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Abstract Gaussian noise, n

This paper presents a new technique for the fast simulation of the

bit error rate and other statistical performance measures of CORfipangmitter . Channel | N Linear
munication systems. Whereas traditional fast simulation tech- Receiver
nigues are usually based on importance sampling, the proposed  {- 1 +1}"
technique is based on conditional Monte Carlo analysis. One ad-

vantage over importance sampling is that the proposed technique

is systematic in its design and is proved to be asymptotically OBt error rate conditional on those components. This technique is

timal. called conditional Monte Carlo analysis (see, for example, [2]).
The main contribution of this paper is the derivation of a condi-
tional Monte Carlo algorithm for linear communication systems;

1. Introduction attention is restricted to linear systems to simplify presentation.

Figure 1: System model.

One advantage of this conditional Monte Carlo analysis ap-

Determining the statistical performance of a communication Syg_roach 'Sdt.h a;th?' res; It_lrnhg algorlthr?hlstasytrrr:ptg'ttlcally opt|rbnag,'l
tem is almost always done by simulation. However, naive sim@> Provedin section s. This means that as the bit error probabi-

lation can be exceedingly slow, especially at high signal to noiété(tgpp:paches 2610, Fhe numbertof saerIels requtlr:ed for a given
ratios. The slowness is due to the fact that, if the true bit err§ 210N ccuracy increases at a rate slower than any power

rate is of the order o£0~, then a million simulations are re- '2""-

quired on average before a bit error occurs, and thus hundredsNumerical results in Section 4 demonstrate asymptotic opti-
of millions of simulations are required before the bit error ratenality for more general channels than for which it has been for-
can be calculated accurately. Even more simulations may heally proved. To date, the proof of optimality is only for the two
required if the distribution of the number of bit errors must belimensional linear case. However, the technique itself extends
computed. easily to multiple dimensions, and we believe that the optimality

. . . . also holds in the more general case.
One technique for speeding up bit error rate calculations Is

importance sampling [1]. The rough idea behind importance The system model considered in this paper is illustrated in
sampling is to change the noise distribution so that bit errofsgure 1, and is essentially the same as that of [3, 4]. It consists
are more likely to occur, and then having determined the staf a block source, emitting blocks of lengffi symbols. In the
tistical performance of this new system via simulation, to mapumerical examples, bipolar binary symbols are used. These
the results back to the original system. Unfortunately, simplgymbols pass through drtap channel, and Gaussian noise,
choosing a new noise distribution which increases the bit errof variances? is added. The resulting signal is processed by
rate is insufficient for importance sampling to be successful. I@ receiver, which may contain a linear equaliser, followed by
deed, choosing a suitable noise distribution is an art and oftermigarest neighbour decoding.

is not possible to prove that the resulting choice is optimal in any

sense.
Section 2 of paper presents an alternative approach to tge Algorlthm

fast simulation problem. The idea is to use simulation to com-

pute some components of a multi-dimensional random variabliehas long been known [5] that the efficiency of Monte Carlo

(noise), and then determine in closed form the expected valuesimulation can be improved by making use of the relations

*This work was supported by the Australian Research Council Ex y[Z] = Ex[Ey[Z|X]]
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and 3. Optimality

VarxylZ] = Ex[Vary[Z]X]] + Varx[Ey[Z]X]] An estimator,A(c), is said to beasymptotically optima7] for
> Varx[Ey[Z]X]]. a rare event probability(o) if it is unbiassed and

If Ey[Z|X] is known in closed form, then the variance of the log(Var[A(o)])
Monte Carlo estimate can be reduced by generatimgndomly, log(E[A(0)])
and taking the sample mean®f [ Z| X], rather than generating asE[A(o)] = p(c) — 0. The practical upshot of this is that,
both X andY randomly, and taking the sample meartoitself.  as the bit error probability approaches zero, the number of sam-
In the case of block error rate calculations, will denote the ples required for a given statistical accuracy increases at most
direction of the noise vector experienced by a block, ®Endill  |ogarithmically.

denote its magnitude, whilg is the block error rate.

—- K >2 (1)

" ) ___Theorem 1 Consider a functiory : [0,1] x R* — R given by
Our proposed conditional Monte Carlo algorithm for est|matf(u ) = exp(en (u, ) /da (), where, for sufficiently smadl
ing the probability of errorg, when transmitting a blocki3, of ’ ’ ' ’ ’

length V, over a linear channel, assuming additive white Gaus-

sian noise, is the following. $1(u,0) < 0 (2a)
¢2(0) > 0 (2b)

1. Generaté: uniformly on the unit hypersphere. ¢1(ug,0) < ¢1(ur,0)ifug >u,  (20)
o - _ ¢2(c) — 0Oasoc—0 (2d)

2. Calculate the minimum positive scaling facteysuch that (o) log(da(0)) = o(é1(0,0)), (2e)

the scaled noisen would causeB to be received in error.

and ¢, satisfies the Lipschitz condition
3. The error probability estimate is thén= Prx (X > x),
where X2 ~ ¢2y2 is the square of the radial component (30, 00,k > 0)(Vu € (0,U), 0 € (0, 00))
of a noise sample. 01(0,0) = ¢1(u, 0)[ < ku. (2f)
If U ~ U(0,1) is uniformly distributed or{0, 1), then f(U, o)

The value of: chosen in step 2 depends on the specific forrl$ @ @symptotically optimal estimator f&f/ (U, o)] aso — 0.
of the decoder. In additive white Gaussian noise (AWGN) with
a known channel, the maximum likelihood estimator is a near- This theorem is proved in the appendix. To apply it to the
est neighbour detector, and the valuera$ simply the distance above estimation algorithm, €, be the distribution of: (as
to a hyperplane separating the codewords. In more complicatadunction of#i). That is, F,(x) < u with probability w. Then
cases, such as when the channel must be estimated by a npfi, o) = f(F,(z), o) is the estimated BER from a single noise
linear procedure, decision boundaries may have more compsample. Let us first consider the case\of= 2 dimensions with
cated shapes. binary phase shift keying (BPSK) and a distortionless channel.

) ) In this casef (-, -) can be found in closed form.
This approach is complementary to that of [3]. Whereas there

the radial component of the noise is simulated and an expecta Without further loss of generality, consider the case when the
tion is taken over the directional component, in this paper tHéansmitted signal is—1, —1). An error occurs in bit, i = 1,2,
directional component is simulated and the radial componentifshoise component; > 1. There are three cases to consider,
integrated explicitly. Although [3] averages in closed form oveflepending on the octant in which the noise vector lies, as illus-
N — 1 out of N dimensions, compared to the single radial comtrated in Figure 2(a). In the cross-hatched region, the noise is in
ponent used here, it is the radial component which contains mégg same direction as the signal, and thus the probability of error
of the variability of the bit error rate. It is this fact which al-iS zero. In the white region, sufficiently large noise will cause an
lows the proposed algorithm to achieve asymptotic optimalit§ror in both bits, while in the remaining region, only single bit
without importance sampling. However, the performance of thTors are possible.
algo_rithr_n can be further ir_npr_oved for Iarge block sizes by em- e magnitude of the noise must excegd= sec(f) to cause
ploying importance sampling in the selection/of anerrorin bit 1, ory = sec(6—/2) to cause an error in bit 2, as
Note also that, under the proposed algorithm, each randd .st.rated in Figure.2(b). If negative yaluesmz(-) are deemed
vector, 7, yields an entire curve of block error rate versus sig!—n.'mte’ _thenx. — min(zy, 2). If arg# = 6 ~ Ul—, ), then
nal to noise ratio (SNR). This is similar to what is done in s easily verified that

different context in [6], and is in contrast to standard Monte 216/ 0 € [—m/4,7/4]

Carlo techniques which require separate simulations to be run 210/m—1/2| 6 € (n/4,3n/4]

for each value of SNR. The benefit of this feature is greater foru(e) ) 10/7—1/4]  0e (—xn/2,—7/4) U (3 /4,7T)
more complex systems, where the computational effort tosfind 0/27| +1/2 6 € [—m 7/2)

can become large. 3)
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whereu = (v2x/0 — /2N — 1), and the first approximation is

is monotonic inz, andu ~ U|0, 1). Explicitly, ) e o
Fisher’s approximation [8]. This gives (o) = o2, and

cos(um/2) 0<u<1/2
1/x =< cos(ur —7/4) 1/2<u<3/4 4) ¢1(Fp(z),0) = —(V2x — 02N —1)?
0 u > 3/4. V2
—o?log <2ﬁ ((jx — V2N — 1)) )

The cumulative distribution function (cdf) of @2 random
variable with two degrees of freedom is simfity(Y < y) =

1 — =%*/2. Thus We believe that these satisfy the hypotheses of Theorem 1.

flu,0) =Pr(X2 > a/o) = e " /27 (5)
yielding ¢, (c) = 2 and 4. Numerical results
¢1(u,0) = —x2/2 (6)

—sec?(um/2)/2 0<u<1/2

Numerical experiments were carried out on blocks of two sym-
= —sec?(ur —mw/4)/2 1/2<u<3/4 (7) P y

bols, with random channels of length three and a zero-forcing

> 3fd<u<l. equaliser. The dashed line in Figure 3 shows the ratio
These functions satisfy condition (2). To see that (2f) is satisfied,
note that the inequalityec? () < (1—6%)~!for§ < 1, leads to log(Var[A(0)])
the sufficient condition&’ < 1/2 andk > w2U/4. log(E[A(o)])

T.h? key aspect .Of the geqr7|1etryhof th;]s system is thaF thﬁs a function of SNR, wherd is the proposed estimator. The
deqsmn boundgry 's tangential to the sphere correspondlngftégeciﬁc estimators used was for the probability of there being
equiprobable noise. Thus, the BER decreases slowly as the actly one error. The results were averaged over 100 000 sam-

regtion of_the hoise deviates fr(_)m _the dir_ection_of maximu_ les. Given the definition in (1), this graph clearly demonstrates
noise. This property also holds in higher dimensions, and wi at the algorithm is asymptotically optimal in this case.
distorting channels, although the exact formf@f, -) becomes

more complicated. Many block-based communications systems use linear pre-

For generalN and general linear time invariant channelscoders. One very common example is orthogonal frequency di-

f(-,-) can be approximated as vision multiplex (OFDM) systems, in which the linear precoder
consists of an inverse Fourier transform followed by a cyclic pre-
f(Fy(z),0) = Prx(X >ux) fix which adds redundancy to the data. The solid line in Figure 3
shows the results for 500 000 random precoders, which map
1—P(v2 — V2N -1
(\fx/a ) two-symbol data blocks into three-symbol channel blocks (with
erfe(v2z /0 — V2N —1)/2 channel length 2). This demonstrates that the proposed scheme

exp(—u?)/2v/Tu is again asymptotically optimal when precoders are used.



5. Conclusion Appendix

An algorithm has been proposed for computing the distributioh"€0rem 1 will be proved using the following lemmas.

of bit errors in a block-based communication system. The algo- N ) )
rithm has been shown to be asymptotically optimal. For sim-6mMma 1 A positive bounded random variablé,e [0, a, with
plicity, this has only been shown in the simple case of twoM€anE[Z] = p, has variance bounded Bjar[Z] < p(a — p).
dimensional blocks transmitted over a three-tap channel, but it

holds more generally. This is the subject of a forthcoming papdremma 2 Let

This algorithm is closely related to that of [3], but is more flex- 6(c) = max {9 f(0,0) > lf(o, U)} ’ (8)
ible since the former relies intrinsically on the decision bound- 2
aries being hyperplanes. It is also more efficient than [4], thgiih f(-,-) as defined in Theorem 1. Then
precursor of [3].
o _ , (o) > $2(0)log2 9
This pilot study can be extended in many ways to improve the (o) > A ) (©)
efficiency of the algorithm. Most notably, the algorithm can be . ' .
combined with importance sampling to improve the performanc"é<Ith k defined in (21), for albr such that
with large blocks. $a(0)log?2

<U. (10)

Proof: For allg € (0, ¢2(0) log 2/k) whereo satisfies (10),
¢1 (9, 0) - ¢1 (Oa 0) > —kb
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