stability. On a fast
time scale the rate changes are bounded by (4) by setting

xi(t) = xmaxe
ξi(t)−αqi(t)/τi (6a)

and on a slower time scale which does not affect stabilityξi

is adjusted to make the equilibrium rate follow the designer’s
choice of demand function

ξ̇i =
αη

τ2
i

(U ′
i(xi)− qi), (6b)

whereU ′
i(xi) is a utility function which relates to the desired

demand function byU ′
i(x) = D−1

i (x), andη determines the
rate of convergence to fairness.

III. SOURCEALGORITHM

This section describes the design of the source algorithm.
The source algorithm is based on the dynamic controller (6)
from [17] to achieve stability and weighted max-min fairness.

The key choice in designing the controller is selecting a
demand function. Consider the exponential demand function

D(qi) = xmaxe
−qi/T (7)

which removes the dependence on RTT from (5). In this
discussion of equilibrium properties, we drop the time depen-
dence in the variables. By (6a),U ′

i(xi) used in (6b) is

U ′
i(xi) = D−1(xi) = −T log(xi/xmax) (8)

= −T (ξi − qiα/τi). (9)

3

Per ACK, if dtmin has elapsed, updateξ and calculateW :

ξ ← ξ +
αη dt

τ2

((
Tα

τ
− 1

)
q − Tξ

)
(10)

W ← τxmax exp
(
ξ − qα

τ

)
Parameters:
xmax maximal supported transmission rate

T parameter that determines speed of convergence
α overall loop gain
η η/τ is the zero of the lead-lag compensator

dtmin minimum update interval
Variables:

ξ state variable used in window calculation
q price received in the most recent packet
τ minimum RTT measurement of the flow

W window corresponding toq
dt interval since last update

Fig. 2. Pseudocode of the source algorithm.

1) Every dtp seconds:

y dt ← y dt + Q/T0

p← max(p + y dt /Cl − µ dtp, 0)
y dt ← 0

2) On packet arrival:

y dt ← y dt + pkt.size
if p > pkt.price then

pkt.price ← p
end if

Parameters:
µ target utilization

Cl link capacity
dtp price update interval
T0 timescale in compensation for virtual queue overflow

Variables:
p link price

y dt aggregate arrivals in update intervaldtp
Q instantaneous queue length

Fig. 3. Pseudocode of the router algorithm.

The pseudocode of the source algorithm is shown in
Figure 2. The current implementation performs the window
update on ACK arrivals, at most everydtmin seconds. The
calculation is packet driven, thus the calculation is executed
at most once per packet, but at least every RTT.

IV. ROUTER ALGORITHM

In this section we describe the router algorithm. The router
algorithm consists of the price update law and MaxStart.

A. Virtual queue AQM

The router price update is performed according to (3).
The update occurs only everydtp seconds, to limit the

computational burden. The only per-packet operations are a
single addition, comparison and assignment. The pseudo code
of the router algorithm is shown in Figure 3.

The increment ofy dt in step 2 may seem to deviate from
the virtual queue of (3), but for suitableT0, it implements a
virtual queue of thetarget rates of the sources, when the link
is saturated. To understand this, consider a bottleneck carrying
a single flow.

The aggregate traffic arriving in intervaldtp is y dt . As
MaxNet is a sliding window protocol, the arrival rate at the
router is limited by the “ACK clock” not to exceed the output
rate. However, the rate the flow seeks to achieve,W/τ , can
exceed this rate, yielding a physical queue. The size of this
physical queue is the number of packets in the window less
the number of packets in the pipe of capacityCl = yl and
delayτ ; that isQ = W − (yl×τ). The router then knows that
the source is attempting to send at aggregate rateyl + Q/τ .

For the multiple-flow case,T0 should be a weighted har-
monic mean of theτ values of the flows. Since this is not
known at the router, a conservative (large) value is chosen.
Note that in equilibrium, no physical queue exists because
µC < C, and so this mechanism does not affect the linear
stability of the system. However, it may limit the range over
which the linear model applies.

Despite its similar form, this does not correspond directly
to the queue term in RCP [11], since RCP is rate-based, and
flows send at their actual target rates.

B. MaxStart – Replacing slow start

TCP Reno’s slow start mechanism [1] prevents excessive
congestion when a new flow starts. Its exponential increase
provides a ramp-up time which scales linearly with RTT and
logarithmically with the bandwidth, which scales well for
unknown bandwidths.

However, it is possible to start faster with explicit signalling.
For example, QuickStart [21] enables sources to determine
the allowed sending rate on the path and to start almost
immediately transmitting at the allowed rate.

Without some form of slow start, explicit signalling proto-
cols would start immediately transmitting at the same rate as
the other flows in the link, overloading the link. This problem
is especially severe for the first flow arriving at an idle link.
RCP simply allows this overload to occur, and aggressively
reduces the advertised rate in response to the resulting con-
gestion. MaxNet’s MaxStart protocol seeks instead to avoid
the congestion.

MaxStart starts a new flow at the minimum spare capacity
of any link on its path, and then ramps up linearly to the
advertised rate over several RTTs. In the current implemen-
tation, flows ramp up over two RTTs, and the spare capacity
is defined as the difference between(µ + (1 − µ)/4)Cl and
the current transmission rate, whereCl is the physical link
capacity andµ is the target utilisation.

MaxStart must perform two tasks: signalling the starting
rate from the routers, and senders subsequently increasing their
rates. These will be described in turn.

The first packet a sender transmits is flagged to indicate that
the sender wants to be informed of the spare capacity instead

4

of the price; the signalling will be described in Section V.
Routers then mark the packet with the lowest spare capacity
on the route.

MaxStart terminates as soon as the MaxStart rate exceeds
the “price rate” (the rate corresponding to the advertised price).
Until that time, the sender increases its target sending rate
approximately 16 times per RTT, each time by approximately
1/32 of∆, the difference between the price rate and theinitial
MaxStart rate.

The above updates are modified slightly to compensate for
burstiness. Specifically, an update occurs on receipt of the first
ACK which arrives at least RTT/16 after the previous update.
At each update, the MaxStart rate is increased by∆dt/(2τ),
where τ is the base RTT anddt is the interval since the
previous update.

Further enhancements could be made to extend the MaxStart
algorithm to ensure that capacity is not over allocated for
multiple flows starting at almost the same time by keeping
track of the already allocated capacity. Furthermore, the rate
allocation to all flows could be made equal when a new flow
starts, even whenN is small. This is, however, beyond the
scope of this paper.

V. PRICE ENCODING

In contrast to implicit signalling protocols, the price encod-
ing of explicit signalling protocols explicitly determine the
range and precision of the achievable rates. This encoding
must allow the protocol to scale well beyond current network
bandwidths. The demand function (7) gives a uniform relative
precision (minimum rate increment as a fraction of the rate) if
the price has uniform absolute precision, such as using fixed-
point encoding.

The range of rates is determined byBi, the number of bits
allocated to the integer part of the price, and the precision
is determined byBf , allocated to the fractional part. To
achieve xmax = 1015, (1 peta-bit/s) andxmin = 32 bit/s
with the demand function (7) andT = 0.4, it suffices that
Bi ≥ dlog2(T log(xmax/xmin))e = 4. To achieve a relative
precision ofε = 10−5, Bf ≥ d− log2(T log(1 + ε))e = 18.
With just these 22 bits, MaxNet achieves rapid convergence to
fairness over this future-proof dynamic range with high pre-
cision, with no signalling of RTTs, current rates or bottleneck
links.

A signalling mechanism for this price must also be speci-
fied. The current implementation of MaxNet uses TCP options,
although IPv4 options or IPv6 per-hop options could also be
used. The option format is shown in Figure 4. The price field
is changed by routers to accumulate the price signal on the
path from source to destination. The echo field is untouched
by routers and returns the price to the sender in the returning
ACKs, enabling symmetric communication. The highest bit of
the 24 bit price field is 0 if the remaining 23 bits contains a
price or 1 if they contain a MaxStart rate.

VI. D ETAILS OF L INUX IMPLEMENTATION

The current implementation of MaxNet is a patch relative to
Linux 2.6.11. This version pre-dates the modular TCP archi-
tecture introduced in 2.6.13. The sender window calculations

are implemented as a hook in thetcp cong avoid function
in file net/ipv4/tcp input.c . When MaxNet is enabled,
all changes to the congestion window in other parts of the
kernel are immediately overwritten by the MaxNet window.

Sender parameters were set using thesysctl interface to
xmax = 1015 bit/s, T = 0.4 seconds,α = 0.66, η = 0.06
and dtmin = 1 µs to update on every ACK. On the router,
dtp = 1 ms andT0 = 130 ms were set using thetc interface.

Being an equation-based algorithm, MaxNet frequently
manipulates fractional values. Linux kernel code cannot use
floating point operations, and so MaxNet uses fixed-point
arithmetic. The exponential function in (6a) is implemented
by a lookup table; this can be optimised using interpolation
and bit shifting.

The update forξ in (10) is a discrete time approximation
for (6b). This discretisation can overshoot the equilibrium
value givenq, namelyξ = αq/τi−q/T , although (6b) cannot.
This is prevented by clippingξ to this value if (10) overshoots.

For a software router to operate at 1 Gbit/s on a non-
real-time operating system such a Linux, unnecessary large
processes must be avoided. Processes such as graphical user
interfaces can cause delays of several milliseconds, resulting
in large transient queues.

Prices were averaged at the receiver over one RTT. The
average was weighted by the interval since the previous price
signal, to reduce the impact of burstiness on the averaging.

According to (3), when links first become bottlenecks, their
prices have to rise gradually from 0. During this time, sources
would be told to transmit at almostxmax = 1015 bit/s. To
prevent this, routers’ prices are clipped below atpmin,l =
D−1(Cl), with D given by (7).

VII. E XPERIMENTS

The performance of MaxNet in two situations will now
be described. The first demonstrates its fairness, convergence
speed and scalability, and the second investigates its response
to cross traffic.

A. Multiple flows and links

Internet flows typically contain two congested links, one in
the sender’s access network and one in the receiver’s access
network. This experiment evaluates how MaxNet responds
in a multi-flow multi-link environment. This demonstrates its
fairness and scalability, and how it behaves when bottleneck
links change.

Figure 5 shows the topology for this experiment. Link 1 is
622 Mbit/s, with a RTT of 29 ms provided by an OC-48 link of
WAN-in-lab [22], and Link 2 is a 400 Mbit/s link with RTT
150 ms provided by a dummynet. The target utilisation was
90% (µ = 0.9). Flow Figure 6 shows when different flows
start, dividing the experiment into six intervals.

opt optsize

42 6 echo price
(1 byte) (1 byte) (3 bytes) (3 bytes)

Fig. 4. MaxNet option format.

5

`

Blue

`

Red

`

Yellow

`

Green

L1 (622 Mbps, 29 ms RTT) L1 (400 Mbps, 150 ms RTT)

Fig. 5. Topology for multi-flow experiments.

Fig. 6. Start times and durations of flows for multi-flow experiments.

Figures 7 and 8 show the rates of the flows, and the queue
sizes of the links, respectively. The rates are averaged over
one second intervals. On a faster timescale, there is noticeable
burstiness because the implementation is window based not
rate based; this can be overcome by better pacing of window
increases, without the expense of packet pacing.

This simple experiment illustrates many important prop-
erties of the protocol, many of which are not tested by the
traditional “dumbbell” (single bottleneck) topology.

1) Convergence speed:Due to MaxStart, MaxNet shows
rapid convergence to full utilisation. These results show that
the initial rise time of each flow is less than the 1 s sampling
interval, in keeping with the nominal rise time of two RTTs.

2) Fairness: Reno is known to give significantly unfair
rates to flows with different RTTs [23], and many proposed
TCPs for large bandwidth-delay product networks are even
less fair [2]. In contrast, interval 2 shows that MaxNet con-
verges to fairness within 20 s (after a fast convergence to full
utilisation), for flows with RTTs differing by a factor of 6.

Even protocols such as H-TCP [4] and FAST [8] which
do not suffer from RTT unfairness give higher rates to flows
traversing fewer bottlenecks, because the congestion measure
(delay or loss) is summed over all links on the path. Interval 3
shows that MaxNet converges within 20 s to fair allocation
between the flow from Green to Yellow, traversing two bot-
tlenecks, and that from Blue to Yellow, traversing one.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (M

bp
s)

Time (sec)

Red to blue
Green to yellow

Blue to yellow, 1
Blue to yellow, 2
Blue to yellow, 3
Blue to yellow, 4

Fig. 7. Rates of flows in the two-hop experiment.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120 140

by
te

s

Time (s)

Link 1
Link 2

Fig. 8. Queue sizes in the two-hop experiment.

3) Queueing: MaxNet’s virtual queue mechanism gives
an equilibrium queue size of zero. This both improves the
performance of real-time services and reduces the need for
memory needed in routers. When the number of flows is
very small, transient queues exist when flows arrive, but the
magnitude of these queues decreases rapidly as the number of
flows increases. To quantify this, note that if there are already
N flows in equilibrium bottlenecked at a link, then a new
flow will transmit at rate at mostµCl/N causing overload
of at most((1 + 1/N)µ − 1)Cl for up to the longest RTT
of any flow using the link. The overload drops to zero for
N > µ/(1− µ).

The cause of the queue at 45 s is not clear.
4) Switching bottlenecks:Max-min protocols, such as

MaxNet, RCP and JetMax, undergo discrete transitions when
the bottleneck link for a flow changes. At 40 s, the bottleneck
for the flow from Green to Yellow switches from Link 1 to
Link 2. Significantly, this does not cause instability in the
form of “ping-ponging” between bottlenecks as the prices
stabilise. However, it does result in the highest queueing in the
experiment, 5 MByte or 90% of the bandwidth-delay product
of the flow from Green to Yellow before the switch.

5) Increase and decrease in available bandwidth:As the
load on of Link 2 increases, the bandwidth available to the
flow from Red to Blue increases. MaxNet quickly increases
its window to use the extra bandwidth within around 2 s.

B. Cross traffic

MaxNet was run for 30 s on a single 1 Gbit/s link with 29 ms
RTT and target utilisation 94% (µ = 0.94). From 10 s to 20 s,
a 400 Mbit/s constant bit rate (CBR) flow shared the link.
Figure 9 shows the rates achieved by each flow. Note that
this is a heavier CBR load than most encountered in practice,
and provides an arduous test.

At the start, MaxNet again converges rapidly to the target
94% utilisation.

When the CBR flow starts, the MaxNet flow relinquishes
bandwidth almost immediately, because of the ACK-clocking
inherent in window-based protocols. After a few seconds, the
target rate drops to the available bandwidth and the total
utilisation drops back to 94%, observable as a slight dip in
the MaxNet flow’s rate.

When the CBR flow ends, the dynamics of (6) can be
observed. Over two thirds of the spare capacity is reclaimed

6

 0
 1e+08
 2e+08
 3e+08
 4e+08
 5e+08
 6e+08
 7e+08
 8e+08
 9e+08
 1e+09

 0 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

MaxNet
Cross traffic

Fig. 9. Rates of MaxNet and 400 Mbit/s CBR flow with a target rate of
940 Mbit/s

by the MaxNet flow within 0.3 s due to the rapid drop in price.
The remaining rate increase is slower due to the interaction
between the price and the variableξ used to ensure stability,
but the target utilisation is still reached within a few seconds.

VIII. S TABILITY AND TRANSIENTS

MaxNet is the first practical algorithm designed based on the
theory developed in [17]. MaxNet’s stability can be established
by using that theory. Subsection VIII-E at the end of this
section is aimed at designers wishing to change MaxNet’s
parameters.

A. Background

Let us now review the relevant results of [17], adapted to
the case of MaxNet. These results apply to general multi-
link networks with heterogeneous RTTs. Reference [17] aimed
to provide stability for a range of RTTs for flows with
arbitrary utility functions, since the utility function determined
the equilibrium of the networks considered there. Since the
equilibrium of MaxNet is independent of the utility function,
provided that all sources use the same utility function, our
aim is to determine the utility function and parameters which
will improve the transient performance. In particular, some
combinations of parameters are theoretically stable but give
a lightly damped (highly oscillatory) response; these must be
avoided for practical networks.

Stability in the presence of delay requires that the loop gain
be sufficiently low. It was shown in [17] that the loop gain is
determined by the slope of the demand function, and placing
restrictions on the family of (static) demand functions which
are stable. It was further shown that the stability of network
using lead-lag1 controllers, such as MaxNet, can be determined
from the function

F (s, τi;α) = α
e−sτi

sτi

s + z

s + zκi/νi
, (11)

where s is the complex frequency,τi is the RTT of theith
flow, κi = αix0i/τi is the slope of a static demand function
which would result in stability, andνi is the slope of the “true”

1Strictly, the controller considered here is either a pure-lead controller or
a pure-lag controller, depending on the values ofT andτ . As it is unknown
which is the case, we follow [17] and call it a lead-lag controller.

demand function,Di, at the operating point. This function
appears as the elements of a diagonal matrix in the loop gains
of the system. Although [17] applied to a different structure
of flow control, the triangulation approach of [16] can be used
to show that the result also applies to MaxNet, provided that
no two bottleneck links have equal equilibrium prices.

The stability proof for MaxNet is based on the following
result, which follows easily from the results of [17], [24]:

Lemma 1:Let H(ω;α) = Co{F (jω, τi;α)} be the convex
hull of F evaluated at the RTTs of the individual flows, at a
given frequencyω. The system will be stable if the trajectory
of H(ω;α) for ω ∈ R+ does not intersect the negative real
axis to the left of−1 + 0j.

The trajectory ofH is a generalised form of Nyquist curve.
In [17], the speed of dynamics was set according to the flow
with the longest RTT, by settingz = η/τ̄ , for a sufficiently
small η, whereτ̄ is an upper bound onτi. The stability proof
considered the system at two timescales. It was shown that
for frequenciesω < 1/ maxi(τi), the convex hullH(ω;α)
lies entirely below the real axis, while for larger frequencies,
it is contained in a particular spiral which is bounded away
from −1 + 0j.

B. Obtaining consistent dynamics

An important parameter governing the transient behaviour
is the ratioκi/νi. This depends on the demand function and,
in general, on the equilibrium operating point of the non-
linear system. Whenκi/νi > 1, the compensator is a lead-
compensator which can improve the rise time and settling
time of the system. However, whenκi/νi < 1, the resulting
“lag-compensator” adds more phase lag (analogous to delay).
This produces a “resonance peak” resulting in high gain
at a particular frequency, which makes the system highly
oscillatory. Note that the systems which do not suffer this
excess oscillation are exactly those which would be stable
even without the lead-lag compensator of [17]. Thus, the
compensator is useful as an insurance against extreme RTTs,
rather than extending the range of demand functions that can
be deployed in practice.

Since MaxNet’s equilibrium is independent of the (com-
mon) demand function, the demand function can be chosen
to improve the transients. In particular, the ratioκi/νi can be
made independent of the operating point by using a demand
function

x(q) = xmaxe
−q/T , (12)

giving κi/νi = αT/τi. This ensures that the rate of conver-
gence will not depend on the capacity of the bottleneck link.

C. Need for a new stability proof

In contrast to [17] which uses a lead-lag parameter,z,
dependent on the largest RTT in the network, the current
implementation of MaxNet adaptsz to each flow’s own RTT,
setting zi = η/τi as opposed tozi = η/τ̄ as in [17]. This
yields

F (s, τi;α) = α
e−sτi

sτi

sτi + η

sτi + ηαT/τi
. (13)

7

1) Find ω = ω0(τ̄) by (14)
2) Using (13), construct the Nyquist spiral
S = {F (jω, τ̄ ; 1) : ω > ω}.

3) Similarly, construct the tail
T = {F (jω, τ ; 1) : τ < τ̄}.
(Note that this is not the tail of any Nyquist plot, asω
is fixed.)

4) Construct a line entirely to above each curve, and
denote the point at which this intersects the real axis
by −1/αmax. That is, constructL = {x + jy : y =
γ(x+1/αmax)} with αmax andγ such that(x+jy1) ∈ L
and (x + jy2) ∈ S ∪ T imply y1 ≥ y2.

Algorithm 3. Determining stable parameters.

In this case the stability proof of [17] needs modification,
since spiral used in that proof no longer encloses the Nyquist
curves for all frequenciesω > 1/τ̄ . However, the same
principle of studying the system at two timescales can again
be used. There is again a threshold frequencyω (depending
on τ̄ and η) such that the convex hullH(ω;α) is below the
real axis for frequencies belowω. It is also possible to choose
α small enough such thatH(ω;α) is strictly below a slanted
line through−1+0j for frequencies aboveω. The theoretical
complication arising from adaptingz to each flow’s RTT is
that, unlike in [17],ω 6= 1/τ̄ .

Using this approach, it can be shown that MaxNet is stable
for all RTTs up toτ = 1000 seconds using the parameters
of Section VII, namelyT = 0.4 s, α = 0.66 and η = 0.06.
If z were independent ofτi as in [17], ensuring stability for
τ = 1000 seconds would requirez < 10−3, and it would take
a quarter of an hour for flows to achieve their equilibrium
(fair) rates, in contrast to the 20 s shown in Figure 7.

D. Determining stable parameters

The first step in choosing suitable parameters is finding
the provably stable combinations. Following [17], it will be
assumed that an upper bound,τ̄ , on the RTT of any flow is
known; the system will be designed to be stable for allτ < τ̄ .

For a given value ofαT , and a given lead-lag coefficientη,
the following is a method to find the range of overall gainα
which gives stability.

Define

ω0(τ) = min{ω : Im(F (jω, τ ; 1)) = 0} (14)

to be the lowest frequency at which the spiral forτ crosses
the real axis, where Im denotes the imaginary part. A given
ω andτ are said to be “in the tail” ifω < ω0(τ), and “in the
spiral” otherwise.

Given αT ∈ (0, ατ̄] and η > 0, the steps to chooseα
yielding a stable system are given in Algorithm 3. Figure 10
shows the construction.

Proposition 1: Under the construction of Algorithm 3,
MaxNet is stable for anyα < αmax for any number of flows
and any network topology with maximum delayτ̄ .

For a maximum RTT of̄τ = 1000 seconds, the parameters
of Section VI satisfy this proposition withL having slope

−5 −4 −3 −2 −1 0

−1

−0.5

0

0.5

real

im
ag

in
ar

y

−1/a

max

spiral, S
tail, T
line, L

Fig. 10. SpiralS, Tail T , and lineL together with resultingαmax for the
illustrative case of̄τ = 3 s η = 0.7 andαT = 0.1 s

γ = 0.3504, andω = 0.001525.
The proof of Proposition 1 is in two parts. The first shows

that forω < ω, all Nyquist curves are below the real axis. The
second has two subparts. The first shows that the spiral forτ <
τ̄ is within S (the spiral forτ̄) by showing that the magnitude
of F is a decreasing function ofτ for a fixed argument. The
second shows that the portion of the tail withω ≥ ω is within
the convex hull ofT by showing that the magnitude ofF is
a decreasing function ofω for a fixed argument.

The proof involves studying the functional relationship
betweenF and several variables. With the obvious abuse of
notation, these functions will all be calledF , but with different
argument lists. Letφ = ωτ and

θ(τ, φ) = Arg
(

η + jφ

ηαT/τ + jφ

)
− π

2
− φ (15)

so that F (jφ/τ, τ ; 1) = |F (jφ/τ, τ ; 1)| exp(θ(τ, φ)). The
following lemma is proven in [25].

Lemma 2:For any givenω > 0, τ > 0, φ > 0 andθ < 0,
1) dω0(τ)/dτ < 0
2) d|F (θ, φ)|/dφ < 0 if θ < −π/2
3) d|F (θ, τ)|/dτ > 0 if θ < −π/2
4) d|F (θ, ω)|/dω < 0
5) d arg(F (φ, τ))/dτ < 0
6) d|F (φ, τ)|/dτ > 0

where the derivative ofarg(·) is defined modulo2π.
Proposition 1 can now be proved.

Proof: By Lemma 1, it is sufficient to prove that, for
any ω, H(ω;α) does not intersect the real axis to the left of
−1+j0. Sinceα merely scalesF , this is equivalent toH(ω; 1)
not intersecting the real axis to the left of−1/α, which is left
of the intercept ofL.

For anyω and τ in the tail, F (jω, τ ; 1) is below the real
axis; this follows fromlimω→0 arg(F (jω, τ ; 1)) = −π/2, the
continuity of F and the definition of the tail.

It will now be shown that (i) for anyω < ω, H(ω; 1) will be
entirely below the real axis, and (ii) for anyω ≥ ω, H(ω; 1)
will be entirely below the oblique lineL.

(i) Consider anω < ω. By Lemma 2(1),ω < ω0(τ) for all
τ < τ̄ . Thusω and τ are in the tail for allτ < τ̄ , and hence
F (jω, τ ; 1) is below the real axis for allτ , implying H(ω; 1)
is also.

(ii) It remains to show that, for allω ≥ ω, H(ω; 1) is below
L if τ < τ̄ . The cases ofτ andω being in the tail and in the

8

−1 0 1 2
−5

−4

−3

−2

−1

0

1

real

im
ag

in
ar

y

(a) T , τ ∈ (0.006, 0.6).
Curves truncated toω > ω.
Note the curves are withinT
in the bottom left quadrant.

−1 −0.5 0 0.5 1
−0.5

0

0.5

real

im
ag

in
ar

y
(b) S, τ ∈ (0.001, 10 = τ̄).
Dotted line completes the
convex hull. Note curves “in
the spiral” are withinS.

Fig. 11. Plots ofT andS (solid lines), and Nyquist curves for varyingτ .

spiral will be considered separately.
If τ and ω are in the tail, thenF (jω, τ ; 1)) is below the

real axis, and will be belowL unless it is in the bottom left
quadrant, corresponding toθ ∈ [−π,−π/2]. In that quadrant,
F (jω, τ ; 1) will be in the convex hull ofT ∪ {0 + j0} by
lemma 2(4), which lies completely belowL by construction.
This is illustrated in Figure 11(a), and establishes the result of
this paragraph.

Conversely, ifτ andω are in the spiral, thenF (jω, τ ; 1) is
within the convex hull ofS, by lemma 2(3). This is illustrated
in Figure 11(b). SinceCo(S) is entirely belowL, it follows
that F (jω, τ ; 1) also is.

For a givenω > ω, F (jω, τ ; 1) is in the convex region
below L for all τ < τ̄ , and thus their convex hull is also
within that region. This establishes case (ii) and hence the
proposition.

It is not necessary to construct the complete setsS and
T . It is only necessary to construct the outermost arc ofS
in the upper left quadrant. Determining how much ofT is
required is more complex. Given a lineL′ = {x + jy : y =
γ′(x + x′)}, and a bounded subsetT ′ ⊆ T , it is desirable to
know whetherL′ is aboveT . A sufficient condition is provided
by the following result.

Proposition 2: Consider a lineL′. Let T ′ = T ∩ {x + jy :
y > γx} be T truncated toτ > τ ′, whereτ ′ is the largest
value in the tail for which the line between the origin and
F (jω, τ ′;α) is parallel toL′. If L′ is aboveT ′ thenL′ is also
aboveT .

Proof: This follows from the fact thatarg(F (jφ/τ, τ ;α))
increases asτ decreases, by lemma 2(5).

E. Parameters for rapid convergence

The parameters used in Section VII are suitable for most
networks. Networks with unusually high RTTs, or the need
for particularly fast dynamics, may require other parameter
sets. The following empirical procedure considers practical
performance, as well as theoretical stability.

1) Let τ be the maximum RTT,τ , for which rapid conver-
gence is required. SetαT = τ .

2) Forη ≈ 0.1, use (13) to selectα to give a phase margin
of 45◦; that is, Arg(F (jω, τ ;α)) > −3π/2 for all ω
such that|F (jω, τ ;α)| > 1.

3) Empirically adjustη to balance the initial rise time for
a single flow against convergence to equilibrium; lower
η reduces the initial rise, but increases the settling time.

4) For the selected parameters, use Algorithm 3 to verify
stability for a sufficiently high̄τ .

IX. COMPARISON WITH OTHERPROTOCOLS

In this section we compare MaxNet with other prominent
explicit signalling protocols, XCP, RCP and JetMax. Experi-
mental comparisons are not performed, none of these appear to
have released implementations capable of operating at1 Gbit/s,
but NS-2 simulations of RCP are reported. Flow control
protocols developed for Asynchronous Transfer Mode (ATM)
are also not considered here since they generally require per-
flow information at the switch, which is discouraged in IP
networks.

The XCP protocol and MaxNet differ in several regards.
XCP only achieves constrained max-min fairness [26], which
can yield source rates an arbitrarily small fraction of the
max-min fair rates, in contrast to MaxNet’s bound ofµl.
Furthermore, linear stability of XCP has so far only been
proven for a single link with sources of homogeneous RTT.
Indeed recent results indicate that XCP can exhibit oscillatory
behaviour under more diverse circumstances [27]. In this paper
we prove the linear stability of MaxNet for arbitrary networks
topologies. In terms of implementation, XCP is also more
complicated at the router, requiring 12 operations per packet
compared to 2 for MaxNet and requires 16 bytes compared to
6 bytes in the packet header.

RCP [11] has a similar structure to MaxNet, which yields
similar dynamics for homogeneous delays. One difference is
in how they avoid equilibrium queues. MaxNet uses a virtual
queue with capacity marginally below the true link capacity,
while RCP has a parameterβ which, when non-zero, explicitly
reduces the sending rates in the presence of a queue.

The relationship between RCP and MaxNet is clearly seen
by considering a network with homogeneous delays,τ , and
settingβ = 0 for RCP, and the virtual queue capacity to the
true link capacity for MaxNet. In this case, RCP updates the
advertised rate every smalldt by

R(t) = R(t− dt)(1 + dt
α(C − y(t))

τC
) (16)

Taking the log of (16) and usinglog(1 + x) ≈ x gives

log(R(t)) = log(R(t− dt)) + dt
α(C − y(t))

τC
(17)

Changing variables using demand functionR(t) = e−α·p(t)/τ

yields MaxNet’s price update law (3) withµl = 1.
More fundamentally, RCP and MaxNet differ in how they

trade off speed of convergence with stability. Delayed feedback
systems need to scale their feedback down for long RTTs. In
MaxNet, this is done at each source, since the sources know
their own RTTs. In RCP, this is done by the routers based
on the traffic-weighted average RTT advertised in each packet
header.

The drawback of MaxNet’s approach is that a global pa-
rameter,αT , must be set to ensure acceptable performance

9

L1 (155 Mbps, 1 ms delay)

L3 (100 Mbps, 1 ms delay)

`

L2 (622 Mbps, 100 ms delay)

`

`

1 flow

N flows

Fig. 12. Network for which RCP is unstable.

for high-RTT flows, which limits the speed of response for
low-RTT flows. The drawback of RCP’s approach is that it
can be unstable. We useα = 0.4 andβ = 1, but believe that
for any set of parameters, an unstable topology can be found.

Consider a network shown in Figure 12 with a 155 Mbit/s
bottleneck (L1) with 1 ms delay carryingN+1 flows, of which
Flow 1 continues over a 622 Mbit/s link (L2) with 100 ms
delay and the remainingN split off onto a 100 Mbit/s link
(L3) with 1 ms delay. ForN = 1, RCP stabilises after 3 s,
after overshooting by around 50%. ForN = 9, the rate of the
Flow 1 oscillates between 10 Mbit/s and up to 100 Mbit/s for
the first 10 seconds, and then settles down to steady aperiodic
oscillations of about about 30% of the link capacity. ForN =
49 the rate switches rapidly between 0 and the link capacity.
Graphs are presented in [25]. MaxNet has been confirmed to
be stable for this network.

The reason for this is that the dynamics of the price of
L1 are on a fast timescale dominated by the traffic which is
bottlenecked byL3, while the mean RTT of the flows actually
bottleneckedat L1 is much larger. Note thatL1 precedesL3

in the path, and so packets cannot easily signal toL1 that they
are bottlenecked elsewhere. One remedy would be to include
packet information identifying the controlling bottleneck.

In JetMax [12], routers calculate a target rate by estimating
the number of flows bottlenecked at that link, and estimating
the capacity used by non-bottlenecked flows. For this, it
uses four 32-bit fields to signal current rate and congestion
information, and three 8-bit fields to identify the bottleneck
router explicitly. This does not include fields to communicate
the control information back from the receiver to the sender. It
is not clear how JetMax estimate which flows are “responsive”.

Protocols in which routers change state based on explicit
signals from sources may also create vulnerabilities to denial
of service attacks. Such issues are beyond the scope of this
paper.

X. CONCLUSION

Explicit signalling allows flow control to maintain high
utilisation with small average queues, to rise to full line
rate within one or two RTTs and share bandwidth fairly.
MaxNet is such a protocol which has been designed to be
easily implemented and provably stable, while minimising
signalling overhead. Experiments on an initial implementation
of MaxNet have shown that it achieves the above goals, and
that it scales well to large numbers of flows.

XI. A CKNOWLEDGMENT

This research is part of the WAN-in-Lab project, supported
by NSF grant no. 0303620.

REFERENCES

[1] V. Jacobson, “Berkeley TCP evolution from 4.3-tahoe to 4.3-reno,” in
Proc. 18th Internet Engineering Task Force, Vancouver, Aug. 1990.

[2] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” inProc. IEEE Infocom, Mar.
2004.

[3] “Highspeed TCP for large congestion windows,” RFC 3649, Mar. 2003.
[4] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long-distance

networks,” inProc. PFLDnet, Argonne, 2004.
[5] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area

networks,”ACM Comp. Commun. Rev., vol. 33, no. 2, Apr. 2003.
[6] S. Mascolo, C. Casseti, M. Gerla, M. Sanadidi, and R. Wang, “TCP

Westwood: end-to-end bandwidth estimation for efficient transport over
wired and wireless networks,” inProc. ACM Mobicom, Rome, July 2001.

[7] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: new
techniques for congestion detection and avoidance,” inProc. SIGCOMM,
London, UK, Sept. 1994.

[8] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: motivation, architecture,
algorithms, performance,” inProc. IEEE Infocom, Mar. 2004.

[9] K. K. Ramakrishnan and S. Floyd, “Proposal to add explicit congestion
notification (ECN) to IP,” RFC 2481, Jan. 1999.

[10] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” inProc. SIGCOMM, Pittsburgh,
PA, 2002.

[11] N. Dukkipati and N. McKeown, “Why flow-completion time is the right
metric for congestion control,”ACM SIGCOMM Computer Communi-
cation Review, vol. 36, no. 1, pp. 59–62, Jan. 2006.

[12] Y. Zhang, D. Leonard, and D. Loguinov, “JetMax: Scalable max-min
congestion control for high-speed heterogeneous networks,” inIEEE
INFOCOM, Barcelona, Spain, April 26, 2006.

[13] B. Wydrowski and M. Zukerman, “MaxNet: A congestion control
architecture for MaxMin fairness,”IEEE Commun. Lett., vol. 6, pp. 512–
514, Nov. 2002.

[14] F. P. Kelly, “Charging and rate control for elastic traffic,”European
Transactions on Telecommunications, vol. 8, pp. 33–37, 1997.

[15] B. Wydrowski, L. L. H. Andrew, and I. M. Y. Mareels, “MaxNet: Faster
flow control convergence,” inProc. Networking 2004, 2004, Springer
Lecture Notes in Computer Science LNCS 3042.

[16] B. Wydrowski, L. L. H. Andrew, and M. Zukerman, “MaxNet: A
congestion control architecture for scalable networks,”IEEE Commun.
Lett., vol. 7, pp. 511–513, Oct. 2003.

[17] F. Paganini, Z. Wang, J. Doyle, and S. Low, “Congestion control for
high performance, stability and fairness in general networks,”IEEE/
ACM Trans. Networking, vol. 13, no. 1, pp. 43–56, Feb. 2005.

[18] L. L. H. Andrew and B. P. Wydrowski, “Performance of
networks containing both MaxNet and SumNet links,” in
HetNets ’03, Ilkley, UK, 2003, pp. 71/–7/10. [Online]. Available:
http://netlab.caltech.edu/ lachlan/abstract/hetnets.pdf

[19] D. Nguyen, J. Wang, L. L. H. Andrew, and S. Chan, “MaxNet: A
more efficient max-min fair allocation scheme,” inProc. Intl. Teletraffic
Congress (ITC)-19, Beijing, China, 2005.

[20] F. Paganini, J. C. Doyle, and S. H. Low, “Scalable laws for stable
network congestion control,” inProc. IEEE Conf. Decision Contr.
(CDC), Orlando, FL, 2001, pp. 185–90.

[21] A. Jain, S. Floyd, M. Allman, and P. Sarolahti, “Quick-start for TCP and
IP,” Internet draft draft-ietf-tsvwg-quickstart-05.txt ,
July 2006.

[22] “WAN in Lab,” July 2005. http://wil.cs.caltech.edu
[23] T. V. Lakshman and U. Madhow, “The performance of TCP/IP for

networks with high bandwidth-delay products and random loss,”IEEE/
ACM Trans. Networking, vol. 5, no. 3, June 1997.

[24] G. Vinnicombe, “On the stability of end-to-end congestion control
for the internet,” University of Cambridge, Tech. Rep. CUED/F-
INFENG/TR.398, Dec. 2000. [Online]. Available: http://www-
control.eng.cam.ac.uk/gv/internet/TR398.pdf

[25] L. L. H. Andrew, K. Jacobsson, S. H. Low, M. Suchara, R. Witt, and B. P.
Wydrowski, “MaxNet: Theory and implementation.” [Online]. Available:
http://netlab.caltech.edu/maxnet/MaxNetImplementationTechReport.pdf

[26] S. H. Low, L. L. H. Andrew, and B. P. Wydrowski, “Understanding XCP:
Equilibrium and fairness,” inProc. IEEE Infocom, Miami, Florida, Mar.
2005.

[27] L. L. H. Andrew, B. P. Wydrowski, and S. H. Low,
“An example of instability in XCP.” [Online]. Available:
http://netlab.caltech.edu/ lachlan/abstract/xcpInstability.pdf

