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Abstract

This paper presents a new technique for the fast simulation of the
bit error rate and other statistical performance measures of com-
munication systems. Whereas traditional fast simulation tech-
niques are usually based on importance sampling, the proposed
technique is based on conditional Monte Carlo analysis. One ad-
vantage over importance sampling is that the proposed technique
is systematic in its design and is proved to be asymptotically op-
timal.

1. Introduction

Determining the statistical performance of a communication sys-
tem is almost always done by simulation. However, naive simu-
lation can be exceedingly slow, especially at high signal to noise
ratios. The slowness is due to the fact that, if the true bit error
rate is of the order of10−6, then a million simulations are re-
quired on average before a bit error occurs, and thus hundreds
of millions of simulations are required before the bit error rate
can be calculated accurately. Even more simulations may be
required if the distribution of the number of bit errors must be
computed.

One technique for speeding up bit error rate calculations is
importance sampling [1]. The rough idea behind importance
sampling is to change the noise distribution so that bit errors
are more likely to occur, and then having determined the sta-
tistical performance of this new system via simulation, to map
the results back to the original system. Unfortunately, simply
choosing a new noise distribution which increases the bit error
rate is insufficient for importance sampling to be successful. In-
deed, choosing a suitable noise distribution is an art and often it
is not possible to prove that the resulting choice is optimal in any
sense.

Section 2 of paper presents an alternative approach to the
fast simulation problem. The idea is to use simulation to com-
pute some components of a multi-dimensional random variable
(noise), and then determine in closed form the expected value of
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Figure 1: System model.

bit error rate conditional on those components. This technique is
called conditional Monte Carlo analysis (see, for example, [2]).
The main contribution of this paper is the derivation of a condi-
tional Monte Carlo algorithm for linear communication systems;
attention is restricted to linear systems to simplify presentation.

One advantage of this conditional Monte Carlo analysis ap-
proach is that the resulting algorithm is asymptotically optimal,
as proved in Section 3. This means that as the bit error probabil-
ity approaches zero, the number of samples required for a given
estimation accuracy increases at a rate slower than any power
law.

Numerical results in Section 4 demonstrate asymptotic opti-
mality for more general channels than for which it has been for-
mally proved. To date, the proof of optimality is only for the two
dimensional linear case. However, the technique itself extends
easily to multiple dimensions, and we believe that the optimality
also holds in the more general case.

The system model considered in this paper is illustrated in
Figure 1, and is essentially the same as that of [3, 4]. It consists
of a block source, emitting blocks of lengthN symbols. In the
numerical examples, bipolar binary symbols are used. These
symbols pass through anL-tap channel, and Gaussian noise,n,
of varianceσ2 is added. The resulting signal is processed by
a receiver, which may contain a linear equaliser, followed by
nearest neighbour decoding.

2. Algorithm

It has long been known [5] that the efficiency of Monte Carlo
simulation can be improved by making use of the relations

EX,Y [Z] = EX [EY [Z|X]]
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and

VarX,Y [Z] = EX [VarY [Z|X]] + VarX [EY [Z|X]]
> VarX [EY [Z|X]].

If EY [Z|X] is known in closed form, then the variance of the
Monte Carlo estimate can be reduced by generatingX randomly,
and taking the sample mean ofEY [Z|X], rather than generating
bothX andY randomly, and taking the sample mean ofZ itself.
In the case of block error rate calculations,X will denote the
direction of the noise vector experienced by a block, andY will
denote its magnitude, whileZ is the block error rate.

Our proposed conditional Monte Carlo algorithm for estimat-
ing the probability of error,ε, when transmitting a block,B, of
lengthN , over a linear channel, assuming additive white Gaus-
sian noise, is the following.

1. Generatên uniformly on the unit hypersphere.

2. Calculate the minimum positive scaling factor,x, such that
the scaled noisexn̂ would causeB to be received in error.

3. The error probability estimate is then̂ε = PrX(X > x),
whereX2 ∼ σ2χ2

N is the square of the radial component
of a noise sample.

The value ofx chosen in step 2 depends on the specific form
of the decoder. In additive white Gaussian noise (AWGN) with
a known channel, the maximum likelihood estimator is a near-
est neighbour detector, and the value ofx is simply the distance
to a hyperplane separating the codewords. In more complicated
cases, such as when the channel must be estimated by a non-
linear procedure, decision boundaries may have more compli-
cated shapes.

This approach is complementary to that of [3]. Whereas there
the radial component of the noise is simulated and an expecta-
tion is taken over the directional component, in this paper the
directional component is simulated and the radial component is
integrated explicitly. Although [3] averages in closed form over
N − 1 out ofN dimensions, compared to the single radial com-
ponent used here, it is the radial component which contains most
of the variability of the bit error rate. It is this fact which al-
lows the proposed algorithm to achieve asymptotic optimality
without importance sampling. However, the performance of the
algorithm can be further improved for large block sizes by em-
ploying importance sampling in the selection ofn̂.

Note also that, under the proposed algorithm, each random
vector, n̂, yields an entire curve of block error rate versus sig-
nal to noise ratio (SNR). This is similar to what is done in a
different context in [6], and is in contrast to standard Monte
Carlo techniques which require separate simulations to be run
for each value of SNR. The benefit of this feature is greater for
more complex systems, where the computational effort to findx
can become large.

3. Optimality

An estimator,A(σ), is said to beasymptotically optimal[7] for
a rare event probabilityp(σ) if it is unbiassed and

log(Var[A(σ)])
log(E[A(σ)])

→ K ≥ 2 (1)

asE[A(σ)] = p(σ) → 0. The practical upshot of this is that,
as the bit error probability approaches zero, the number of sam-
ples required for a given statistical accuracy increases at most
logarithmically.

Theorem 1 Consider a functionf : [0, 1] × R+ 7→ R given by
f(u, σ) = exp(φ1(u, σ)/φ2(σ)), where, for sufficiently smallσ,

φ1(u, σ) < 0 (2a)

φ2(σ) > 0 (2b)

φ1(u2, σ) < φ1(u1, σ) if u2 > u1, (2c)

φ2(σ) → 0 asσ → 0 (2d)

φ2(σ) log(φ2(σ)) = o(φ1(0, σ)), (2e)

andφ1 satisfies the Lipschitz condition

(∃U, σ0, k > 0)(∀u ∈ (0, U), σ ∈ (0, σ0))
|φ1(0, σ)− φ1(u, σ)| < ku. (2f)

If U ∼ U(0, 1) is uniformly distributed on(0, 1), thenf(U, σ)
is an asymptotically optimal estimator forE[f(U, σ)] asσ → 0.

This theorem is proved in the appendix. To apply it to the
above estimation algorithm, letFx be the distribution ofx (as
a function ofn̂). That is,Fx(x) < u with probabilityu. Then
f(u, σ) = f(Fx(x), σ) is the estimated BER from a single noise
sample. Let us first consider the case ofN = 2 dimensions with
binary phase shift keying (BPSK) and a distortionless channel.
In this case,f(·, ·) can be found in closed form.

Without further loss of generality, consider the case when the
transmitted signal is(−1,−1). An error occurs in biti, i = 1, 2,
if noise componentni > 1. There are three cases to consider,
depending on the octant in which the noise vector lies, as illus-
trated in Figure 2(a). In the cross-hatched region, the noise is in
the same direction as the signal, and thus the probability of error
is zero. In the white region, sufficiently large noise will cause an
error in both bits, while in the remaining region, only single bit
errors are possible.

The magnitude of the noise must exceedx1 = sec(θ) to cause
an error in bit 1, orx2 = sec(θ−π/2) to cause an error in bit 2, as
illustrated in Figure 2(b). If negative values ofsec(·) are deemed
infinite, thenx = min(x1, x2). If arg n̂ = θ ∼ U [−π, π), then
it is easily verified that

u(θ) =


2 |θ/π| θ ∈ [−π/4, π/4]
2 |θ/π − 1/2| θ ∈ (π/4, 3π/4]
|θ/π − 1/4| θ ∈ (−π/2,−π/4) ∪ (3π/4, π)
|θ/2π|+ 1/2 θ ∈ [−π, π/2)

(3)
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Figure 2: The amount,x, by which the normalised noise vector,
n̂, must be scaled to cross a decision boundary depends on which
region it lies in.

is monotonic inx, andu ∼ U [0, 1). Explicitly,

1/x =

 cos(uπ/2) 0 ≤ u ≤ 1/2
cos(uπ − π/4) 1/2 < u < 3/4
0 u ≥ 3/4.

(4)

The cumulative distribution function (cdf) of aχ2 random
variable with two degrees of freedom is simplyPr(Y < y) =
1− e−y2/2. Thus

f(u, σ) = Pr(X2 > x/σ) = e−x2/2σ2
(5)

yieldingφ2(σ) = σ2 and

φ1(u, σ) = −x2/2 (6)

=

− sec2(uπ/2)/2 0 ≤ u ≤ 1/2
− sec2(uπ − π/4)/2 1/2 < u < 3/4
−∞ 3/4 ≤ u ≤ 1.

(7)

These functions satisfy condition (2). To see that (2f) is satisfied,
note that the inequalitysec2(θ) ≤ (1− θ2)−1 for θ < 1, leads to
the sufficient conditionsU < 1/2 andk > π2U/4.

The key aspect of the geometry of this system is that the
decision boundary is tangential to the sphere corresponding to
equiprobable noise. Thus, the BER decreases slowly as the di-
rection of the noise deviates from the direction of maximum
noise. This property also holds in higher dimensions, and with
distorting channels, although the exact form off(·, ·) becomes
more complicated.

For generalN and general linear time invariant channels,
f(·, ·) can be approximated as

f(Fx(x), σ) = PrX(X > x)

≈ 1− Φ(
√

2x/σ −
√

2N − 1)

= erfc(
√

2x/σ −
√

2N − 1)/2
≈ exp(−u2)/2

√
πu
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Figure 3: Performance for length-two blocks over random chan-
nels.

whereu = (
√

2x/σ−
√

2N − 1), and the first approximation is
Fisher’s approximation [8]. This givesφ2(σ) = σ2, and

φ1(Fx(x), σ) =−(
√

2x− σ
√

2N − 1)2

−σ2 log

(
2
√

π

(√
2x

σ
−
√

2N − 1

))
.

We believe that these satisfy the hypotheses of Theorem 1.

4. Numerical results

Numerical experiments were carried out on blocks of two sym-
bols, with random channels of length three and a zero-forcing
equaliser. The dashed line in Figure 3 shows the ratio

log(Var[A(σ)])
log(E[A(σ)])

as a function of SNR, whereA is the proposed estimator. The
specific estimators used was for the probability of there being
exactly one error. The results were averaged over 100 000 sam-
ples. Given the definition in (1), this graph clearly demonstrates
that the algorithm is asymptotically optimal in this case.

Many block-based communications systems use linear pre-
coders. One very common example is orthogonal frequency di-
vision multiplex (OFDM) systems, in which the linear precoder
consists of an inverse Fourier transform followed by a cyclic pre-
fix which adds redundancy to the data. The solid line in Figure 3
shows the results for 500 000 random precoders, which map
two-symbol data blocks into three-symbol channel blocks (with
channel length 2). This demonstrates that the proposed scheme
is again asymptotically optimal when precoders are used.



5. Conclusion

An algorithm has been proposed for computing the distribution
of bit errors in a block-based communication system. The algo-
rithm has been shown to be asymptotically optimal. For sim-
plicity, this has only been shown in the simple case of two-
dimensional blocks transmitted over a three-tap channel, but it
holds more generally. This is the subject of a forthcoming paper.

This algorithm is closely related to that of [3], but is more flex-
ible since the former relies intrinsically on the decision bound-
aries being hyperplanes. It is also more efficient than [4], the
precursor of [3].

This pilot study can be extended in many ways to improve the
efficiency of the algorithm. Most notably, the algorithm can be
combined with importance sampling to improve the performance
with large blocks.
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Appendix

Theorem 1 will be proved using the following lemmas.

Lemma 1 A positive bounded random variable,Z ∈ [0, a], with
meanE[Z] = p, has variance bounded byVar[Z] ≤ p(a− p).

Lemma 2 Let

θ(σ) = max
{

θ : f(θ, σ) >
1
2
f(0, σ)

}
, (8)

with f(·, ·) as defined in Theorem 1. Then

θ(σ) ≥ φ2(σ) log 2
k

, (9)

with k defined in (2f), for allσ such that

φ2(σ) log 2
k

< U. (10)

Proof: For allθ ∈ (0, φ2(σ) log 2/k) whereσ satisfies (10),

φ1(θ, σ)− φ1(0, σ) > −kθ

> −φ2(σ) log 2,

whence

f(θ, σ)
f(0, σ)

= exp
(

φ1(θ, σ)− φ1(0, σ)
φ2(σ)

)
> exp(− log 2)) = 1/2,

giving the result. �

Proof of Theorem 1: By Lemma 1, and sincef(u, σ) ≤
f(0, σ) by (2c), it is sufficient to show that

log(f(0, σ))
log(E[f(U, σ)])

→ 1

asσ → 0. Note also that

|log E[f(U, σ)]| < |log f(0, σ)|+ |log θ(σ)|+ log 2, (11)

sinceθ(σ) ≤ 1 andf(0, σ) < 1 by (2a) and (2b), and that

E[f(U, σ)] ≥
∫ θ(σ)

0

1
2
f(0, σ) du.

Thus it is sufficient to show that

log(θ(σ))
log(f(0, σ))

→ 0

asσ → 0. But, by (9) of Lemma 2 and (2e),

log(θ(σ))
log(f(0, σ))

<
log(log 2)− log k + log(φ2(σ))

φ1(0, σ)/φ2(σ)
→ 0.

The result then follows, by the positivity of the left hand side of
the inequality. �
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