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Transmitting variable-bit-rate real-time data on the uplink of a polled wireless local area net-
work requires careful scheduling to achieve satisfactory performance and capacity. This is a
“blind” scheduling problem, since the number and arrival times of packets at each remote sta-
tion are not known by the scheduler. Embedded round robin (ERR) was recently proposed to
address the problem of the high cost of polling idle stations. This paper presents an enhance-
ment of ERR, least-recently-used-ERR, which outperforms the original ERR, especially when
network load is high.

1 Introduction

In wireless local area networks, bandwidth management (i.e., packet scheduling) is cru-
cial to providing acceptable quality-of-service (QoS) for real-time sessions having diverse
traffic characteristics1. Real-time multimedia services are expected to form a major com-
ponent of future network traffic. The IEEE 802.11 wireless local access network (WLAN)
standard2 specifies that real-time data be transmitted by polling, but does not specify the
order in which stations are to be polled.

Scheduling downlink packet streams is essentially a centralized task, and is analo-
gous to scheduling in wired networks. Many centralised scheduling algorithms have been
proposed to achieve different QoS characteristics such as low delay3,4, low delay jitter5,
fairness6,7,8,9,10, and maximum end user satisfaction11. All of these schemes require the
scheduler to know details pertaining to each active session (i.e., packet arrival times, queue
lengths, packet lengths etc.). These algorithms can be easily implemented in a centralised
queueing environment since the required information is available.

The uplink of wireless networks presents particular difficulties for packet scheduling,
especially in the presence of non-uniform load. When a distributed queueing system is
controlled using a centralised scheduler, the obvious mechanism of granting channel ac-
cess to mobile stations is polling. One possible polling strategy is round robin12 (RR),
which polls stations cyclically, regardless of the state of their queues. When RR is used
to schedule service from a centralized queue, the scheduler can efficiently bypass stations
that have no data to transmit. In contrast, the scheduler of a wireless network must poll a
station in order to determine that it has no data to transmit. This overhead can be signifi-
cant; for example, in IEEE 802.11 wireless LANs such a null poll takes about 5% of the
time of a maximum length packet transmission2.

If the scheduler is able to poll queues non-uniformly depending on their current load
then it can save bandwidth. Most existing non-uniform polling schemes require explicit
messaging. (See for example Reference 13.) This not only introduces transmission
overhead but is also incompatible with many WLAN standards2. Other MAC protocols



have been proposed14,15,16 to extend to wireless networks some of the fair queueing and
deadline-ordered scheduling schemes popular in wired networks. These again generally
achieve QoS at the expense of explicit messaging.

Several schemes have been proposed to avoid null polls, notably embedded round
robin17 (ERR). This algorithm is the basis for the wireless dual queue, which implements
the dual queue algorithm11 for transient congestion avoidance.

This paper will explore the potential of the embedded round robin paradigm to provide
high quality of service under a range of conditions. After reviewing the original ERR
algorithm, the least-recently-used ERR (LRU-ERR) algorithm will be described and its
performance will be investigated under a range of conditions. The LRU-ERR algorithm
aims to increase the proportion of packets being served without undue delay in the presence
of high loads.

2 Embedded Round Robin

One of the major problems associated with scheduling distributed uplink queues is the lack
of information available to the scheduler. Therefore the scheduler may poll potentially idle
stations, wasting bandwidth. By knowing whether or not a station had further packets to
transmit the previous time that it was polled, the scheduler can identify stations which are
are guaranteed not to yield null polls. This concept is the basis for the embedded round
robin (ERR) scheme17.

Most polling protocols provide a single bit of feedback from remote stations indicating
the presence of more data to transmit. For example, it is supplied by the themore data
bit of the IEEE 802.11 header2. Based on this feedback, traditional exhaustive round robin
repeatedly polls a single station until it has no more data, before advancing to the next sta-
tion in round robin order. This only risks polling an idle station when there are no stations
known to have data, and hence minimises the number of null polls. A polling strategy with
no null polls (and no packet discards) is “work conserving”, and all work conserving ser-
vice disciplines have equal average packet delay, provided that the order of serving packets
is independent of their lengths. By minimising the number of null polls, exhaustive round
robin provides the minimum average packet delay of all schedulers. However, the average
delay is not the primary performance criterion for real-time services. Of greater interest is
the proportion of packets which arrive within a particular “good service” delay,tG. This
is particularly so when a jitter buffer is used by the application. A jitter buffer will discard
all packets delayed by more thantG, and delay all packets received with lower delay, to
ensure that all retained packets have an equal delay oftG. Although exhaustive round robin
minimises the average packet delay, there is scope to deliver a higher proportion of packets
with low to moderate delays. This is the goal of embedded round robin (ERR).

Define “busy” stations to be those known to have data to transmit, and “clear” stations
to be those which may be idle. The ERR scheduler services clear stations in round robin
order. However, between consecutive services of clear stations, it performs an “embedded”
round robin cycle of the busy stations. This reduces the time wasted on polling idle or low-
rate stations. When there are only a few busy stations, they receive most of the bandwidth,
hence their backlog is soon cleared and polling of clear stations is not unduly delayed.

However, when the number of busy stations increases, the backlog can remain for
some time, and substantially increase the duration of the outer round robin cycle. This



Variables:
N_max = max. consecutive polls of busy stations
busy_count = number of busy stations

=========================================================
i := next clear station in RR order
Poll station i
IF (station i had more data)

Mark station i as busy
END IF

FOR k := 1 to min (N_max, busy_count)
j := next busy station in RR order
Poll station j
IF (station j had no more data)

Mark station j as clear
END IF

END FOR

Algorithm 1. One iteration of embedded round robin

could cause packets arriving at “clear” stations to receive unnecessarily poor service. To
prevent this, the busy round robin cycle may have to be interrupted to service the next
“clear” station. In order to accomplish this, at mostNmax busy stations are served between
each pair of busy stations. Pseudocode for ERR is given as Algorithm 1.

A key advantage of ERR over exhaustive RR is that exhaustive RR has no way of
knowing which stations other than the current station have data to transmit, whereas ERR
does. It is this property which allows the wireless dual queue algorithm17 to detect and
combat transient congestion, without causing excessive null polls.

3 Improving High Load Performance

When the number of stations is large, the time taken to cycle through the “clear” list may
be excessive if every station in the “busy” list is polled between each pair of polls to clear
stations. If the proportion of busy stations remains constant, the cycle time of the clear
list grows quadratically with the number of stations. To avoid this, a maximum ofNmax

stations are served from the busy list between polls of the clear list. The maximum time to
cycle once through the clear list is then

c(e + Nmaxf) (1)

wherec is the number of clear stations,e is the polling overhead for sending an empty
packet, andf is the time required to transmit a full (maximum length) packet, including
the polling time. However the maximum time to cycle once through the busy list becomes

(e + Nmaxf)b/Nmax (2)

whereb is the number of busy stations, compared with

bf + ce (3)



for standard round robin.
As originally proposed, ERR removes backlogged stations from the main “clear” round

robin list when it adds them to the “busy” list. Comparing (2) and (3) shows that when
b > Nmaxc, busy stations are actually served less often under ERR than under round robin,
rather than more. This condition says that the busy list contains significantly more entries
than the clear list, due to network congestion. This phenomenon may be avoided by simply
reverting to simple round robin service in this case. However it is exactly at these times
that the greater efficiency of ERR is required. An alternative is to leave busy stations in
the “main” list when they are added to the busy list. (The term “clear” list is no longer
appropriate.) When the busy list is short, this will make minimal difference to the polling
order. However, it will ensure that the majority of polls are still sent to busy stations, even
when the busy list is long, which improves the network throughput.

When a station is removed from the busy list, it should be shifted to the end of the
main list, since it is the station with the lowest probability of having data to transmit (zero
probability).

4 Least-recently-used ERR

The algorithm hinted at in the previous section can be defined very simply in terms of
a single list in which station are sorted in order of how recently they have been polled.
This algorithm, given as Algorithm 2, will be called least-recently-used embedded-round-
robin (LRU-ERR). Note that this algorithm is much simpler than Algorithm 1, as the data
structures it uses are much simpler.

To see how LRU-ERR achieves the objectives set out above, note first that when there
are no “busy” stations, it becomes a simple round robin scheduler. This is because the
first IF always fails, and the station selected iscallsLRU[1] , the least recently polled
station. This is the next station in round robin order. This provides the “outer” round robin
loop of ERR.

Next, consider the case when the system is lightly loaded, so that every station is polled
frequently, and theELSE IF always fails. The “busy” stations will be polled in LRU
(round robin) order, which corresponds to the inner, or embedded, round robin loop of
ERR.

The round robin polling of “busy” stations will continue until it is interrupted by one
of two events. Unless theELSE IF succeeds, all packets in all queues will be served,
causing the “busy” stations one by one to become “clear”. When all stations are clear,
found will not be set by theFORloop, causing the finalIF to trigger polling of the next
“clear” station in round robin order. If the inner round robin cycle always ends this way,
then the next station to reportmore_data will be the only “busy” station, and thus the
inner loop will poll it until it has no more packets. That implies that ifthresh is so large
that theELSE IF always fails, then LRU-ERR becomes exhaustive round robin.

The ELSE IF prevents LRU-ERR from degenerating to exhaustive round robin by
interrupting the inner loop when it is in danger of causing another station to receive bad
service. The least recently polled station is in the most imminent danger; if a packet had
arrived immediately after its last poll, then it must be polled again within the “good service”
time, tG. Moreover, it must be polled in time for all fragments of the original application
layer packet to be received beforetG. For this reason, the threshold used is reduced by a



Variables:
calls = number of current connections
callsLRU[] = array of calls in order of most

recent access, [1] the earliest
meanClearTime = mean time required to poll a

clear station
goodSrvThresh = maximum desired delay
margin = "safety margin" (See text.)

=========================================================
thresh := goodSrvThresh - margin
found := false
FOR i := 1 to calls

IF (callsLRU[i] is "busy")
found := i
BREAK from FOR loop

ELSE IF (time since callsLRU[i] polled > thresh)
found := 1
BREAK from FOR loop

ELSE
thresh := thresh - meanClearTime

END IF
END FOR

IF (found = false)
found := 1

END IF

poll station for callsLRU[i]
move callsLRU[i] to end of callsLRU

Algorithm 2. One iteration of least-recently-used embedded round robin

margin,tM , which may be tuned to give good performance.
In the implementation used here,meanClearTime was taken to be the time required

for a null poll. For that case, theELSE IF . . .ELSEcan be taken outside the loop, since
the least recently polled station is the only one which can cause it to succeed.

5 Performance Results

In order to evaluate the performance of LRU-ERR, it was simulated and compared with
ERR, round robin (RR) and exhaustive RR. The simulation set up consists of a sin-
gle cell infrastructure WLAN. The polling mechanism is essentially that defined in the
IEEE 802.11 standard2 for the “contention free” mode. Although the standard requires
that this mode be punctuated by periods of contention based operation, this was omitted in
our simulations.

Thirty stations continuously transmit VBR video on the uplink, and the downlink is



Table 1. Parameters used in simulations.

Parameter value
Good service threshold,tG 75 ms
Packet expiry timeout,te 500 ms
Time to poll an idle station 0.456 ms
Time to transmit a maximum length packet
(including polling) 2.83 ms

idle. The lengths of the video frames were taken from the real MPEG traces of several
standard video sequences, as used in Reference 18. The 30 sequences were chosen ran-
domly (with replacement) from the 20 available sources, and the starting points within the
sequences were chosen randomly. The overall network load was set by scaling the frame
sizes by a factor ofα, which was significantly less than 1 to model the higher compression
needed for wireless transmission. Video frames were segmented into packets of size less
than or equal to 2312 bytes, as specified in the 802.11 standard.

The raw bit rate was 7.5Mbps. Packets delayed more thante = 500 ms were discarded
by the remote stations. The MAC header and inter-frame spacing were set according to the
IEEE 802.11 standard2. Other system parameters are given in Table 1.

The performance of LRU-ERR was tested under two assumptions for the arrival process
of video frames. First, the algorithm will be studied when frames arrive periodically at a
rate of 25 frames/sec, after which Poisson arrival will be assumed.

5.1 Periodic frame arrivals

For average loads ofα = 0.3 and 0.33, ten independent simulations were performed.
Since different video traces were used for each simulation, the performance of each run
was substantially different. The packet delays from all runs for each average load were
combined and their cumulative distribution functions (CDFs) are shown in Figure 1. For
comparison, the results for the same traffic are shown for the original ERR17, standard
round robin and exhaustive round robin.

When arrivals are periodic with periodT , the scheduler can know that the first poll of
a station after an interval ofT will not be a null poll. Thus there is no throughput benefit
associated with havingthresh of Algorithm 2 any larger thanT . In these experiments
the margin,tm, was set such thatthresh was marginally aboveT = 40 ms.

The value ofNmax used for which the original ERR was 6, which was empirically
found to maximise the proportion of packets received within the good service time. The
proportion of packets served by LRU-ERR within the good service threshold was clearly
greater than all three other polling strategies.

LRU-ERR attempts to maximise the proportion of packets served within timethresh
by placing a higher priority on packets about to exceed that time. Because this must in-
crease the delay of the other packets, it is expected that there will be a sharp rise in the
CDF immediately beforethresh , which is indeed observed.
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(b) Relative loadα = 0.33.

Figure 1. Cumulative distribution of packet delays fortG = 75 ms with periodic arrivals.
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(b) Relative loadα = 0.33.

Figure 2. Cumulative distribution of packet delays fortG = 75 ms with Poisson arrivals.

5.2 Poisson arrivals

When video frames arrive according to a Poisson process rather than periodically, the per-
formance of all four scheduling disciplines deteriorates, but exhaustive RR suffers the least.
As a result, both exhaustive RR and LRU-ERR perform similarly, and are considerably bet-
ter than ERR and RR. This can be seen in Figure 2. For these experiments,Nmax = 3 was
found to be optimal for ERR. However, it is well know that exhaustive round robin suffers
from fairness problems in the presence of a small number of very heavy sources. This case
will be considered in the following section.
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(b) Relative loadα = 0.25.

Figure 3. Cumulative distribution of packet delays for lightly loaded stations, withtG = 75 ms, Poisson arrivals
and asymmetric loads.

5.3 Asymmetric load

In order to test the fairness of LRU-ERR, it was simulated in a network of 30 nodes, of
which one produced 10 times the traffic of the others. The delay of packets from the lightly
loaded stations was measured and its CDF is shown in Figure 3, when the lightly loaded
stations haveα = 0.225 and0.25. Under exhaustive round robin, the heavily loaded station
has a dramatic adverse effect on the remaining stations. In contrast, the round robin nature
of LRU-ERR distributes bandwidth fairly, as well as efficiently, causing the performance
of the majority of stations to be significantly higher than for the other three disciplines.

The proportion of packets delivered within the good service time,tG = 0.75 ms, is
shown in Figure 4 for a range of loads for both symmetric and asymmetric loads. This
again shows that both LRU-ERR and exhaustive round robin effectively eliminate null
polls, and consequently give high efficiency for symmetric loads, but that LRU-ERR avoids
the unfairness problems inherent to exhaustive round robin.

6 Conclusion

Least-recently-used embedded-round-robin (LRU-ERR) has been presented as an enhance-
ment to the original ERR recently proposed for IEEE 802.11 wireless LANs. This algo-
rithm retains the benefits of ERR demonstrated for light to moderate loads for periodic
traffic arrivals, while at the same time improving its performance under high loads and for
bursty arrivals.

Exhaustive round robin is optimal for avoiding the waste caused by polling idle sta-
tions, and for Poisson frame arrivals and symmetric traffic, LRU-ERR achieves perfor-
mance of the same high standard. However, LRU-ERR outperforms exhaustive round
robin under conditions of asymmetric load.
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Figure 4. Proportion of packets (from lightly loaded stations) received withintG = 75 ms with Poisson arrivals.
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