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ABSTRACT
The pool of unused routable IPv4 prefixes is dwindling, with
less than 4% remaining for allocation at the end of March
2014. Yet, the IPv6 adoption remains slow. We demonstrate
a new capture-recapture technique for improved estimation
of “IPv4 reserves” (allocated yet unused IPv4 addresses or
routable prefixes) from multiple incomplete data sources.
A key contribution of our approach is the plausible esti-
mation of both observed and unobserved-yet-active (ghost)
IPv4 address space. This significantly improves our com-
munity’s understanding of IPv4 address space exhaustion
and likely pressure for IPv6 adoption. Using “ping scans”,
network traces and server logs we estimate that 6.3 million
/24 subnets and 1.1 billion IPv4 addresses are currently in
use (roughly 60% and 40% of the publicly routed space re-
spectively). We also show how utilisation has changed over
the last three years and provide an up-to-date estimate of
potentially-usable remaining IPv4 space.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network Monitoring; C.4 [Performance of
Systems]: Measurement Techniques

General Terms
Measurement

Keywords
Used IPv4 space, capture-recapture

1. INTRODUCTION
At the end of March 2014 less than 4% of the IPv4 ad-

dress space remained unallocated by Regional Internet Reg-
istrars (RIRs). RIPE and APNIC have exhausted their sup-
ply and the other RIRs (except AfriNIC) will run out of pre-
fixes by the end of 2014 [1]. Understanding the pressures for
IPv6 adoption, and the scope of possible IPv4 address mar-
kets, requires plausible estimates of actual IPv4 address use
– particularly the efficiency with which allocated prefixes are

filled with actively-used addresses. Ideally, our estimation
techniques should also help the community track progres-
sive exhaustion once all routable IPv4 prefixes are allocated.

Prior studies on IPv4 space growth [2–4] and a port scan
census from 2012 [5] were based mainly on active probing
(“pinging”). Yet pinging alone will under-count, as many
hosts do not respond or their responses are filtered (e.g., by
firewalls). Recently, Dainotti et al. [6] used IPv4 data from
darknets to estimate the used /24 networks. Apart from a
simple multiplier in [3], previous work did not attempt to
correct for under-sampling.

Our key contribution in this work is a new method to es-
timate the true population of both observed and unobserved
(yet still active) IPv4 addresses using a statistical capture-
recapture (CR) [7–9] model applied over diverse sources of
active and passive measurement data. We significantly ex-
tend our earlier workshop paper, with refined methodology,
additional data sources and greatly extended analysis [10].

Our second contribution is a three-year study of address
use using our CR method. We “pinged” the allocated
space with ICMP echo requests and TCP port 80 probes,
and also gathered IPv4 data from web server logs [11],
email spam detector logs [12], Wikipedia edit logs, logs of
Valve’s Steam online game platform, logs from Measure-
ment Lab [13], and university access router’s NetFlow logs.
Inevitably, our sources only detect used addresses from 80%
of the allocated space that is publicly routed (based on [14]).

Although our sources provided diverse evidence of active
IPv4 address use, there are likely many in-use addresses that
we never see. We utilise our CR method to estimate a to-
tal population of used IPv4 addresses (and /24 networks)
that includes these unobserved addresses (ghosts). As many
sources obtain measurements over weeks or months, our es-
timates of the used IPv4 addresses (and /24 networks) are
based on observation periods rather than points in time. By
cross-validation with our datasets, and comparison with a
few samples of ground truth, we show our CR method pro-
vides better estimates than prior techniques.

We analyse “demand” – growth in address use – over the
last two years relative to factors such as the RIR, country, or
prefix size, and estimate the remaining “supply” of unused
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prefixes. Our combined sources observed 5.8 million used
/24 subnets and 740 million used IPv4 addresses, yet our CR
technique indicates significantly higher actual usage. We es-
timate 6.3 million /24 subnets and 1.1 billion IPv4 addresses
were used by the end of March 2014 (approx. 60% and 40%
of the publicly routed space respectively). From the end of
2011 to March 2014, the growth in used /24 subnets and IPv4
addresses was roughly linear, with an increase of 0.5 million
/24 subnets and 160 million IPv4 addresses per year.

This trend means an estimated 4.3 million publicly routed
but currently unused /24 subnets could supply us until 2022.
If, for example, only 75% of all routed /24 subnets could ever
be used, remaining supply will run out in 2017. However,
unrouted unused space may provide more supply. Europe
and Asia have the highest utilisation, while Africa and South
America show the fastest growth.

The paper is organised as follows. Section 2 describes
the concept of CR and our log-linear CR models. Section
3 describes our IPv4 address data collection and processing.
Section 4 covers the validation of our CR model. In Section
5 we analyse the growth of used IPv4 space over time, and
in Section 6 we estimate the space still unused. Section 7
discusses related work. Section 8 concludes and outlines
future work.

2. CAPTURE-RECAPTURE
There are many techniques for estimating population

sizes from limited samples. Some use problem-specific ap-
proaches, but many use CR methods. CR methods have been
used in ecology [7, 8], epidemiology [9, 15], and to estimate
missing links from observed AS-graphs [16]. To illustrate
CR we will first discuss the simplest CR technique. Then
we will discuss the log-linear models we use.

2.1 Two-sample method
The simplest CR model is the two-sample Lincoln-

Petersen (L-P) method [7,8], which works as follows. Given
a first sample, that observes M individuals, the size of the
population would be known if we knew what fraction of
the population had been observed. To estimate this, L-P
takes a second sample. Say it contains C individuals, of
which R individuals occur in both samples. If the fraction
of “recaptured” individuals in the second sample equals the
fraction of the total population captured in the first sample,
R/C = M/N, then the population N is [7, 8]:

N =
MC
R

.

In our context, the samples or “sources” are different ac-
tive and passive measurements (see Section 3). For concrete-
ness, consider Source 1 to result from pinging the entire IPv4
space and Source 2 to be all addresses in a server log. Based
on the number of unique addresses observed by Source 1
and Source, and the number of unique addresses observed

Figure 1: Two-source capture-recapture illustrated

by both sources (Overlap) CR allows to estimate the number
of unobserved addresses (Unseen), as illustrated in Figure 1.

The L-P estimate assumes that the probability of an in-
dividual being captured in one source does not depend on
the probability of being captured in a different source (in-
dependent sources). It also assumes that, within a sample,
each individual has an equal chance of being sampled (ho-
mogenous population), specifically that the probability is not
zero for any individual. Individuals with zero sample prob-
ability are not part of the estimated population (this may be
some specialised devices, such as printers). Furthermore, the
L-P estimate assumes that during measurement no individu-
als enter or leave the population (closed population).

Given our data sources, there is no significant causal rela-
tionship to introduce source dependence. However, the pop-
ulation is very heterogeneous; for example, servers are more
likely to respond to pinging, while client machines may be
more likely to appear in certain traffic logs. This gives rise to
apparent source dependence that must be treated similarly.
We must also avoid incorrectly believing an address has been
sampled, due to address spoofing.

If there is (apparent) dependence such that two sources
are positively correlated, the L-P estimator underestimates
the true population size: R/C > M/N and so N > MC/R. If
the sign of the correlation is known, then L-P estimates can
still be used to identify plausible lower or upper bounds [15].
However, just as L-P uses a second sample to estimate the
fraction of the population of the first sample, so a third sam-
ple can be used to estimate the correlation between the first
two samples. This is the basis of the log-linear models.

2.2 Log-linear Models
Log-linear CR models (LLMs) [15,17,18] generalize L-P

to model (apparent) source dependence among arbitrarily
many sources.

2.2.1 Description
Let N be the unknown number of distinct individuals of

the population. Let t denote the number of sources indexed
by 1, 2, . . . , t. For each individual, let s1 to st be defined
such that si = 1 if the individual occurs in sample i and
si = 0 otherwise. Then the string s1s2 . . . st is called the
“capture history” of the individual. The observed outcome
of all measurements can then be represented by variables
of the form zs, which are the numbers of individuals with
each capture history s = s1s2 . . . st. These are assumed to
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Table 1: Three-source contingency table

Source 1
yes no

Source 2 Source2
yes no yes no

Source 3 yes Z111 Z101 Z011 Z001

no Z110 Z100 Z010 Z000=?

be instances of random variables Zs. Note that individuals
with the capture history 00 . . . 0 are unobserved, and our goal
is to estimate Z00...0. This is illustrated in the form of an
incomplete contingency table in Table 1 for t = 3.

For each history s, let h(s) be the set of samples in which
the individual occurs; for example, h(101) = {1, 3}. Define
the indicator function 1A = 1 if statement A is true and 0 oth-
erwise. We can now write the following system of equations
in 2t variables u, u1, u2, . . . , u12, . . . , u23, . . . up to u12...t:

log(E (Zs)) =
∑

h⊆h(s)

uh =
∑

h

uh1h⊆h(s) . (1)

For example, for t = 3, the system is

log
(
E

(
Zi jk

))
=u + u11i=1 + u21 j=1 + u31k=1

+ u121i=1∧ j=1 + u131i=1∧k=1

+ u231 j=1∧k=1 + u1231i=1∧ j=1∧k=1 .

The estimate of Z00...0 is then Ẑ00...0 = exp(u). If we take
E[Zs] = zs then this system has 2t unknowns but only 2t − 1
equations, as Z00...0 is unknown. Hence it is customary to
assume u12...t = 0 [15]. As the number of sources t increases,
this t-way dependency becomes decreasingly important.

For large t, this model is sensitive to small values of Zs; a
zero count for some capture history may give Ẑ00...0 = 0, re-
gardless of the other Zs [15]. This over-fitting is mitigated by
“model selection” (see Section 2.2.2), in which some uh are
forced to 0, to reflect assumed independence between certain
combinations of sources. For example, setting u12 = 0 indi-
cates sources 1 and 2 are independent. With such incomplete
models, the system of equations is overdetermined, and the
maximum likelihood parameters u are typically used, based
on the assumption that Zs result from uniform random sam-
pling and are hence Poisson distributed.

Even with appropriate model selection, it may be that
some zs are near zero. In our case this rarely occurs: only
when we combine CR with stratification into many strata,
such as stratification by country (see Section 2.3). To miti-
gate this, we exclude strata with fewer than 1000 samples.

After model selection, we use the procedure in [19] to
compute a 100 (1 − α) % profile likelihood “confidence in-
terval” (CI) for N̂. Note that this is not a true confidence
interval in our case, since it is based on the assumption that
each sample is drawn randomly, resulting in a Poisson num-
ber of samples with each history. In contrast, our samples
arise from different, not completely random sampling proce-

dures. Hence we treat these “confidence intervals” as merely
a useful heuristic indication of the sensitivity to modelling
variations and we set α = 10−7 to obtain wide CIs.

Typical log-linear models used in CR assume the Zs are
Poisson distributed, which is appropriate if the upper limit
for the Zs is unknown. However, we can bound Zs by the
size of the publicly routed IPv4 space. Hence we use right-
truncated Poisson distributions defined over [0, L]∩Z, where
L is the upper limit. These improve estimates substantially
for small strata, where the counters are relatively close to the
limit (see Section 4.2), but otherwise make little difference.

2.2.2 Model selection
Model selection for an LLM consists of selecting which

uh will be assumed a priori to be 0. The goal is to select
the least complex model with “adequate” fit of the observed
(and by assumption) unobserved individuals [17].

A common approach is to minimize an “Information Cri-
terion” (IC). Two common ICs are [20]:

AIC = 2k − 2 log(L), BIC = log(M)k − 2 log (L)

where L is the likelihood of the data given the assumed
model, k is the number of free parameters of the model and
M is the number of observed individuals. AIC is used more
often, but each has merits [21]. Section 4 compares the BIC
and the AIC for our data. We choose the simplest model m
such that no other model n has ICn < ICm − 7 [20].

In our case, k is the number of non-zero uh, but L is diffi-
cult to obtain. AIC and BIC assume that each source samples
uniformly and so L is the likelihood of a Poisson model. If
the number of samples is large, the central limit theorem in-
dicates that substantial deviations from the mean have very
low likelihood. In our case, as in [15, 18], the randomness
comes largely from the choice of sources to monitor, which
is hard to characterise but has substantially higher variance.
Hence the Poisson assumption selects too complex a model.

We mitigate this overfitting using the simple heuristic of
dividing all zs by some integer u when calculating L. It re-
mains to select u. If u is so large that any zs gets rounded
to zero, the LLM breaks down. The further heuristic of se-
lecting u to be the largest power of 2 not less than mins zs

appears to work well.

2.3 Stratification
We obtain insight and mitigate heterogeneity by stratify-

ing the population. We use different stratifications. We clas-
sified IPv4 addresses as statically or dynamically assigned
using the approach described in [10] and based on alloca-
tion/whois data we stratified by RIR (e.g. APNIC), country,
prefix size, industry1 and allocation age. For each stratifica-
tion the estimated total number of used IPv4 addresses is the
sum of the estimated used IPv4 addresses over all strata.
1“Industry” indicates whether address space is education, military,
government, corporate, or ISP. We classified 88% of the allocated
address space based on whois information (down to /17 networks).
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3. DATASETS AND PREPROCESSING
An IPv4 address is considered used if it responds to active

probes or participates in connections. A used /24 subset con-
tains one or more used addresses. This section describes our
sources of used IPv4 address data, our data collection and
processing, and our handling of both spoofed and dynami-
cally assigned addresses.

3.1 Datasets
Our first two datasets involve actively probing the whole

allocated IPv4 Internet using ICMP echo requests (IPING)
and TCP SYN packets to port 802 (TPING). Since mid-2011
we probed each allocated IPv4 address (a census) once every
6 months. The first two used ICMP probing and the rest
used both ICMP and TCP probing (with TCP probing seeing
over 7% more observed IP addresses). We took care to avoid
triggering intrusion detection systems (receiving only 10–20
queries per census). For the first half of 2011 we use ICMP
ping data collected by USC/LANDER [22].

Passively observed IPv4 data includes addresses from
Wikipedia’s page edit histories3 (WIKI), potential spam
email senders from [12] (SPAM), addresses of clients tested
by Measurement Lab [13] tools (MLAB), web clients partic-
ipating in our IPv6 readiness test [11] (APNIC), server logs
of game clients connecting to Valve’s Steam online gam-
ing platform (GAME), and NetFlow records of Swinburne
University of Technology’s access router4 (SWIN) and Cal-
tech’s access router (CALT).

We utilise data gathered from 2011 onwards. We analyse
the growth trends of the number of used IPv4 addresses and
used /24 subnets. We generate datasets of unique /24 subnets
by processing the IPv4 datasets and setting the last octet of
each address to zero and then filtering out the duplicates.
Table 2 shows the number of unique IPv4 addresses and /24
subnets in each dataset for each year. Note that the numbers
in the table cannot be used as growth trends due to sample
method variations.

Hosts using public IPv4 addresses are either routers,
servers/proxies, clients (e.g. PCs, smart phones), or spe-
cialised devices (e.g. printers, cameras). ISP routers are
sampled by IPING and TPING. Home routers are sampled
by IPING and TPING (we confirmed that some responses
were from Cable or DSL routers) and by all other sources
(with NAT packets sent from home networks will appear to
come from home routers). Servers/proxies are sampled by
IPING, TPING, SWIN and CALT. They can also appear in
WIKI, SPAM and APNIC. Clients are sampled by WIKI,
SPAM, MLAB, APNIC, GAME, SWIN and CALT. NAT’ed
clients also appear in IPING and TPING. Specialised de-
vices are likely severely under-represented in our data, al-
though IPING and TPING may sample a few of them.
2Initially we probed a sample of the Internet using different com-
monly used TCP ports and found port 80 to be the most responsive.
3Modification time and IPv4 address of edits by unregistered users.
4Excluding traffic from our own active probing.

3.2 Data collection and processing
For IPING we only counted IPv4 addresses that re-

turned ICMP echo replies, “destination protocol unreach-
able” or “destination port unreachable” messages (ignoring
addresses with other ICMP errors or “TTL exceeded” mes-
sages). For TPING we only counted addresses that returned
SYN/ACKs. Lack of reply indicates an address was truly un-
used, a host ignored the probe, or the probe or response was
filtered or lost. On average our prober sent one packet every
two hours to individual /24 networks, to minimise conges-
tion and stay below typical ICMP or TCP rate limit thresh-
olds.

For the passive datasets we extracted the IPv4 addresses
from log files. We filtered out multicast and private ad-
dresses (e.g., 10.0.0.0/8), and those in unallocated or un-
routed space. For WIKI, SPAM, MLAB, APNIC and
GAME (server logs), the addresses are only recorded for
successful TCP sessions. The SWIN and CALT logs contain
spoofed IPv4 addresses that do not represent used addresses.
Our lack of packet data meant we needed a new heuristic to
remove spoofed addresses (instead of the technique in [6]).

3.3 Removal of spoofed IPs
Our heuristic is based on the assumption that many

spoofed IP addresses are uniformly distributed over the
routed space. We observed that the unfiltered SWIN and
CALT have uniformly randomly distributed IPv4 addresses
in some /8 prefixes that are completely or almost completely
unused by other sources (e.g. 53.0.0.0/8 or 55.0.0.0/8).5

While the number of observed IPs from these ‘empty’ /8
subnets differs for SWIN and CALT, for a given dataset and
time period the number of observed IPs is roughly identical
for these /8 – consistent with the assumption that spoofed
addresses are uniformly distributed over the IPv4 space.

Our approach works in two stages. First, we estimate
which /24 subnets should be removed entirely, and then we
remove potentially spoof addresses from used /24s.

From SWIN and CALT we removed all /24 subnets that:

1. have fewer than m observed IPs, and

2. have no overlapping IPs that are also in the spoof-free
WIKI, APNIC, MLAB and GAME datasets.

We choose m as follows. Treating spoofed IPs as uniformly
sampled from a space of s IPs with probability p, the num-
ber X of spoofed IPs in the space follows a Binomial distri-
bution. Specifically:

Pr (X > k) = 1 −
k∑
i

(
n
i

)
pi (1 − p)n−i .

5The number of addresses from these /8 in our non-spoofed sources
is negligible (no more than a few tens of addresses) and in some
cases we know from the network administrators that these /8 are
hardly used. However, for SWIN and CALT we see a much larger
number of addresses in these /8.
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Table 2: Data sources and observed unique IPv4 addresses and /24 subnets per year (SWIN and CALT after spoofed IP filtering)

2011 2012 2013

Dataset Description Time collected IPs [M] /24 [M] IPs [M] /24 [M] IPs [M] /24 [M]

WIKI Wikipedia’s page edit histories Jan 2011 – Mar 2014 5.5 1.70 5.9 1.97 6.8 2.16

SPAM Potential spam email senders May 2012 – Mar 2014 - - 19.2 1.56 17.5 1.73

MLAB Clients tested by Measurement Lab Jan 2011 – Mar 2014 30.0 2.66 27.6 2.69 21.5 2.50

APNIC Web clients tested for IPv6 Mar 2011 – Mar 2014 22.0 2.92 88.0 3.90 108.7 4.13

GAME Game clients logged into Valve’s Steam Jan 2011 – Mar 2014 89.7 3.10 120.1 3.62 340.0 4.33

SWIN Swinburne access router NetFlow records Jan 2011 – Mar 2014 150.6 3.13 142.4 3.38 112.9 3.36

CALT Caltech access router NetFlow records Jun 2013 – Mar 2014 - - - - 356.8 3.92

IPING TCP port 80 census of IPv4 Internet Mar 2011 – Mar 2014 320.3 4.25 358.3 4.55 411.1 4.82

TPING ICMP ping census of IPv4 Internet Mar 2012 – Mar 2014 - - 70.0 3.38 92.7 3.71

In our case of /24 subnets, s = 256 and we estimate
p based on the number of spoofed IPs S in each ‘empty’
/8 prefix, so p = S/224. We then choose m = k where
Pr (X > k) < 10−8. Note that for SWIN, S is relatively con-
stant across all time periods (10,000–15,000), but for CALT
it increases from 15,000–20,000 until December 2013 to al-
most 250,000 in March 2014.

Spoofed IP addresses will also fall into /24 subnets that
have actually used IP addresses. The second phase is to filter
out potentially spoofed IPs in used /24 as follows. Since we
assume the spoofed IPs to be uniformly random distributed,
the number of spoofed IPs is S for used /8 prefixes as well.
Subtracting the number of already removed IPs in spoofed
/24 subnets we have S ′i spoofed IPs left in /8 prefix i. Given
the observed number of IPs Ti in /8 prefix i in SWIN or
CALT the expected number of not-spoofed addresses per /8
prefix (out of 224 addresses) is

224 ·
Ti − S ′i
224 − S ′i

.

On average the probability that an IP in i is valid (V) is

Pr (V) =

(
Ti − S ′i

Ti

) (
224

224 − S ′i

)
≈

(
Ti − S ′i

)
/Ti .

This tells us how many IPs to keep in each /8 prefix, but
to use capture-recapture, we must also determine which IPs
to keep. To do this we use the fact that the distribution of the
final byte B of used addresses is not uniform. We estimate
the probability P(B|V) from the IPs observed by all sources
except SWIN and CALT. Then assuming that P(B|not V) =

1
256 (uniform distribution), Bayes’ rule gives that an IP is not
spoofed in SWIN or CALT with probability

Pr (V |B) =
Pr (V) Pr (B|V)

Pr (V) Pr (B|V) + (1 − Pr (V)) /256
.

We then filter SWIN and CALT by independently remov-
ing addresses ending with B with probability 1 − P(V |B).

We cannot evaluate the true accuracy of our approach, but
the following circumstantial evidence shows that it is effec-
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Figure 2: Observed (obs) and estimated (est) /24 subnets
with and without spoof filtering compared to observed and
estimated /24 subnets without SWIN and CALT

tive. With filtering, randomly distributed IPs in the ‘empty’
/8 networks are removed. With filtering, the number of used
/24 subnets gradually increases over time and does not show
large abrupt increases and decreases anymore. Without fil-
tering the number of /24 subnets in SWIN or CALT is much
higher than in any other dataset, e.g. it is up to 30% higher
than for our largest dataset (IPING) and up to 60% higher
compared to APNIC, GAME. After filtering the number of
used /24 subnets in SWIN and CALT is lower or similar to
that in APNIC and GAME.

Figure 2 shows the benefit of filtering spoofed addresses.
LLM estimates that include filtered SWIN and CALT are
quite consistent with LLM estimates made without SWIN
and CALT. LLM estimates using unfiltered SWIN and
CALT are much higher (exceeding the possible maximum
for March 2014). To save space, we only show this compari-
son for /24 subnets, as spoofed IPs have less negative impact
on the observation and estimation of used IPv4 addresses
(due to the uniform random nature and low – 10% or less –
estimated percentage of spoofed IPs).
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3.4 Time windows
To analyse the growth of use of IPv4 addresses, we split

our data into overlapping 12 month windows. Windows
started every three months from 1 Jan 2011 until 1 April
2013 (with the last window ending 31 March 2014). This
is a suitable trade-off between temporal resolution and noisy
estimates. For some datasets we cannot really make the time
window smaller, e.g. we only conducted IPING/TPING cen-
suses every six months and the GAME data was only col-
lected every 3+ months.

Overlapping windows smooth out quick changes, but we
believe fast transients in the number of used IPv4 addresses
are unlikely. In the rest of the paper we associate statistics
with the end of time windows. For example, for the 2011
calendar year, the observed and estimated used space is as-
sociated with 31 December, 2011.

3.5 Dynamic and static addresses
Many IPv4 addresses are (re)assigned dynamically (such

as with DHCP or PPPoE). Hence, long passive measure-
ments may observe multiple addresses for a single host, and
over-count the number of simultaneously used addresses.

If each assignment uses the lowest/highest unused address
of a pool, then the total number of addresses used from the
pool is the maximum simultaneous pool utilisation and the
LLM estimate would indeed estimate the maximum num-
ber of simultaneously used addresses. However, if addresses
are drawn uniformly, as measurements suggest, then all pool
addresses could be observed even if at most one address is
in use at a time. Similarly, a single host moving between
multiple statically assigned addresses may report multiple
addresses, even if at most one is in use at a time.

However, addresses assigned to pools cannot be used else-
where. So we argue that any over-count captures addresses
(or /24 subnets) that are on “stand-by” and de facto ‘in use’
at the time of our measurement. (In the future under-utilised
pools may be reduced in size and the freed addresses may
be used for other purposes. However, this is the same as
re-purposing addresses of de facto unused hosts. We cannot
quantify such future optimisations.)

We also study /24 subnets, which are less affected by dy-
namic addressing [6]. While some address reassignments
(e.g., host mobility) may cross different /24 subnets, a large
fraction of them will be within the same /24 subnet(s).

4. VALIDATION
We now validate the heuristics and assumptions used in

deriving our model. First, we pick a specific model-selection
algorithm from among those described in Section 2.2.2,
based on test data. Next, we compare estimated use of ad-
dresses and /24s against ground truth for a handful of net-
works, and show that CR gives better estimates than simply
summing the observed addresses. Since we have no ground
truth for most networks, we use cross-validation demonstrate
that this also applies to the whole address space

Table 3: Cross-validation errors depending on different pa-
rameter settings

IP addresses /24 subnets

Setting RMSE [M] MAE [M] RMSE [k] MAE [k]

fixed1 32.2 13.1 105.3 47.0

fixed1bic 37.2 15.1 115.4 52.0

fixed10 21.8 9.8 114.7 51.2

fixed100 16.6 8.1 123.4 54.9

fixed1000 18.1 9.1 122.6 60.8

adapt1000 19.7 9.2 105.2 47.8

adaptbic1000bic 17.8 8.7 108.4 49.0

To perform cross-validation with our k = 9 data sources
we consider a particular source i as the “universe” of possi-
ble IPv4 addresses. We apply CR to the addresses/subnets
in i that are also in the other k − 1 sources, to estimate the
number of individuals unique to source i. Since we know the
true number of individuals unique to i, we can evaluate the
effectiveness of CR. We do this for each source, to obtain
the mean error and mean-square error. We then assume that
the CR estimator based on the full k sets is equally accurate
at estimating the true number of ghosts, although we do not
have confidence intervals for this.

4.1 Model selection
First, we performed cross-validation for each time win-

dow for both used IPv4 addresses and used /24 subnets
for different parameter combinations. We vary the IC
used (AIC, BIC), and the count pre-processing (adaptive,
fixed to different values). For each setting we performed
cross-validation. For each time window we computed the
Root Mean Square Error (RMSE) and Mean Absolute Er-
ror (MAE) between the estimates and the ground-truth, av-
eraged over all sources. Table 3 shows the different parame-
ters settings we investigated and the error averaged over all
sources and time windows.

From the results we see that using the actual counters
(fixed1) results in the highest errors for IPs but provides the
lowest error for /24 subnets. We think this is because a) there
is much more noise in the observed IPs than in the observed
/24 subnets and b) the number of observed /24 subnets is
much lower than the number of IPs, and hence even for a
small divisor of 10 we already start losing information for
/24 subnets which leads to much reduced accuracy. Choos-
ing a divisor around 100 results in the smallest error for IPs
but the largest error for /24 subnets. Effectively, the choice
depends on the type of data and it is unclear what choice
would be the best for estimating the IP addresses and /24
subnets unseen overall.

In contrast, our adaptive approach (especially with a max-
imum divisor of 1000) works quite well for both IPs and /24
subnets, with errors only slightly larger than the minimum

6



Table 4: Pingable, observed (obs) and estimated (Poisson,
right-truncated Poisson) vs. peak usage (ground truth)

Network Ping [%] Obs. [%]
Estimated(Error) [%]

Truth [%]
Poisson TruncPoisson

A 0.4 5.7 23.4(-2.5) 26.7(+0.8) 25.9

B 6.7 8.5 13.9(+2.5) 12.3(+0.9) 11.4

C 12.0 13.7 32.5(–) 36.1(–) 30–35

D 24.0 31.8 41.3(-6.3) 51.6(+4.0) 47.6

E 9.4 17.3 52.1(-6.2) 60.5(+2.2) 58.3

errors. With the adaptive approach, using the BIC instead
of the AIC lowers the error for IPs but increases the error
for /24 subnets, but the increase for /24 subnets is small and
even for /24 subnets the estimates obtained with the BIC are
smoother.6 Hence, in the rest of the paper the estimates pre-
sented are based on our adaptive approach with a maximum
divisor of 1000 and we use the BIC.

4.2 Comparison with ground truth
We compared our estimations with the ground truth for

several networks where we obtained information on how
many IPv4 addresses were actively used at peak times (dur-
ing March to June 2013). Note that the ground truth here
is rough estimates of the number of actively used IPv4 ad-
dresses. Based on the time window ending 30 September
2013, for each network Table 4 shows the number of ad-
dresses that responded to ping, the number of addresses ob-
served, the number of addresses estimated (for both Pois-
son and right-truncated Poisson), and the actual number of
used addresses as percentages of the sizes of the networks.
For privacy reasons we cannot reveal the identity of the net-
works or their sizes (the largest network covered is a two /16
and the smallest network is roughly one /20 combined from
multiple allocations).7

The results show that the percentage of pingable and ob-
served addresses is much smaller than the actual peak usage
for networks A, C, D and E, whereas for the more “open”
network B the percentage of observed addresses is relatively
close to the actual peak usage. However, the CR estimates
are always much closer to the truth. Using right-truncated
Poisson distributions gives better estimates than using Pois-
son distributions. The right-truncated Poisson estimates are
always too high, but since we use 12-month windows, the es-
timated number of used IPv4 addresses is likely above short-
term peak numbers due to dynamic addresses.

6The BIC selects fewer parameters representing interactions of
many sources, which have a much lower number of samples than
interactions between fewer sources and hence are noisier.
7One network is that of Swinburne University. For this estimate we
omitted SWIN and replaced PING by a dataset collected by pinging
Swinburne’s network from an external vantage point.
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Figure 3: IP addresses observed with ping, observed by any
source, and estimated ranges for LLM normalised on the true
number of unseen IPs for each data source

4.3 Cross-validation results illustrated
Figure 3 illustrates the results of the cross-validation for

addresses and subnets for time window 7 (results for other
time windows are largely consistent). The figure shows the
number of IPs in each source also observed by IPING (Obs
ping), the total number of addresses of a source also ob-
served by any other sources (Obs. all), and the ranges of
the CR estimates (confidence interval based on profile likeli-
hood with α = 10−7 to get wide intervals). Since the sources
are of different sizes we normalised the number of addresses
on the total number of addresses observed by each source
(the ground truth). A CR estimate is good, if the normalised
range includes 1 and the range is not too large.

Figure 3 shows that for IPv4 addresses all sources other
than IPING and GAME have relatively high overlap, but be-
tween 10% and 15% of addresses appear only in one source.
Only 50–60% of addresses of each source (except TPING) is
in IPING, showing that ICMP pinging undercounts signifi-
cantly. The CR estimates for WIKI, SPAM, MLAB, APNIC,
SWIN, TPING and CALT are quite good. The estimated
range for IPING almost covers the true value but the un-
certainty is higher, and the estimate for GAME is slightly
too low. Nevertheless, overall the CR estimates for our
LLM model are a substantial improvement over just using
the number of observed IPs or using the simpler L-P model
(see [10]).

For brevity we do not show the figure for /24 subnets.
For /24 subnets there is a very high overlap between all data
sources. However, for most sources only 90% or less of the
/24 subnets appear in IPING, so just using ICMP pinging
significantly undercounts even the used /24 subnets. While
the difference between CR estimates and observed addresses
is much smaller for /24 subnets (in most cases the difference
is only 1–2%, except for IPING), our CR estimates are still
an improvement.
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Table 5: Observed and estimated used IPv4 addresses and /24 subnets at the end of March 2014 based on different stratifications

Estimated total [M]
Observed [M] Est. unseen [M] Routed [M]

Stratification None RIR Country Age Prefix size Industry Stat/Dyn

IP addresses 1132.0 1161.6 1141.7 1108.5 1062.9 1071.4 1105.7 740.9 320–420 2706.6

/24 subnets 6.26 6.34 6.32 6.30 6.30 6.28 6.22 5.81 0.4–0.5 10.57

5. USED SPACE ANALYSIS
Now, we present the results for the estimated used IPv4

addresses and /24 subnets. We present both total estimates
as well as estimates for different RIRs, countries, allocation
ages, and allocation prefix sizes. We also investigate whether
our estimates are sensible given the growth of Internet users.

5.1 Used IPv4 space totals
Table 5 shows the estimated used IPv4 addresses and /24

subnets depending on different stratifications, as well as the
observed and the estimated unseen addresses and /24 subnets
at the end of March 2014. The totals for different stratifica-
tions are always the sum of the estimates over all strata. Our
estimates are fairly consistent across stratifications: roughly
1050–1150 million used IPv4 addresses and 6.2–6.3 million
used /24 subnets. Based on Routeviews [14] this means we
observed roughly 27% of the routed IPv4 addresses and 55%
of the routed /24 subnets, and we estimate that roughly 40%
of the routed IPv4 addresses and 60% of the routed /24 sub-
nets were used.

For all stratifications our estimates are always plausible
(below the number of routed addresses). The quotient of
estimated used addresses divided by the addresses detected
only with ICMP echo pinging is 2.5–2.6, which is larger than
the correction factor of 1.86 used in [3].

5.2 Used IPv4 space over time
Figure 4 shows the number of estimated used /24 subnets

against the number of observed and routed /24 subnets both
as absolute numbers and normalised. The dashed line is the
actual estimates and the solid line is the estimates smoothed.
The total number of observed /24 increased from 4.8 mil-
lion to 5.8 million, but we estimate that the number of /24
subnets actually increased from 5.1 million to 6.3 million
(an increase of 0.5 million subnets per year). Whilst the
routed space only increased by 8% in two years, the num-
ber of observed and estimated used /24 subnets increased by
22% over the same time.

Figure 5 shows the number of estimated used IPv4 ad-
dresses against the number of observed and routed IPv4 ad-
dresses both as absolute numbers and normalised. The num-
ber of observed IPv4 addresses increased from 450 million
to 740 million, but we estimate that the number of addresses
actually increased from 730 million to 1.1 billion (an average
increase of about 160 million IPv4 addresses per year). As
for /24 subnets, the observed and estimated number of IPv4

addresses increased faster than the routed addresses. The
difference between estimated and observed relative growth
may be in part because of earlier undercounting due to fewer
sources and a hole in the GAME data.

5.3 Used IPv4 space by RIR
Figure 6 shows the estimated number of IPv4 addresses

over time depending on the RIR responsible for their alloca-
tion both as absolute numbers and normalised. For brevity
we omitted the broadly similar statistics for /24 subnets. AP-
NIC has the largest number of used addresses followed by
RIPE and ARIN. Looking at relative growth, AfriNIC is
growing at the fastest rate, followed by LACNIC. Of the
three RIRs with the most allocated space, relatively APNIC
and ARIN are growing faster than RIPE.

5.4 Used IPv4 space by prefix size
Figure 7 shows the average yearly growth rate for ad-

dresses estimated for different prefix sizes. For brevity we do
not show the estimates for /24 networks here, as the trends
are broadly similar. Absolute growth is strongest in the large
prefixes /10 to /16 (/8 and /9 have not grown much). How-
ever, if we look at relative growth, growth has been more
equally across many prefixes. Exceptions are the old /8 allo-
cations which haven’t grown and /9, /21 and /22 allocations
which show the strongest growth (/9 is driven up by a few
ISPs since there are less than ten /9 allocations overall, and
/22 is the largest allocation handed out by APNIC since 15
April, 2011, and by RIPE since 14 Sep, 2012).

5.5 Used IPv4 space by allocation age
Figure 8 shows the average yearly growth rate of IPv4

addresses for different allocation ages (we omitted the year
2013 because the estimates are unreliable due to few data
points). For brevity we omitted the results for /24 subnets as
the trend is very similar. In absolute numbers the more re-
cent allocations made since 2005 are growing the most, with
a clear positive correlation between recentness and growth.
In relative terms growth is strongest for allocations made in
the last three years, but we can also see 20% or higher growth
in some old allocations.

5.6 Used IPv4 space by country
Figure 9 shows the absolute and relative growth for IPv4

addresses for the countries with the largest number of ob-
served used IPv4 addresses (at least 1.5 million addresses).
Again, we don’t show results for /24 subnets as the trends
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Figure 4: Absolute and relative growth of estimated, observed and routed /24 subnets
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Figure 5: Absolute and relative growth of estimated, observed and routed IPv4 addresses

are broadly similar. Absolute growth is strongest in the two
nations with the largest allocations (USA, China) followed
by Brazil and South Korea. Relative growth is between
10% and 40% for many countries, but Romania and sev-
eral Asian and South American countries (Indonesia, Brazil,
Columbia, India, Argentina, Taiwan, Thailand, and Viet-
nam) have grown much faster.

5.7 Comparison with Internet user growth
According to data from the ITU [23] the number of In-

ternet users has grown from 16 million in December 1995
to 2.75 billion (roughly 39% of the world’s population) in
December 2013 (see Figure 10). The growth rate of Inter-
net users looks exponential at the beginning, however since
2006/2007 the growth appears roughly linear.

We think the growth of the number of used IPv4 addresses
is primarily driven by an Internet population increase, irre-
spective of the number of devices per user. All home devices
are behind NATs and mobile devices are also largely behind
NATs. Similarly, if we look at increasingly complex com-
mercial networks, these are also mainly behind NATs (or
not even connected to the Internet). Then, given the linear

growth of estimated Internet users, it is logical that the used
IPv4 addresses also grow linearly (shown in Section 5.2).

Between the start of 2007 and mid 2012 the number of In-
ternet users grew by roughly 250 million per year (c.f. Fig-
ure 10). For private use typically a household shares one
public IP address. In industrial nations the household size is
2–3, but in developing countries it can be higher, for example
it is over 5 in India [24]. We assume the average household
size of new Internet users is between 2 and 5. In addition a
fraction of people will have a public IPv4 address at work.
We assume an average employment ratio of 65% [25]. As
upper limit we assume one IPv4 address per two employ-
ees, as in reality many employees (especially in developing
countries) have no Internet at work, work at home, or share
computers with other workers. As a lower bound we assume
on average there is one public address per ten workers.

With these assumptions, as a lower bound we would ex-
pect the number of used IPv4 addresses to grow between 65
million and 205 million per year (plus additional addresses
for service and infrastructure growth). Our current growth
estimate is 160 million IPv4 addresses per year, which fits
well within these bounds.
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Figure 6: Absolute and relative growth of estimated IPv4 addresses for different RIRs
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Figure 7: Average absolute and relative yearly growth of observed and estimated IPv4 addresses for different allocation prefixes

6. UNUSED SPACE PREDICTION
Our CR technique tells us how many unobserved IPv4 ad-

dresses to expect, but says nothing about the distribution of
free blocks/prefixes. This is a challenging issue – recipi-
ents of newly assigned IPv4 address blocks typically pre-
fer usably-sized contiguous allocations, and forwarding in-
formation base (FIB) tables in routers are more efficiently
packed if address blocks are allocated hierarchically.

Some information is given by the CR estimate of the used
but unobserved /24 networks (in Figure 4). However, this
again does not tell us whether these small blocks are isolated
or parts of unused larger blocks. In this section, we try to
understand how the unseen addresses are distributed among
seemingly empty subnets, by observing what happens when
data sources are combined sequentially; each new source
brings addresses that were unseen by the previous sources,
and we can model how those addresses fill the previously
empty space.

6.1 Model
Let xi be the number of observed free /i blocks. Let Z00...0

be the total number of new addresses to allocate (given by

CR). Let Ni be the number of new addresses assumed to be
allocated to vacant /i blocks, assuming sequential allocation.
Specifically, if two addresses are added to the same vacant /i,
then only the first of these contributes to Ni , since the block
is no longer vacant when the second one is added.

Similarly, let xS
i be the number of free /i blocks in a set

S of addresses, ZS ,∆
00...0 be the number of new addresses when

a new set ∆ is merged with S , and nS ,∆
i be the number of

addresses added to vacant /i blocks in the process. Without
the subscript i, the variables x and n denote vectors.

Note that adding an address to a vacant /i will reduce the
number of vacant /i blocks by 1, but increase by one the num-
ber of / j blocks for each j > i, regardless of where within the
/i the address is added. That is,

xS∪∆ − xS = AnS ,∆, (2)

where

A =


−1 1 1 · · · 1
0 −1 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · −1

 . (3)
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Figure 8: Average absolute and relative yearly growth of observed and estimated IPv4 addresses for different allocation ages
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Figure 9: Average absolute and relative yearly growth of observed and estimated IPv4 addresses for different countries sorted
by estimated growth (only the largest 42 countries). Note, the absolute numbers are plotted in log scale.
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Figure 10: Number of Internet users based on data from ITU

A natural approach is to estimate the previous fraction of
addresses revealed by each new source that have been al-
located to free blocks of a given size, and assume the new
Z0,0,...,0 addresses will be distributed in the same way. This

is not sufficient, because the allocation process changes the
number of available blocks. Instead, our model uses the ob-
servation that the probability that a new address is allocated
to a free /i block is proportional to xi, the number of such
free blocks. In particular, it assumes that there are f1, . . . , f32
such that the ratio

N1

x1
:

N2

x2 + N1
: · · · :

N32

x32 +
∑31

j=1 N j
= f1 : f2 : · · · : f32 (4)

remains approximately constant as more batches of ad-
dresses are discovered.

The model includes subnets larger than /8, even though
blocks larger than /8 have not been allocated. Similarly, we
consider all vacant subnets down to vacant /32s, even though
subnets smaller than a /24 are not routed on the public In-
ternet. However, before computing the remaining unused
prefixes we split a few /7 into /8, and we also exclude all
private, multicast, experimental and reserved prefixes, such
as 224.0.0.0/3 or 10.0.0.0/8. Note that we do not exclude
non-publicly routed prefixes.
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Figure 11: Number of addresses in observed and estimated
unused prefixes for different prefix sizes

To determine how the unobserved addresses predicted by
CR will affect the distribution of free blocks, it remains to
determine fi. To do this, we observe the change in x when
a new data set ∆ is added to an existing list S of used IPv4
addresses, and from that calculate n. Since A in (3) is invert-
ible, (2) gives

nS ,∆ = A−1(xS∪∆ − xS ).

The fi are then found by (4), normalized so that f32 = 1.
Since few large subnets become newly used for each data
set, estimates of fi for i . 12 are noisy. This is unfortu-
nate, since these are the blocks of greatest interest. To re-
duce this noise, estimates were averaged over four cases:
∆ = IPING,GAME,APNIC,WIKI; in each case, S is the
union of all remaining datasets, except SWIN and CALT.

One concern with this model is that, as the address space
fills up, the values of fi may vary. To check this, we per-
formed tests where datasets were added to S one at a time,
in both increasing and decreasing order of the dataset size.
The values were reasonably consistent in each case.

6.2 Results
Figure 11 shows the number of addresses in unused pre-

fixes in the last time period, based on all sources except
SWIN and CALT. Results are for both direct observation
and CR. The majority of empty prefixes are longer than /20
(fewer than 212 addresses), but the unused space is roughly
uniformly distributed among prefixes of lengths /9 to /24 (ex-
cept /15 and /16). The reason for this is unclear.

If the used but unobserved /8 to /24 subnets estimated by
the model of Section 6.1 were divided into /24s, there would
be 0.47 million /24s. This is consistent with the estimate of
0.4–0.5 million by the independent LLM model of Section
5.1, providing evidence for the validity of both models.

6.2.1 Router FIB limitations
One of the reasons that the distribution of prefix sizes is

important is that each routed prefix requires an entry in a

router’s Forwarding Information Base (FIB), and there is
a prima facie risk that allocating all unused prefixes could
overflow the FIBs. Above we estimated that including the
unrouted space there are 0.75 million prefixes that are /24 or
larger. Currently, there are more than 0.5 million routed pre-
fixes already (but a substantial fraction is unused). In 2007
Juniper [26] stated that its M120 and MX960 had FIB ca-
pacities of about 2 million IPv4 routes, and that IPv4 FIBs
with approximately 10 million entries are feasible within a
few years if demand exists. In addition, FIB compression
techniques can reduce size of FIBs [26]. This suggests that
it will be feasible to use and route all less than 1.25 million
available prefixes. Even if unused prefixes are subdivided
further, it appears feasible to route them all, although it may
require upgrades of existing routers.

6.2.2 Estimated value of potential IPv4 market
The value of the unused IPv4 address market depends on

the number of unused addresses and the average price per
address. The price per address depends on the supply and
demand of IPv4 addresses and on the size of the address
space sold. The demand for IPv4 addresses depends on the
availability of IPv6 as well as other factors, such as the re-
gion (e.g. higher prices in regions where RIRs have run out
of IPv4 address space). The price per IP is generally higher
for smaller blocks due to transactions overheads (see [27])
and possible discounting for larger blocks, since naturally a
smaller pool of demand exists for larger blocks.

RIRs report the addresses that have been transferred
through their paid transfer systems, but the RIR records lack
information about prices [28]. In 2011 Microsoft paid $7.5
million for approximately 666,000 IPv4 addresses (some-
thing between a /12 and /13 prefix) equivalent to US$11.25
per address. Other transactions from sellers in bankruptcy
have brought prices that are broadly similar [28]. In 2013,
several /15 and /16 were sold for prices between US$8.50
and US$10.50 per IP, and for several /20 the price was be-
tween US$14 and US$17 per IP [27].

At a price of US$10 per IP address, the 4.3 million routed
unused /24 subnets have a value of around US$11 billion.
However, it is likely that only a small fraction of those will
be sold, even if the price rises substantially, and so the even-
tual market value is likely to be much smaller.

6.2.3 Estimated years of supply
Even if all 4.3 million unused but routed /24 subnets could

be prised away from their current owners, they would be ex-
hausted in 2022 under the current growth trend of 0.5 million
/24 subnets per year. Unused routed IPv4 addresses would
be exhausted in 2024 given the current growth of 160 million
addresses per year.8

If the overall utilization of routed /24 subnets remains be-
low, say, 75%, the current growth rate suggests three years
8Suggesting that we are at least 2/3 of the way from the standard-
ization of IPv6 in 1996 to its required adoption.
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of remaining supply. Of course some parts of the world may
be exhausted before this time. An open question is the large
amount of unrouted IPv4 space, much of which has not been
routed for years. Unused parts of the unrouted space might
provide a short-lived increase in IPv4 supply.

Over the next 2 to 3 years, we expect IPv4 exhaustion
to be increasingly felt, resulting in a brief growth in the
IPv4 address market. Most organizations holding unused ad-
dresses do so for operational reasons – to allow expansion or
flexibility, or in one case as a /8 darknet – but some may
be holding them to sell if the market price rises sufficiently.
The numbers in this paper may guide how long they can ex-
pect to be held for, assuming that the market will collapse
once IPv6 is widely adopted. However this is complicated
by the fact that the very act of selling a large block of IPv4
addresses will delay the implementation of IPv6, and hence
prolong the IPv4 market.

7. RELATED WORK
The related measure of routed address space has been es-

timated based on prefixes advertised by BGP [29,30]. How-
ever, estimation of the number of actively used addresses
began with Pryadkin et al. [2], who used ICMP echo and
TCP SYN probing to probe the allocated Internet. They dis-
covered 62 million used IPv4 addresses in 2003 and 2004.
Pryadkin et al. also showed that only a small number of al-
located prefixes appeared to be heavily used, while a large
part of the IPv4 space appeared unused or underutilized.

Heidemann et al. [3] infrequently probed all allocated
IPv4 addresses (census) and frequently probed selected ad-
dress samples (survey) with ICMP echo pinging to study us-
age, availability and up-time of addresses. Their last cen-
sus in 2007 accounted for 112 million used addresses. Hei-
demann et al. compared ICMP probing with TCP port 80
probing and passive measurements based on small samples.
They proposed a correction factor of 1.86, thus estimating
the total number of used IPv4 addresses in mid 2007 was
200–210 million.

Cai et al. [4] used ping survey data from [3] and con-
ducted more surveys in 2009–2010 to analyse typical ad-
dress block sizes and their characteristics. They did not es-
timate the used IPv4 address space, but observed: “most ad-
dresses in about one-fifth of /24 blocks are in use less than
10% of the time”.

From June to October 2012, anonymous researchers used
hacked commodity routers to perform a port scan of the IPv4
Internet [5]. They detected 420 million addresses that re-
sponded to ICMP echo, which is broadly consistent with our
two ping censuses that detected 360 million addresses be-
tween March and September 2012. They also detected an-
other 36 million addresses that only responded to TCP SYN
probes on several hundred ports. In our censuses 15–20 mil-
lion IPs reacted to port 80 TCP SYNs but not to ICMP –
probing hundreds of ports merely doubles this number.

In 2013 we initially proposed using a log-linear CR model
to estimate the true population of used IPv4 addresses from
multiple sources of IPv4 addresses [10]. Our preliminary
workshop paper found that our log-linear CR estimate is
significantly higher (one billion used IPv4 addresses in mid
2013) than the aggregate number of observed IPv4 addresses
from multiple measurement sources.

Dainotti et al. [6] used darknet data from July to Septem-
ber 2012 to estimate the number of used /24 networks. They
developed techniques to filter out spoofed IPv4 addresses
from the darknet data. With the combined filtered darknet
and ping census data [3], the number of observed /24 subnets
was 4.8 million (47% of the routed space). This is broadly
consistent with the 5.2 million /24 subnets we observed in
the year to September 2012 (c.f. Figure 4). The difference
is likely due to the larger number of sources and the larger
time window we use.

8. CONCLUSIONS AND FUTURE WORK
Our key contribution is describing and demonstrating a

new statistical capture-recapture technique for improved es-
timation of the true population of both observed and unob-
served (yet still active) IPv4 addresses from diverse sources
of active and passive measurement data. This technique re-
fines our community’s understanding of IPv4 address space
exhaustion and consequent incentives for IPv6 adoption.

Data from nine sources over the past three years sug-
gests 5.8 million used /24 subnets and 740 million used IPv4
addresses. Yet our CR technique indicates a significantly
higher 1.1 billion IPv4 addresses in use across 6.3 million
/24 subnets, with usage growing at around 0.5 million /24
subnets and 160 million IPv4 addresses per year. Europe
and Asia have the highest utilisation, while Africa and South
America show the fastest growth. At this rate all remaining
/24 subnets will be used by 2022. If only 75% of routed /24
subnets could be used, supply will be exhausted in 2017.

Our ability to collect more IP data for validating or im-
proving our estimates, or potentially detecting more hosts
(e.g. private servers), is limited by common privacy restric-
tions. We plan to explore an enhanced method [31] for se-
curely applying CR to multi-source measurement data with-
out revealing which IPv4 addresses each source contain.
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