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Blocking probabilities in cellular mobile communication networks using dynamic channel assign-
ment are hard to compute for realistic sized systems. This computational difficulty is due to the
structure of the state space, which imposes strong coupling constraints amongst components of
the occupancy vector. Approximate tractable models have been proposed, which have product form
stationary state distributions. However, for real channel assignment schemes, the product form
is a poor approximation and it is necessary to simulate the actual occupancy process in order to
estimate the blocking probabilities.

Meaningful estimates of the blocking probability typically require an enormous amount of CPU
time for simulation, since blocking events are usually rare. Advanced simulation approaches use
importance sampling (IS) to overcome this problem. In this article, we study two regimes under
which blocking is a rare event: low-load and high cell capacity. Our simulations use the standard
clock (SC) method. For low load, we propose a change of measure that we call static ISSC, which has
bounded relative error. For high capacity, we use a change of measure that depends on the current
state of the network occupancy. This is the dynamic ISSC method. We prove that this method yields
zero variance estimators for single clique models, and we empirically show the advantages of this
method over naı̈ve simulation for networks of moderate size and traffic loads.
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1. INTRODUCTION

Efficient design of cellular mobile communications networks requires the ability
to determine the quality of service provided by a particular network configu-
ration. A common quality of service measure is the blocking probability, which
is the probability that a new call will not be admitted to the network due to
insufficient network resources. This article will consider techniques for deter-
mining the blocking probability in cellular telephony systems with frequency
reuse, including first-generation systems such as the Advanced Mobile Phone
System (AMPS) [Lee 1995], and second-generation systems such as the Global
System for Mobile communication (GSM) [Mouly and Pautet 1992; Redl et al.
1995].

In cellular networks, each mobile station communicates with a base station
connected to the wireline telephone network. The region in which mobiles con-
nect to a given station is called a cell. Each mobile station communicates with its
base station using a specific frequency pair or frequency/time-slot pair known
as a “channel.” To avoid interference, this channel cannot be used in nearby
cells; however, it may be reused in cells sufficiently remote that interference
caused by the reused channel is below a specified threshold.

In static assignment schemes, each cell is allocated a fixed subset of the
available channels, and calls arriving in a cell are connected only when there
are free channels available from that subset. While simple to implement, this
strategy may result in wasted resources; all the channels for one cell may be
in use, but adjacent cells may have free capacity that could be used to connect
incoming calls without causing interference. Network capacity can be improved
by dynamic channel assignment [Cox and Reudink 1972, 1973], in which chan-
nels not currently in use in the nearby cells may be used. It is these systems
that are the focus of this article.

Many techniques have been developed for determining the performance of
such networks. For Markov models (Poisson arrivals and exponential holding
times), when the system is reversible [Kelly 1979], the stationary state dis-
tribution has a simple product form expression on a state space S which is a
small subset of a hypercube H. When there is no mobility of users, there is such
a product form solution if the network uses “maximum packing” [Everitt and
Macfadyen 1983], in which calls in progress can be rearranged to use different
channels. There are also models of mobility that preserve this property (see, e.g.,
Pallant and Taylor [1995] and Boucherie and Mandjes [1998]). Moreover, the
result remains valid even when call-holding times have nonexponential dis-
tributions [Kelly 1979]. Product form systems have been studied extensively
(see, e.g., the survey of Nelson [1993]). The product form expression involves a
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normalizing constant, from which the blocking probability can be determined
directly, without needing to determine specific state probabilities. It can be
evaluated exactly by recursive methods [Dziong and Roberts 1987; Pinsky and
Conway 1992], mean value analysis [Reiser and Lavenberg 1980], generating
function inversion methods [Choudhury et al. 1995] or uniform asymptotic ap-
proximation [Mitra and Morrison 1994]. However, these techniques all have
exponential complexity in the number of cells.

For systems with a large number of cells, Monte Carlo techniques can be
used either to estimate the normalizing constant [Ross and Wang 1992] or to
estimate blocking in a way that avoids the need to calculate it. The simplest
approach of the second type is the acceptance/rejection (A/R) method, in which
states are generated in the full hypercube H; those lying outside the state
space S are rejected, while for those on the boundary of the feasible region,
the proportion of blocked cells is recorded, weighted by the respective arrival
rates (see, e.g., Everitt and Macfadyen [1983]). As the number of cells grows,
generation of a sample point inside the state space S ⊂ H may become a rare
event, and so importance sampling (IS) has been applied to these methods
(see Ross et al. [1994], Mandjes [1997] and Lassila and Virtamo [2000]). An
alternative approach is to use Markov Chain Monte Carlo (MCMC) techniques
such as the Gibbs sampler used by Lassila and Virtamo [1998] and Vázquez-
Abad and Andrew [2000]. These generate a Markov chain whose steady state
probabilities satisfy the target product form, and they may be simulated more
efficiently.

Most dynamic channel assignment implementations do not have such a prod-
uct form solution. It is common in such cases to use closed form approxima-
tions, such as the ubiquitous reduced load approximation, developed for circuit
switched networks (see, e.g., Kelly [1991]). This approximation works well if
there is minimal correlation between blocking due to conflicts with different
reuse constraints, but poorly if there is significant correlation. Due to the spa-
tial nature of the reuse constraints in the cellular case, it can be expected that
there will be significant correlation. There are many other approximations; see,
for example, Zahorjan et al. [1988].

A very flexible, straightforward and hence common approach is to directly
simulate the arrival and departure process of calls. This allows any performance
measure of the system to be estimated. Moreover, it allows arbitrary channel
allocation schemes to be compared, including those for which there is no product
form solution, or indeed no known closed form solution at all. For these reasons,
this is the approach most commonly taken by engineers investigating different
dynamic channel assignment systems. However, this approach can be very slow,
especially when blocking probabilities are low. In this article, we present two
importance sampling schemes for the efficient simulation of systems with low
blocking probabilities, assuming no user mobility.

Section 2 outlines some important background material, starting with the
model for the channel occupancy process, and then describes the principles
of fast simulation. Section 3 describes the use of quasiregenerative cycles for
the fast simulations in this article. The two specific rare event regimes are
then investigated in Sections 4 (low load) and 5 (high capacity). In both of
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Fig. 1. Simple cellular network model.

these regimes, the utilization tends to zero. We conclude in Section 6 that these
techniques provide a significant improvement over standard techniques when
events are very rare, and indicate scope for further research.

2. MOTIVATION AND BACKGROUND

2.1 Blocking Probabilities

A cellular network is a collection of K spatially separated base stations, and
a collection of users who make calls of limited duration. During a call, a user
communicates with the nearest base station by means of one of C channels. The
region that is closer to one base station than to any other is called a cell. The
principle behind cellular networks is that each of the C channels can be used
simultaneously by multiple users across the network, if and only if the so-called
“reuse constraints” are satisfied. These constraints ensure that the performance
in any given cell is not excessively degraded by the interference caused by other
cells using the same channel. The reuse constraints hence depend on the precise
layout of the cells. For the examples in this article, we shall assume that the
cells form a hexagonal grid and 3-cell reuse is employed; that is, no channel may
be used simultaneously by more than one call in any group of three mutually
adjacent cells. In general, a set of cells in which a channel may only be used
once is called a “clique.” Figure 1 shows a simple seven-cell network, with one
clique highlighted. Let M be the number of cliques (in Figure 1, M = 6), and
let c j be the j th clique, j = 1, . . . , M .

Calls can arrive at the cell in one of two ways. They may be new calls or
they may be existing calls being handed off from neighboring cells due to user
mobility. The model used in this article does not include user mobility. Using
dynamic channel assignment, calls arriving to a cell are assigned one of the
available channels. If no channel can be allocated without violating a reuse
constraint, then the call is blocked. Otherwise, it is accepted, and uses the
selected channel. In practice, the call will generally use the same channel until
it departs from the cell. Thus, in general, the state of the system depends on both
the number of calls in each cell (the occupancy), and also on which particular
channels they use.
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There is no useful lower bound on the occupancy of a given cell, i, in the states
when blocking occurs; it is possible for calls arriving to cell i to be blocked when
there are no calls at all in cell i, if all the channels are used elsewhere in the
cliques to which i belongs. Define the “cluster” associated with cell i to be the
union of all cliques containing i:

Ci =
⋃
c j3i

c j .

It is then possible to say that the occupancy of the cluster Ci must be at least C
when calls arriving to cell i are blocked, since each channel must be blocked by
at least one of the cliques containing cell i. That is,∑

j∈Ci

n j ≥ C (1)

is a necessary condition for blocking to occur, where nj denotes the number of
calls (i.e., channels in use) in cell j . This is the fundamental property of blocking
states that is used in the methods presented here.

Most of the techniques described in the introduction rely on having a known
closed form for the blocking probability. There is such a closed form for maxi-
mum packing channel assignment, proposed by Everitt and Macfadyen [1983],
in which channels may be reassigned on the arrival of a new call. However,
the operation of reassigning calls is not feasible in practice, and so this closed
form is merely a lower bound for the blocking of real channel assignment al-
gorithms. The techniques to be presented in Sections 4 and 5 are applicable to
real channel assignment algorithms and are thus of more general applicability
than most of the techniques described in the introduction.

In general, the state of the occupancy process at time t is given by ñ(t) =
(ñ1,1(t), . . . , ñK ,C(t)), where ñi,c(t) = 1 if channel c is used in cell i at time t, and
zero otherwise. Sometimes we also used a simplified state description, given
by n(t) = (n1(t), . . . , nK (t)), where ni(t) represents the number of channels in
use in cell i at time t. This is the aggregate occupancy process. Note that n(t) is
completely determined by ñ(t). Under maximum packing, all calls in progress
can be rearranged to different channels on the arrival of a call, and so the
behavior of the system is determined entirely by the aggregate state.

Some of our numerical examples will use the so-called “clique packing” ap-
proximation to maximum packing, proposed by Everitt and Macfadyen [1983]
and further investigated by Raymond [1991], which considers only constraints
local to each clique. A state is feasible under clique packing if each of the cliques
contains no more calls than there are channels:

n(c j ) ≤ C ∀ j = 1, . . . , M , (2)

where n(A) is the number of calls in a set of cells, A, in a given network state, n.
At each cell i, new calls arrive following independent Poisson processes with

corresponding intensities λi, i = 1, . . . , K . A call that arrives at cell i at time t is
accepted if there is still at least one channel available. If call rearrangement is
not permitted, this requires that there exists a channel, c, such that ñ j ,c(t) = 0
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for all cells j ∈ Ci. Under clique packing, the requirement is simply that

max
c j3i

(
n(c j )

) ≤ C − 1.

An accepted call on channel c causes ñi,c(t) = ñi,c(t−) + 1 (whence ni(t) =
ni(t−) + 1), all other components of the state remaining unchanged. We say that
at this time the call is connected. If an incoming call to cell i finds no channels
available (under clique packing, the current state satisfies (2) with equality for
some c j 3 i), then all channels are used and the call is blocked, with no change
to the state. Note that (1) is a necessary condition for blocking whether or not
clique packing is used.

Calls stay connected for a random length of time called the holding time, as-
sumed to be independent of the rest of the process history. All holding times are
identically distributed with mean 1/µ. When a call in cell i departs, the corre-
sponding occupancy component is decreased by one unit. Although the holding
times are assumed to be exponential in this article, the network performance is
in fact independent of the holding time distribution for many channel assign-
ment schemes, including clique packing [Kelly 1979]. Most models without call
rearrangement are not included in these.

This model gives rise to a continuous-time Markov process. Furthermore,
because the process, {ñ(t)}, consists of independent arrivals and departures, it
can be expressed as a quasi birth and death (QBD) process (see Neuts [1981]).
In QBD processes, states can be arranged in layers, such that transitions from
layer s can only be to states in layers s− 1, s or s+ 1. For any i, layer s can be
defined to consist of states in which cluster Ci contains s calls. This system is a
QBD, since a call arrival within the cluster causes a transition from layer s to
layer s+1, a departure within the cluster causes a transition from s to s−1, and
an arrival or departure outside the cluster causes a transition entirely within
level s. In this representation, all blocking states for cell i are in layers C and
higher. The occupancy process, {ñ(t)}, is a particular case of a QBD where the
rates and barriers depend on all components of the process. When the process
is in state ñ which belongs to level s, the total birth rate from this level in the
QBD is

∑
j∈Ci

λ j 1{ñ6∈B̃ j }. Here 1{A} is the indicator function of event A and B̃ j is
the set of states that cause blocking in cell j , which depends on the channel
assignment used. For clique packing, this simplifies to

∑
j∈Ci

λ j 1{n6∈B j }, where
B j is the set of aggregated blocking states for cell j :

B j =
{

n ∈ S : ∃ck 3 j , n(ck ) = C
}

, j = 1, . . . , K . (3)

Here S is the state space consisting of all integer vectors n = (n1, . . . , nK ) ∈ NK

satisfying (2). Note that, for ñ ∈ B̃i, Eq. (1) holds. The total death rate at level
s is sµ.

The performance measure of interest is the blocking probability, defined as
the long-term probability that an incoming arrival is blocked:

B = lim
t→∞

∑K
i=1 Yi(t)
A(t)

=
K∑

i=1

(
λi

λtot

)
Bi =

K∑
i=1

(
λi

λtot

)
π (B̃i), (4)
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where Yi(t) is the total number of calls blocked in cell i up to time t, A(t) is
the total number of arrivals up to time t and λtot =

∑K
i=1 λi is the total arrival

rate. The term Bi is the long-term proportion of calls arriving to cell i that are
blocked, and π (B̃i) is the stationary probability that the state is in the blocking
set B̃i.

The renewal-reward theorem can be used to rewrite (4) in terms of ex-
pectations within regenerative cycles. However, as the state space has many
components, regeneration cycles are frequently too long to be a feasible basis
for simulation. The concept of quasiregeneration was introduced to calculate
stationary averages for such systems, as explained by Chang et al. [1995]
and Gaivoronski and Messina [1996]. Consider a random process, {ñ(t)}, and
assume it starts with the stationary distribution P(ñ(0) = m) = π (m). Consider
a set of states, A, such that there is an a.s. finite stopping time T̃ 0, defined as the
first entry time to the set A from its complement A′. Let T̃ 1, T̃ 2, . . . be the sub-
sequent times of entrances to the set A from the set A′. Clearly, these are also
stopping times, and are a.s. finite. Since the process is in steady state, the
distribution of the process {ñ(t+ T̃ i) : t > 0}, i ≥ 1, is identical to that of the pro-
cess {ñ(t+ T̃ 0) : t > 0}. The set A is called a quasiregenerative set. Because the
occupancy process {ñ(t)} described above is an irreducible Markovian process
on a finite state space, all subsets of the state space are quasiregenerative
sets and a unique stationary measure π exists. The times between consecutive
entries to the set A are termed “A-cycles.” Unlike true regenerative cycles,
A-cycles may not be independent, but they are still identically distributed.

It will be useful to consider different quasiregeneration sets, Ai, for different
cells i. Following Sadowsky [1991], we require that Ai ⊃ B̃i. Let T (i) be the
random length of an Ai-cycle, and X i(T (i)) be the amount of time within an
Ai-cycle that the process spends in B̃i. Then Breiman [1992]

Bi =
E
[
X i
(
T (i)
)]

E
[
T (i)
] . (5)

The sets Ai will be chosen in such a way as to minimize the required simulation
time. A-cycles have been used in a number of papers, such as Sadowsky [1991],
Nicola et al. [1993] and L’Ecuyer and Champoux [1996], to name but a few.

2.2 Fast Simulation Methods

A commonly used figure of merit of an estimator is its relative efficiency (see,
e.g., Glynn and Whitt [1992]). This quantifies the trade-off between compu-
tational effort and relative mean square error (or equivalently, the relative
variance if the estimator is unbiased).

Definition 2.1. Let Ŷ (S) denote a consistent estimator of B that uses S
samples of a stochastic process. The relative efficiency of this family of estima-
tors is:

Er = lim
S→∞

(
B2

CPU[Ŷ (S)]Var[Ŷ (S)]

)
, (6)
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where CPU[Ŷ (S)] denotes the expected value of the CPU time of the simulation
that produces the S samples.

Definition 2.2. Let {n(t)} be a stochastic process defined on a set of outcomes
Ä and let ε > 0 be a parameter of the distribution of the process, denoted Pε .
The event R ⊂ Ä is called a rare event if limε→0 Pε(R) = 0.

If p(ε) = Pε(R) is estimated via simulation using 1{R} for S consecutive
A-cycles, then the variance of the estimator is at least p(ε)(1 − p(ε))/S if con-
secutive A-cycles introduce positive correlation on the Bernoulli sequence (as
is usually the case in our application). The relative error in the estimation,
defined as the standard deviation of the estimator divided by the true value,
is then bounded below by

√
(1− p(ε))/(S p(ε))→∞, as ε → 0 for fixed S. The

efficiency in the estimation of rare events can be improved using a change of
measure approach via importance sampling (see Devetsikiotis and Townsend
[1993] and Asmussen and Nielsen [1995] among others).

The simulation model assumes an underlying discrete time Markovian pro-
cess {Uk}, such that the occupancy process {ñ(t)} can be determined solely
from the generation of {Uk}. Use the notation {ñ(k), k = 1, 2, . . .} and {n(k),
k = 1, 2, . . .} for the embedded processes (with the obvious abuse in notation).
Let f ñ(u) be the conditional density of Uk+1 given the state ñ(k) = ñ. Let now
f ∗ñ (·) be another conditional density, and define for any T ∈ N

LT =
T−1∏
k=0

f ñ(k)(Uk+1)
f ∗ñ(k)(Uk+1)

, (7)

known as the Radon–Nikodym derivative of the distribution P with respect
to the distribution P∗, where P and P∗ are the distributions of the respective
Markov processes after T events. If a rare eventR depends only on the history
of the process {Uk , k ≤ T } for some fixed time T , then (see, e.g., Ross [1997])

E
[
1{R}

] = E∗
[
LT 1{R}

]
, (8)

where E∗ denotes the expectation with respect to the distribution induced by
f ∗. The change of measure (8) is valid also when T is a random stopping time, as
explained, for example, in Sadowsky [1991] and Asmussen and Nielsen [1995].
This approach can use arbitrary densities f ∗ as long as they satisfy an absolute
continuity constraint; the restriction of P to the “important set”R, PcR, must be
absolutely continuous with respect to the new measure P∗; equivalently ∀ω ∈ R,
f ñ(U (ω)) > 0⇒ f ∗ñ (U (ω)) > 0. (See, e.g., Vázquez-Abad and LeQuoc [2001].)

Definition 2.3. The unbiased IS estimator for the rare event probability
p(ε), LT 1{R}, has bounded relative error (BRE) under P∗ if there are constants
b <∞, ε0 > 0 such that

sup
ε≤ε0

√
Var∗

[
LT 1{R}

]
p(ε)

≤ b. (9)
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The above definition is widely used in rare event estimation (see, e.g.,
Shahabuddin [1994]). The following lemma is a direct consequence of
Definition 2.3. (See, e.g., Chang et al. [1995].)

LEMMA 2.4. If there are constants l , u and b such that p(ε) ≥ lεb and
LT 1{R} ≤ uεb a.s., then the IS estimator for p(ε), LT 1{R}, has BRE.

By construction, p(ε) = Pε(R) = E∗[LT 1{R}] under any valid change of mea-
sure. Often the new measure depends on ε, and hence, in general, LT will be a
function of ε, although we will not make this explicit in our notation. Because
variances are nonnegative, it must always be true that

E∗
[
L2

T 1{R}
] ≥ p2(ε). (10)

Estimators that satisfy (10) with equality are optimal and are called zero vari-
ance estimators.

Sadowsky [1991] studies a GI/GI/s/∞ queuing system and estimates the
excessive backlog probability: the probability that an arrival finds at least C
customers waiting, C being large. By defining the quasiregenerative set, A,
to be those states in which all s servers are busy, he finds the asymptotically
optimal (a criterion for judging simulation efficiency) change of measure for the
probability of excessive backlog occurring within a given A-cycle. The approach
uses the so-called “conjugate” distributions, which in the Markovian case is
known as “rate swapping”: simulate an M/M/s/∞ queuing system, with the
new rates

λ∗ = sµ, µ∗ = λ

s
. (11)

This change of measure is applied to the system once its occupancy reaches s,
and its optimality relies on the fact that the number of servers in use is constant
between the start of acceleration and the time when the backlog reaches C. This
algorithm can also be used for estimating the fraction of customers lost in the
long run in a GI/GI/s/C queueing system, C being large compared to s.

In Sections 4 and 5, we discuss the implementation of the IS that swaps
arrival and service rates for the cellular network problem.

3. MODEL FOR FAST SIMULATION

Estimation of blocking probabilities can be especially difficult in the case when
blocking is a rare event. The following sections address fast simulation of block-
ing probabilities for two regimes under which blocking is a rare event: low load
and high capacity. For both problems, we use the same simulation model, which
does not rely on the product form solution.

The occupancy process {ñ(t); t ≥ 0}, as described in Section 2.1, is a contin-
uous time Markov process. Recall that the arrival rate of calls into cell i is λi,
i = 1, . . . , K , and the mean holding time per call is 1/µ. Also, recall that the
blocking probability can be expressed as in (5). Given a set Ai, consider the
process started with the stationary distribution, conditional on its just hav-
ing entered the set Ai from its complement A′i. Define τi, as the number of
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events required to reach a blocking state for cell i or the end of the current
quasiregenerative cycle, and Ri as the event that the cycle contains a blocking
state for cell i:

τi = min
{

k : Sk ≥ T (i) or ñ(Sk) ∈ B̃i
}

, and Ri =
{

Sτi < T (i)}, (12)

where Sk is the epoch of the kth event in the system. Then

Bi =
E
[
X i
(
T (i)
)|Ri

]
P(Ri)

E
[
T (i)
] . (13)

For each cell i, a change of measure is performed to build an efficient esti-
mator for P(Ri). Fix the index i throughout the remaining sections, until the
description in Section 5 of the simulations. We now define the set Ai.

Definition 3.1. Let the quasiregenerative set Ai be the set of all states in
which the cluster occupancy, n(Ci ), satisfies n(Ci )>θi for some threshold 0≤ θi <C.

The optimal choice of θi will be considered in Section 5.2.3.
The following sections will derive changes of measure with bounded relative

error for estimating P(Ri), the probability that there is a blocking state within
an Ai-cycle associated with an arbitrary cell i of the cellular network model.
Fast simulation via IS requires simulating the process with cluster accelera-
tion only until the process enters a blocking state, that is, a state in B̃i. Once
the state enters B̃i, the standard measure is used to resume the simulation
and to estimate the time spent in blocking states within the current Ai-cycle,
E[X (T (i))|Ri].

However, as mentioned before, an Ai-cycle must start with the state distri-
bution being the equilibrium distribution conditional on the process having just
entered the set Ai from A′i. In the absence of importance sampling, this will also
be the distribution at the end of the Ai-cycle. However, importance sampling
disturbs the distribution, and the state at the end of an accelerated Ai-cycle
cannot be used as the starting state for the next Ai-cycle. Hence, in addition
to the simulation with importance sampling mentioned above, we start a sec-
ond simulation from the same initial state (i.e., the initial state that is used
for the Ai cycle with importance sampling). This simulation is done with the
original probability measure and its purpose is to recover the initial state for
the simulation of the next Ai-cycle. This gives rise to the “backbone and ribs”
arrangement, seen in Figure 2. A second advantage of this approach is that the
length of an Ai-cycle, the denominator of (13), may be estimated with lower vari-
ance from the nonaccelerated Ai-cycles. This technique is common in queuing
network simulation, and has been implemented by Nicola et al. [1993], Chang
et al. [1995], and L’Ecuyer and Champoux [1996], among others.

For each cell i, the Ai-cycle is used to get estimates only of the blocking
probability Bi in a single cell. Thus, in order to estimate the blocking probability,
it is necessary to run separate simulations for each cell. Fortunately, it is not
necessary to simulate the “backbone” separately. Instead, separate “ribs” can
be started each time the backbone starts an Ai-cycle for any cell i. Note that a
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Fig. 2. “Backbone and ribs” simulation framework.

single event may be the start of Ai-cycles for more than one i, and each of these
must be considered.

The ribs may be further simplified by noting that the set A′i contains no
blocking states for cell i. Thus, once an accelerated Ai-cycle has left the set
Ai, the entire time spent in blocking states will already have occurred. This
means that the rest of the Ai-cycle need not be simulated, even though a con-
siderable amount of time may be spent in the set A′i before the Ai-cycle is truly
over.

The simulation model is the standard clock technique of Vakili [1991], which
corresponds to the dynamical description of a multidimensional birth and death
process. Consider the embedded occupancy processes {ñ(k)} and {n(k)}. Let
N (k) = ∑K

j=1 nj (k) be the total occupancy at step k. An exponential random
variable with intensity 3N (k) is used to determine the interevent time, Tk+1, or
the time until the next event. Here

3N (k) =
K∑

j=1

λ j + N (k)µ.

Next, the event type Dk+1 is determined as a discrete random variable with
distribution

Dk+1 =


aj : arrival at cell j w.p.

λ j

3N (k)

d j : departure of call at cell j w.p.
nj (k)µ
3N (k)

.
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The embedded occupancy process is updated by first setting

nj (k + 1) =


nj (k)+ 1 if Dk+1 = aj and ñ(k) 6∈ B̃ j ,
nj (k) if Dk+1 = aj and ñ(k) ∈ B̃ j ,
nj (k)− 1 if Dk+1 = d j

and then determining the state, ñ(k + 1), using the channel assignment rule.
Recall that Sk is the epoch of the kth event in the system.

When call rearrangement is permitted, ñ(k) 6∈ B̃ j if and only if n(k) 6∈ B j ,
and so the evolution of the aggregate process is determined only by its state.
When calls cannot be rearranged, the random variables Dk and the interevent
times are as described above, but an additional decision is made concerning
which channel an arrival is to, or a departure is from. These decisions affect
ñ(k + 1) but not n(k + 1). Without rearrangement, the decision whether or not
to block an arrival cannot be made on the basis of n(k) alone, but n(k) must still
satisfy (1) for blocking to occur.

To denote use of IS for the standard clock simulation model we use the
acronym ISSC. Similar work has been done in the context of reliability by
Heidelberger et al. [1994].

4. STATIC ISSC ESTIMATION FOR LIGHT TRAFFIC

In the light traffic regime, assume that λi = kiε, i = 1, . . . K , with ε → 0. (This
is analogous to the regime used by, e.g., Shahabuddin [1994] in the context of
reliability.) In the GI/G/s/∞ case, the servers are busy from the start of the
A-cycle containing a blocking state, until a blocking state is reached. In our
model, however, channels are not continuously busy within Ai-cycles until a
blocking state is reached. Thus, swapping rates as in (11) will not be optimal.
Instead, consider the change of measure that swaps aggregate arrival rates per
cluster, λ =∑ j∈Ci

λ j , with inverse expected holding times.

PROPOSITION 4.1. Consider the ISSC simulation model with initial state ñ(0)
such that n(Ci )(0) = θi = 0, and Ai-cycles as defined in Definition 3.1. Arrivals
at the cluster Ci have rate λ∗ = µ and service rate for the calls in the cluster
is µ∗ = λ. Other interarrival and holding times (outside the cluster) have the
original exponential distribution. Call the underlying measure P∗. Then

P(Ri) = E∗
[

exp

(
−(µ− λ)

τi−1∑
k=1

(
n(Ci )(k)− 1

)
Tk+1

)(
λ

µ

)a−d

1{Ri}

]
,

where n(Ci )(k) =∑ j∈Ci
n j (k) is the total occupancy of the cluster, a( j ) is the total

number of arrivals to cell j prior to event number τi (including blocked calls),
a =∑ j∈Ci

a( j ) and d is the corresponding number of call completions (excluding
blocked calls).

PROOF. Given the state, n(k), of the process at the time of the kth event,
Tk+1 ∼ exp(3∗N (k)). The new event rate is the random variable

3∗N (k) = µ+
∑
j 6∈Ci

λ j + λ
∑
j∈Ci

n j (k)+ µ
∑
j 6∈Ci

n j (k),
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and the event types are now

Dk+1 =



arrival at cell j ∈ Ci w.p.
λi

λ

µ

3∗N (k)

arrival at cell j 6∈ Ci w.p.
λ j

3∗N (k)

departure of call at cell j ∈ Ci w.p.
nj (k)λ
3∗N (k)

departure of call at cell j 6∈ Ci w.p.
nj (k)µ
3∗N (k)

.

On Ri, we perform this change of measure within an Ai-cycle until the τi-th
event occurs, which is the first time that the state is in B̃i. Using the frame-
work of Section 2.2, the corresponding Radon–Nikodym derivative is given by
(7) as

Lτi =
τi−1∏
k=1

(
3N (k)

3∗N (k)

)
exp

((
3∗N (k) −3N (k)

)
Tk+1

)
×

τi−1∏
k=1

(
3∗N (k)

3N (k)

)∑
j∈Ci

(
λ

µ

)
1{Dk+1=aj } +

(µ
λ

)
1{Dk+1∈Di} + 1{Dk+1 6∈Di∪Ai}

, (14)

where Ai = {aj : j ∈ Ci} is the set of event types that are arrivals to the cluster
and similarly Di = {d j : j ∈ Ci} is the set of event types that are departures of
calls within the cluster. From their definitions, it follows that

3∗N (k) −3N (k) = (µ− λ)+ (λ− µ)
∑
j∈Ci

n j (k) = −(µ− λ)
(
n(Ci )(k)− 1

)
.

Simplifying the expression above,

Lτi = exp

(
−(µ− λ)

τi−1∑
k=1

(
n(Ci )(k)− 1

)
Tk+1

)∏
j∈Ci

(
λ

µ

)a( j )
(µ

λ

)d

= exp

(
−(µ− λ)

τi−1∑
k=1

(
n(Ci )(k)− 1

)
Tk+1

)(
λ

µ

)a−d

. (15)

Application of (8) proves the claim.

LEMMA 4.2. When λ < µ,

Lτi 1{Ri} <
(
λ

µ

)C−θi

, P∗ −w.p.1. (16)

In particular, Lτi 1{Ri} < 1, P∗ − w.p.1., guaranteeing variance reduction when
using the ISSC estimator.
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PROOF. On Ri, there are at least C on-going calls within the cluster at the
hitting time τi. At the time the Ai-cycle begins, there are (by Definition 3.1)
θi + 1 calls within the cluster. Because the stopping time within an Ai-cycle
counts only the transitions from the start of the Ai-cycle up until a blocking
state is reached, and B̃i ⊂ Ai, it follows that on the set Ri we have n(Ci )(k) ≥
θi + 1, k = 1, . . . , τi, whence

(µ− λ)
τi−1∑
k=1

(
n(Ci )(k)− 1

)
Tk+1 ≥ 0. (17)

Moreover, a =∑ j∈Ci
a( j ) ≥ d + C − θi. Using (15) gives the result.

THEOREM 4.3. The ISSC estimator for p(ε), suggested by Proposition 1, has
BRE as ε → 0 when θi = 0 and λ j = k j ε, for all cells j .

PROOF. The proof is an application of Lemma 2.4. The upper bound is ob-
tained with the result of Lemma 4.2:

Lτi 1{Ri} ≤
(
λ

µ

)C

= uεC, (18)

where u = (
∑

j∈Ci
k j /µ)C.

It remains to show p(ε) ≥ lεC. In order for blocking of arrivals to cell i to
occur, it is sufficient for the occupancy of a single clique, c j 3 i, to reach C. Let
a “minimal path” be a trajectory in which the first C events in an Ai-cycle are
arrivals to the same clique within the accelerated cluster. All minimal paths
will lead to blocking states, and thus their probability is a lower bound for p(ε).
The probability of such minimal paths is the probability that each of the first
C events be an arrival to the same clique, and so

p(ε) ≥
(

λ̄i

3N (C)

)C

≥
(

k̄iε

Cµ+ λtot

)C

= lεC, (19)

where λ̄i is the smallest aggregate clique rate within cluster Ci and l = ( k̄i/(Cµ+
λtot))C, with k̄i the smallest of

∑
s∈c j

ks over the cliques c j ⊂ Ci.
It follows by Lemma 2.4 that in this case, ISSC has BRE.

Note that the condition θi = 0 is not a major limitation, since the modal
cluster occupancy will be zero, and so θi = 0 gives the shortest Ai-cycles, which
is desirable for simulations.

The ISSC with θi = 0 and C = 2 was tested for ε → 0 on three sizes of
network: 4, 7 and 37 cells. The load in Erlangs per cell is given by λi/µ, which
was equal for all cells. A single backbone was used to estimate all Bi. The first
107 ribs were simulated for each i, and used to estimate the numerator of (13).
The variance corresponding to each Bi was estimated using batch means, with
100 batches of 105 Ai-cycles. The estimation of this variance, as well as that of
the variance of the estimator of B, is described in more detail in Section 5.2.2.

Figure 3 compares the results for clique packing with those of the filtered
Gibbs sampler of Vázquez-Abad and Andrew [2000]. The results clearly show
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Fig. 3. Relative efficiency and relative error for importance sampling (IS) and filtered Gibbs
sampler (FGS) for light loads.

that the relative error of the estimated network blocking probability is bounded
as ε → 0.

Figure 4 shows the performance of ISSC for a seven-cell network when ex-
isting calls cannot be rearranged. In this case, the network has no product
form solution. Channels were assigned using the first fit algorithm, which
starts searching from channel 1 and selects the first available channel. This
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Fig. 4. Relative efficiency for light loads when ribs are accelerated, when ribs not accelerated, and
when the simple algorithm is used.

was shown by Yates [1997] to produce significantly less blocking than random
selection.

Along with the “nonaccelerated Ai-cycles,” Figure 4 includes results for a
“simple” estimation scheme. This simulates only the backbone and simply
counts the proportions of calls which are blocked. For high blocking, this has
higher relative efficiency than the simulation based on quasi-regeneration. Its
CPU time is lower partly due to its ability to estimate blocking over the en-
tire network at once, rather than focusing on a single cell, i, in each Ai-cycle,
and partly due to the elimination of “bookkeeping” associated with tracking the
Ai-cycles. However, for lower blocking, it performs even worse than the nonac-
celerated Ai-cycles, because it does not keep track of the proportion of time that
the network is in a blocking state, but simply the number of calls blocked.
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5. DYNAMIC ISSC ESTIMATION FOR HIGH CAPACITY

5.1 Change of Measure

It is unlikely that future networks will be operated at extremely low load, as was
assumed in the previous section. Engineers are more interested in the behavior
as the capacity increases. This is particularly true of wavelength-continuous
wavelength division multiplexing (WDM) trunk networks, which are mathe-
matically analogous to the cellular networks described so far. It is possible
to overcome the restriction that λ<µ used in Lemma 4.2, and to investigate
limiting regimes other than λ/µ→ 0, by allowing the arrival and service rates
to be state dependent in the new probability measure.

This section addresses the simulation of the regime of C→∞ with λi/µ in-
dependent of C. Swapping λ and µ as in the previous section will not yield BRE
for high-capacity regimes (even when λ < µ) because P∗(Ri) → 0 as C → ∞.
A change of measure, which is optimal in the case of a single clique cellular
system with C channels, is presented and then applied to the general cellular
case. Notice that the former is equivalent to a queuing system with C parallel
servers and no waiting, and can be solved trivially using the Erlang loss for-
mula. However, the change of measure and corresponding simulation analysis
are presented to give the intuition for more general cellular models. In the gen-
eral cellular context, it is suboptimal, but provides a dramatic improvement
over simulation using the original measure.

5.1.1 The Single Clique Case. Because a network with a single clique can-
not employ frequency reuse, it is isomorphic to a single cell network. In the
case of a single-cell network, the aggregate state n(t) completely determines
whether or not ñ(t) ∈ B̃i, so we may just use the process {n(t)}. Note that {n(t)}
is a birth and death process on S = {0, . . . , C} with birth rate λ and death rate
sµ, for s ∈ S, and call {n(k)} the embedded random walk (with the obvious abuse
of notation). Let the quasiregenerative set be A = {θ +1, . . . , C}, and let M ∈ R
be the random length of an A-cycle. Let τ ∈ N be the first hitting time (in the
embedded random walk) of C within the A-cycle; that is, τ = min{k : Sk ≥ M
or n(k) = C}, where Sk is the epoch of the kth event. Finally, let R = {Sτ < M }.
Consider a dynamic change of measure, where the birth and death process
{n∗(t)} has rates λ∗(s) and sµ∗(s).

THEOREM 5.1. Consider the ISSC estimator for P(R) using the dynamic rates

λ∗(s) = λ+ s(µ− µ∗(s)), (20a)

µ∗(s+ 1) = λµ

λ∗(s)
(20b)

for s ≥ θ + 1, starting with µ∗(θ + 1) = 0, and µ∗(s) = µ, λ∗(s) = λ for s < θ + 1.
This has BRE in the limit of C→∞, with the likelihood ratio

Lτ =
C−1∏

s=θ+1

λ

λ+ s(µ− µ∗(s))
(21)
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when a blocking state is reached. Moreover, the variance of the estimate is zero
even for finite C.

PROOF. With µ∗(θ + 1) = 0, P∗(R) = 1 since the A-cycle is not allowed to
end until a blocking state is reached. This violates the usual absolute continuity
condition that for every ω ∈ S, P(ω) > 0⇒P∗(ω) > 0. However, as mentioned in
Section 4, PcR is absolutely continuous with respect to P∗. This follows because
on the event R, a blocking state is reached before the A-cycle is over; thus, no
trajectory on R can have a transition from θ + 1 back to θ before τ , as that
would start a new A-cycle. Thus, for every ω ∈ R, P(ω) > 0 ⇒ P∗(ω) > 0, and
the change of measure is valid for the estimation of P(R).

On any path leading to the blocking boundary, C, any transition due to a call
departure from state s (s ≥ θ + 2) to s− 1 must necessarily be followed in some
future stage by a matching transition from s−1 to s; otherwise, it is impossible
to achieve full occupancy. The corresponding factors contributing to Lτ are then(

sµ
sµ∗(s)

)(
λ

λ∗(s− 1)

)
=
(
λ∗(s− 1)

λ

)(
λ

λ∗(s− 1)

)
= 1,

therefore all such loops cancel out their contributions. The only remaining con-
tributions to Lτ are the factors for the “minimal” blocking path θ + 1→ θ + 2→
θ + 3→ · · · → C, which yields (21). This is a deterministic function of C. Since
P∗(R) = 1, Lτ1{R} = E[Lτ1{R}] w.p.1, and is thus optimal.

Note that since this change of measure is exactly optimal for any combination
of λ, µ and C, it is optimal for any scaling regime. This includes the two scaling
regimes considered in this article, and also the important regime where C→∞
with λ/Cµ held fixed, which is not explicitly addressed here.

Note also that for a fixed µ∗(θ + 1), the rates are independent of C. The
optimal adaptivity to C comes from the fact that the rates change as the actual
current occupancy changes.

Asymptotically, the change of measure under the new rates is analogous to
the static change of measure for an M/M/K /∞ queue that swaps arrival and
service rate—as in (11), as the next Lemma shows. Note that acceleration of
an M/M/K /∞ queue can be static, since the number of active servers remains
constant as the occupancy tends to infinity, leading to a constant service rate
during the acceleration. Rate swapping thus gives a static change of measure. In
contrast, the number of active servers in the system considered here is equal to
the instantaneous occupancy, and the total service rate changes throughout the
acceleration. The change of measure of (20) is dynamic, reflecting this change.

LEMMA 5.2. Under the update rule of Theorem 2, for any initial 0 ≤ µ∗(θ +
1) < µ,

lim
s→∞

λ∗(s)
s
= µ

lim
s→∞µ

∗(s)s = λ.

PROOF. We first show that µ∗(s)→ 0 as s→∞. By induction, 0 ≤ µ∗(s) < µ

for all s ≥ θ + 1, and hence {µ∗(s)} has a convergent subsequence. To see that
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µ is not an accumulation point, note that this would imply µ∗(s) = µ− φ(s) for
some φ(s) = o(1), φ(s) 6≡ 0. By (20b), that would in turn imply λ∗(s) − λ ∼ φ(s),
but by (20a), λ∗(s)− λ ∼ sφ(s), which is a contradiction. Thus, there is a strictly
increasing sequence s(m) ∈ N and a µ∗ ∈ [0, µ) such that µ∗(s(m)) → µ∗ as
m→∞. For any such sequence s(m), there is a δ = µ− µ∗ > 0 such that

λ∗(s(m+ 1))− λ∗(s(m)) = (s(m+ 1)− s(m))(µ− µ∗)+ o(1) ≥ δ + o(1).

Thus, λ∗(s(m))→∞, and by (20b), µ∗(s(m))→ µ∗ = 0. Since the sequence s(m)
was arbitrary, 0 is the unique accumulation point, and µ∗(s) → 0 as s → ∞.
From (20a),

λ∗(s)
s
= (µ− µ∗(s))+ λ

s
→ µ,

and the result follows from (20b).

5.1.2 The General Cellular Network Case. Consider again the standard
clock simulation model of the cellular network, and let the change of measure
for estimating P(Ri) be such that the total event rate is the same as for the origi-
nal measure:3∗N = 3N , when the total occupancy is N . When an event occurs, it
is an arrival to (or a departure from) cell j 6∈ Ci with probability λ j /3N (respec-
tively, njµ/3N ) just as for the original measure. Arrivals to (departures from)
the cluster Ci will now occur with probability λ∗(s)/3N (respectively, sµ∗(s)/3N ).
The proportion of arrivals to the cluster that go to cell j ∈ Ci remains fixed at
λ j /λ. Let {s(k) = n(Ci )(k), k = 1, 2, . . .} be the embedded random walk, under
the new distribution of the process, initialized at k = 1 as the start of the
Ai-cycle.

In the standard clock simulation, µ∗(s(k)) and λ∗(s(k)) determine the event
type, where µ∗(·) and λ∗(·) satisfy the recurrence relation (20), starting from
µ∗(θi + 1) = 0 (or more generally from 0 ≤ µ∗(θi + 1) < µ). Under this change
of measure, the rates are no longer constant, but depend on the state (more
specifically, on the cluster occupancy), hence the name “dynamic ISSC.”

It is straightforward to calculate the Radon–Nikodym derivative

Lτi =
τi−1∏
k=1

((
λ

λ∗(s(k))

)
1{Dk+1∈Ai} +

(
µ

µ∗(s(k))

)
1{Dk+1∈Di} + 1{Dk+1 6∈Di∪Ai}

)
,

independent of the interarrival times, where Ai and Di are as in (14).
In the cellular network case, it remains true that to reach a state ñ(τi) ∈ B̃i

all backward transitions in the cluster Ci from s to s− 1 will cancel out forward
transitions from s − 1 to s. This follows from the observation that the cluster
occupancy itself can only increase or decrease by 1 at each event that changes
its occupancy. However, it is possible that an arrival to a cell j ∈ Ci, j 6= i, will
be blocked even when ñ(k) 6∈ B̃i, if ñ(k) ∈ B̃ j . Since these events do not cause a
change in the occupancy, s, their effect is not canceled out by departure events.
However, the contribution of these events to Lτi is λ/λ∗(s) < 1, and they cannot
cause an increase in variance with respect to the original measure. Moreover,
these events become less frequent in the rare event scenario, since P∗ does not
focus on B̃ j .

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 1, January 2002.



Blocking Probabilities in Cellular Networks with Dynamic Channel Assignment • 73

Hence, the only transitions that will contribute to the final expression for Lτi

are blocked arrivals, and the forward transitions from θi+1 to the full occupancy
n(Ci )(τi). Now the ISSC estimator is

Lτi =
n(Ci )(τi )−1∏

s=θi+1

(
λ

λ+ s(µ− µ∗(s))

)1+b(s)

,

where b(s) is the number of blocked arrivals to cluster Ci while it is in state s.
The final cluster occupancy n(Ci )(τi) satisfies C ≤ n(Ci )(τi) ≤ mC, where m is the
number of cliques in Ci, which depends on the interconnectivity of the network.
The variance of Lτi is thus dependent on the variation of the distribution of the
cluster occupancy when a blocking state is first reached.

5.2 Implementation Considerations

5.2.1 Subsampling the Ribs. The correlation between consecutive cycles
may be significant. More importantly, in our application, an Ai-cycle on a rib
which uses importance sampling may be much longer than a “typical” backbone
Ai-cycle without acceleration. This is especially true when the load is a small
fraction of the number of channels, as then the Ai-cycle without importance
sampling tends to be very small. In order to reduce this correlation and to
reduce the costly sampling of the ribs, it may be worthwhile to sub-sample the
ribs, that is, start a rib for every kth Ai-cycle in the backbone. Moreover, the
backbone is shared between many cells, making subsampling very worthwhile.

For cases where the ribs were expected to be short, including all cases in
Section 4, k = 1 was used. For more difficult cases, k = 10 was used. These
values were selected from preliminary trial-and-error simulations, whose exe-
cution time was not considered.

Performing extensive preliminary simulations to determine an appropriate
subsampling factor, k, can be very time consuming. The following heuristic can
be used as a guideline for an initial choice of k, requiring a pilot simulation
using only two values for k. This pilot simulation can also serve as the “warm-
up” to achieve steady state. The heuristic presented below is primarily a means
for finding the best k in the absence of autocorrelation, k∗, although using any
k > 1 will automatically result in reduction of the autocorrelation effects.

The variance of a ratio can be estimated following Alexopoulos and Seila
[1998], even when both numerator and denominator are sample averages of
Markov processes with exponentially decaying covariances, instead of iid ran-
dom variables. Let

Zl = kX l 1{l modk=0} − Bi Tl

be a random variable obtained during the lth Ai-cycle. Here X l represents a
sample of X (T (i)) and Tl represents a sample of T (i). The scaling of X l by k
cancels the subsampling by k, so that E[

∑k
l=1 Zl ] = 0. Then the estimator

obtained with S consecutive Ai-cycles satisfies

Var[B̂i(S)] = Var

[
k
S

∑S
l=1 X l 1{l modk=0}

1
S

∑S
l=1 Tl

]
≈ K1 Var

[
1
S

S∑
l=1

Zl

]
,
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where K1 is a constant depending on E[(T (i))2], but independent of the sample
size S. Recall that Tl is estimated from the backbone, while X l is estimated
from an independent simulation of a rib. Assume that the sequences {X l }Sl=1 and
{Tl }Sl=1 have no autocorrelation. Neglecting also the cross-correlation between
{X l }Sl=1 and {BiTl }Sl=1 gives

Var

[
1
S

S∑
l=1

Zl

]
≈ K X

(
k
S

)
+ KT

S
, (22)

where the constants K X = Var[X l ] and KT = Var[BiTl ] are independent of
S. Note that (22) is true even in certain cases where {Tl }Sl=1 has nonnegligi-
ble auto-correlation (e.g., if {Tl }Sl=1 satisfies the assumptions used in the batch
means method), in which case KT depends on the auto-covariance structure.
The constants K X and KT can be estimated from a single simulation by esti-
mating the variance (22) using different rates of subsampling, k1 and k2; the
difference between these estimates is approximately K X (k2 − k1)/S. Note that
this improves the approximation (22) in the presence of slight autocorrelation
in {X l } compared with simply estimating Var[X l ]. The constant KT can then
be estimated by substitution into (22). Also,

CPU[B̂i(S)] = l X
S
k
+ lT S,

where l X and lT are the mean lengths of Ai-cycles corresponding to the ribs
and the backbone, respectively, and could also be estimated during the pilot
simulation. The relative efficiency (6) is then maximized by setting

k∗ ≈
√

l X

K X

KT

lT
. (23)

5.2.2 Variance Estimation. The above expressions for variance are very
approximate, and are only appropriate for determining suitable subsampling
rates. The variance of the estimator, B̂i, was determined using the methods de-
scribed in Alexopoulos and Seila [1998]. This uses batch means to determine the
variances and covariance of the estimators for the numerator and denominator
of (13) which can be used to derive the variance of B̂i. This in turn can be used
to construct a confidence interval for Bi. Since the estimates for the individual
Bis are derived from the same backbone, the variance of the overall estimator,
B̂, also contains some covariance terms. These terms are generally expected
to be small because the main source of variance is estimating the numerator
of (13), and the ribs for different cells are simulated independently, albeit with
dependent initial states. Hence, these covariance terms may be neglected, as
they are in the numerical results presented in this article. If precise confidence
intervals are required, then one option is to estimate the Bi ’s using independent
backbones, with the obvious substantial reduction in efficiency.

5.2.3 Choice of Quasi-Regenerative Cycles. When the load, λ/µ, is not neg-
ligible, the probability that a cluster will be completely empty is small. Thus,
if θ is too small, like θ = 0 as is used for single server queues, then the Ai-cycles
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become unmanageably long. This has several implications. The most obvious
result is that the simulation time increases in proportion. The seriousness of
this is to some extent alleviated by the fact that longer Ai-cycles produce better
estimates of the proportion of time spent in blocking states within an Ai-cycle.

The more serious problem with long Ai-cycles is that the blocking states
become a small proportion of the Ai-cycles, even given that blocking occurs. The
assumption behind the IS scheme proposed here is that Ai-cycles that contain
blocking states are rare events, but if an Ai-cycle does contain blocking states,
they form a significant proportion of it. Thus, the system is accelerated until
the first blocking state is reached, and is then allowed to relax back to finish its
Ai-cycle. If λ/µ and C are both large, then empty clusters become rarer than
blocking, and most Ai-cycles contain a period in blocking states, reducing the
effectiveness of the acceleration.

The length of Ai-cycles is minimized by maximizing the rate of crossing the
boundary between sets Ai and A′i of the embedded Markov chain. Note that the
stationary rate at which the process crosses from any state with n(Ci ) = θi to
n(Ci ) = θi + 1 equals the stationary rate at which it crosses from n(Ci ) = θi + 1 to
n(Ci ) = θi. This rate is state dependent:

λπ (ñ), ñ ∈ S̃(θi),

where S̃(θi) is the subset of the state space where n(Ci ) = θi. This is maximized at
the mode of the stationary distribution π (·), which is θi ≈

∑
j∈Ci

λ j /µ, assuming
that blocking does not significantly distort the state distribution, and that the
mean and mode of π are close.

Next, in order to guarantee that Ai ⊃ B̃i, and hence that Lτi ≤ 1 whenever
blocking occurs, it was required that θi < C. Thus, we use the value

θi = max

C − 1,
∑
j∈Ci

λ j /µ

 . (24)

There may also be benefit in using values of θi larger than
∑

j∈Ci
λ j /µ (but

less than C). It means less simulation for the ribs, but longer Ai-cycles in the
backbone. However, the Ai-cycles in the backbone are shared between all cells.

5.3 Simulation Results

The dynamic change of measure was shown to have BRE for the probability
of blocking states occurring within an Ai-cycle, P(Ri), in the case of a single
cell (or more generally a single clique). However, (13) shows that the efficiency
of estimating the blocking probability also depends on the efficiency of esti-
mating E[X i(T (i))|Ri] and E[T (i)]. Figure 5 shows the relative efficiency for the
actual blocking probability in the single cell case, for the accelerated and non-
accelerated methods. Here ρ = λi/µ is the load in Erlangs. Again 100 batches
of 105 Ai-cycles were used. Subsampling was by a factor of k = 1 (no subsam-
pling). As C increases, the proportion of time in each Ai-cycle spent in a blocking
state decays, even on those Ai-cycles that contain blocking. This accounts for
the slight reduction in efficiency as the blocking rate decreases. However, this
reduction is very much smaller than that which occurs without acceleration.
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Fig. 5. Relative efficiency for importance sampling (ISSC) and A-cycle framework without IS, both
in a single cell network.

Figure 6 shows the relative efficiency of the accelerated and nonaccelerated
methods for a seven-cell clique packing system, for a range of loads, ρ = λi/µ,
and a range of normalized capacities, C/ρ. The load on each cell was the same.

Again 100 batches of 105 Ai-cycles were simulated from a backbone shared
by all cells, i. The ISSC subsamples the Ai-cycles in the backbone by a factor
of k = 10. The simulations without acceleration use k = 1, as the rib Ai-cycles
are shorter and the variance of the corresponding estimator is higher. These
results do not suggest that ISSC has BRE for network blocking as C → ∞.
However, IS substantially reduces the rate at which the performance degrades
for large C.

The reason for the reduced efficiency is that the acceleration is applied to
all cells in a cluster. For a constant load, as C increases the (true) expected
cluster occupancy on blocking satisfies E[n(Ci )|B̃i]/C→ 1, since arrivals at each
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Fig. 6. Relative efficiency for importance sampling (ISSC), Ai-cycle framework without IS, and
the simple simulation, all in a seven-cell network with clique packing.

cell are independent, and only one clique need be full. However, because the
acceleration is applied to all cells in the cluster, the cells outside the clique
which caused blocking are also filled up. Thus, the expected cluster occupancy at
blocking under the new measure is significantly larger than under the original
measure. That is, outcomes with a high cluster occupancy are accelerated too
much, thus increasing the variance.

It seems from Figure 6(a) that the improvement decreases as the load in-
creases. However, this is largely due to the fact that the rate at which the
blocking decreases for increasing C is different. Figure 6(b) shows the relative
efficiency against the blocking probability. This shows that the change in slope
of the curves is similar over a range of loads.

Figure 6(b) also uses the “simple” estimator used in Figure 4 which merely
counts blocked calls. In this case, this shows an approximately constant
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Fig. 7. Relative efficiency for importance sampling (ISSC), Ai-cycle framework without IS, and
the simple simulation, all in a seven-cell network without call rearrangement.

improvement by a factor of around 10 compared with the nonaccelerated
Ai-cycles.

Figure 7 shows the results for the same simulation parameters as Figure 6,
but for a seven cell network when existing calls are not rearranged and first-fit
channel assignment is used. Note that in the range which is of most interest to
engineers, with blocking between 10−6 and 10−2, the acceleration consistently
outperforms the nonaccelerated simulation.

6. CONCLUDING REMARKS

This article has addressed fast simulation for estimating blocking probabilities
in cellular networks. Blocking is a rare event when the load is low, or the number
of available channels is high. We implemented the main ideas of fast simulation
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using the standard clock framework for simulation. In the case of low load, the
proposed change of measure yields an estimator that has bounded relative er-
ror. For high-capacity systems, we propose a change of measure that yields a
zero variance estimator for the single clique case; we were unable to prove any
efficiency results with this change of measure (in the rare event setting) for the
general network case. Nonetheless, in our experiments, this change of measure
provided significant improvements over standard simulation in more general
networks when events are rare. The reason for the suboptimality is that trajec-
tories with large numbers of calls in a cluster get accelerated disproportionately.

There is much room for improvement of this technique. The performance
for relatively high blocking probability (>10−3) is poor because of the variable
number of calls in a cluster when blocking first occurs. This may be improved
by reducing the acceleration applied to cells in the cluster that are not in the
fullest clique. Also, the current need to use separate Ai-cycles to estimate the
blocking probability of each cell limits the scalability of the technique. It will
also be important to expand the technique to other performance measures and
more general system models, such as determining the probability of dropping
due to blocked handovers in a system incorporating user mobility.
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