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ABSTRACT wavelength. Alternatively, wavelengths can be allocated dy-

Blocking probabilities in Wavelength Division Multiplex op-namlcally as calls arrive and depart, as assumed here. A use-

tical networks are hard to compute for realistic sized syster%%l lower b_ound on ki oyerall bloc_kmg probal_alllty of these
networks is obtained using th@maximum packing strategy

even though analytical formulas for the distribution exist (un . -
der maximal packing of wavelengths) . This CompUtatlon%frloE\(/)esreltél z)r:dce'}ﬂif;?)t/:lznh%r? 83&3.5532(2: ?hpallrto Z(z:r;ll?:g%wtl)aengd
difficulty is mainly due to the structure of the state spaceg, POS . phony,
T . . mitted if several linear constraints on the number of calls be-
which imposes strong coupling constraints amongst compo- ) L .
; . S ween each O/D pair are satisfied. An advantage of the maxim-
nents of the occupancy vector. Direct simulation is often use

to estimate the blocking probabilities. This paper presentgrg packing formulation is that it allows a closed product-form

new method based on the Gibbs sampler, for which the E)S(S Ir,szse'?erl;%rn;ﬁ;tgggZ%?mp;ﬁgﬁbIggissiasrl:tbjEs/ztr(i)ttt?leQ(S)dllg-
timation is “localised” (distributed computation) and carrieaﬁd Everitt (1994) claim that this ro%uctform éolutiona lies
out conditioning on an appropriate filtration. The filtered esfl‘- P . 1app
. . . o 0 other more complex wavelength allocation strategies.
mators benefit from the variance reduction of conditional ex- . . .
Section 2 summarises the known results for the blocking

pectations as well as a reduction in computational effortdueb bility given by the maximum kina bound. Evaluatin
to the local estimation. Our simulation results suggest tiﬁ’é abriity given by the maximum packing bound. Evaluating

that these methods dramatically outperform the currently ué g€ blocking prob_abllltles requires evaluatlon of a normalis-
computational methods. For some systems, other techni 0 constant, and this problem grows exponentially in the num-

S :
may prove impossible to implement whilst our method is n r of routes and/or wavelengths (see Nelson, 1993), which
subject to the curse of dimensionality.

as led most researchers to use simulation instead.

Two simulation approaches seem natural: generation of
Keywords: Blocking probabilities, dynamically reconfigurable optith€ random variables with the truncated probabilities that ap-
cal networks, performance evaluation of loss networks, Markov ch@@ar in the closed form solution, and simulation of the original
Monte Carlo, filtered Monte Carlo. process. In this paper we deal with the first approach. Direct
simulation of the target distribution can be done via a trunca-
tion of a multivariate Poisson vector, but as explained in Sec-
1 INTRODUCTION tion 3, this approach may become impractical. Section 4 intro-
Wavelength Division Multiplexing (WDM) networks are educes a Markov chain Monte Carlo (MCMC) method, namely
promising and practical means of exploiting the enormous #ae Gibbs sampler, to solve this problem. To our knowledge,
pacity of optical fibore communication systems, as discussad studies are the first to implement MCMC methods for per-
by Ramaswami (1993) and Borella et al. (1997). This pagermance evaluation in loss networks. In Section 4 the esti-
proposes a new simulation technique, the Filtered Sequermation of the Gibbs sampler is performed locally (distributed
Gibbs Sampler, and applies it to the analysis of a loss ne@mputation) and a filtering technique is used to improve the
work model for circuit switched WDM networks, in whichefficiency. Our proposed method is a filtered Monte Carlo sim-
connections that are established between two nodes are higition applied to the MCMC with local estimation that bene-
for a substantial time. The primary performance measurdilts from a variance reduction as well as ease of computation.
the blocking probability the probability that a caller will be Section 5 presents the numerical results which indicate how
unable to place a call from a particular origin to destinati@nir method outperforms the currently used methods for direct
because there are insufficient unused wavelengths on the réumilation.
to carry the call. A maximum blocking probability is ofte
imposed by regulatory authorities or commercial pressure,%ﬁ NETWORK MODEL
over-dimensioning a network is very costly. Thus it is impoCGonsider a WDM network witth wavelengths, in which each
tant to know accurately and quickly the blocking probabilityode can transmit and receive on any wavelength. Each wave-
of a candidate network design. length carries only one call on a given link. Thavelength

Itis possible to distribute the available wavelengths stabntinuity constraintrequires that at nodes without “wave-
ically among the origin/destination (O/D) pairs so that no twength converters”, the same wavelength be used on the incom-
O/D pairs whose paths share a link can ever use the sangglink as the outgoing link. This model covers WDM net-
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2.1 Maximum and Clique Packing Upon arrival of a call for routéat timet, it is accepted if there

Maximum packing admits an incoming call on a given roul% still at least one wavelength available, that is, if the current

if a rearrangement of wavelengths of ongoing connections Slpte satisfies: B

be found to free a sequence of wavelengths that satisfies the s n;(t7) <A.

continuity constraint. The call is then connected and held for jec

arandom time. The call is said to be connected, andt) = n;(t~)+1, while

Let R be the number of routes in the network. kegtde- n;(t) = n;(t™) for j # i. If an incoming call to routé finds
note the number of calls using thith route. Define a graphall wavelengths in use at one of the cliqués> i, then the
G = (V, E) where each vertex represents a route, and thereadl is blocked(lost) andn(t) = n(t~). Calls stay connected
an edge between two vertices if the corresponding routes slare random “holding” time, assumed independent of the rest
a link. Allocating wavelengths to routes then correspondsdpthe process history. All holding times are identically dis-
“colouring” G so that vertex is allocatedn; colours, and no tributed with meari /.. When a call on routéterminates, the
two adjacent vertices are allocated the same colour. Thigégupancy component (t) is decreased by one.
called ann-colouring, where: = (nq,...,ng). Fora WDM
network under the wavelength continuity constraint,tex- Definition 2 The performance measure of interest is called
imum packingstrategy will admit a new call if there is an  the blocking probability and it is defined as the long term
colouring ofG using at most\ colours, wherer is the occu- Probability that an incoming arrival is lost:
pancy vector after admission of the call, ahi the number of R
wavelengths per optic fibre. Networks with partial conversion B = lim >z Yi(t)
require a reinterpretation of a “route”. t—oo  A(t)

In general, the necessary and sufficient conditions for ad- ,
mission can be quite complex (see Kind, Niessen, and Mati{4t€reYi(?) is the total number of calls lost on routeup to
1998), and so a simple set of necessary conditions, knowi&§? and A(?) is the total number of arrivals up to timte

the clique packingconditions, is commonly used instead. To From the dynamics of the process, it follows that the set

simplify notation, this paper describes the proposed me”@f%locking states for routeis given by
applied to clique packing, rather than maximal packing.

)

Definition 1 A clique of a graphg is a subgraph which is .
completely connected, that is, there is an edge between eadfi = " €S X Z nj=Ap, i=1...,R (3
pair of vertices. Amaximal cliqueis one which is not a sub- jec

graph of any larger clique of. so that incoming calls to routeare blocked if the current state

For any maximal clique: of G, let n. denote the total iS in the set3;. The blocking probability can be expressed in
number of calls on the routes in Maximum packing will terms of the blocking probabilities per route:
only admit a call on routé whenn, < A — 1 for all cliquesc

containing route. These necessary conditions are the clique B - ZR: (ﬁ) B. 4)
packing conditions. Raymond (1991) notes that clique packing — A v

is not equivalent to maximum packing. Nonetheless, it results =

in approximately equal blocking performance. Bi = Z m(n)nes,}, Q)

Let S be the set of all permissible network occupancies. nes

For clique packings is given by where 7(-) are the stationary probabilities of the process

{n(t)} and\ = S X\ Letp; = \;/u be the “offered
} (1) traffic” to routed, then it can be shown (seea¥quez-Abad,

S:{neNR :Y n; <A, Vi=1,...,L
Andrew, and Everitt, 1999) that:

Jj€C)

where C; is thelth cligue andL is the number of cliques

R n
in the network. In generalS is such that, ifx; are spec- r(n) = 1 (pi ) ., neES (6)
ified for all i+ # j, then there is maximum occupancy G\ ng!
Aj(z) for route j. That is, an occupancy vector = R "
(@1 Tj1,1),Tj11, ... o) iSinS if and only if ¢ = Y] (P_')
0 <ny < Aj(). ) nes

] whereG is called the normalising constant.
2.2 The Closed Form Solution
The network dynamics can be modeled as a continuous-time PERFORMANCE ESTIMATION

stochastic process. Lett) = (n1(t),...,ng(t)) be the state Evaluating blocking probabilities using (5)—(6) directly is a
of the process at timg wheren,(t) represents the number oflifficult numerical problem for realistic sized networks. A typ-
wavelengths in use on routet timet, and let the state spaceécal WDM backbone network may have over 20 nodes and 32
be S described above. or more wavelengths. The simplest approach is to calculate

Calls arrive at each routefollowing independent Pois-the normalising factotz, where the sums are over the space
son processes with corresponding intensiigs = 1,..., R. S, and then explicitly sum (6) over all statese B;. The



number of routes i®2 = n?/2 + o(n?), and for densely con-
nected networks, the number of state®ig\*). Thus com-
puting G directly takes of the order of’/2 multiplications.

For a modest network of 10 nodes with eight wavelengths, this
requires around*® ~ 10%° multiplications, orl02! years on a

1 Tflops computer. These times are clearly impractical, which

Hypercube of side length\
Tetrahedron of edges of length —n

n

leaves simulation as the only option. Two approaches seem " :
natural for simulation as a numerical method for approximat-
ing the required probabilities: generation of the random vari-
ables with the truncated probabilities that appear in the clozﬁcljc*_ Next, compute:

Figure 1: Projection of the feasibility regich

form solution, and simulation of the original process. In this
paper we deal with the first approach.

R s
Ys = Z <X> 1{XseB7¢};
i=1

Suppose that a random variatfecan be generated under thevhich identifies for which routes the staié, is a blocking
distribution of (6) (denotedX ~ =). ThenS consecutive state and weights the probability accordingly. Notice that
replications can be used to form the sample average estigtates may block several routes, since there éxjst; such

tor, sayY'(S). While simulation is a viable numerical tool, itthatB; N B; # (). By constructiony is an unbiased estimator
yields a random estimator as an approximation and it is e$the blocking probabilityE[Y,] = B. Using independence,
sential to estimate also the approximation error. Typicaltje sample mean converges in the orde@®¢p—1/2), where
asymptotic normality oft”(S) can be established, in whichs is the simulation length.

case theorecision errorat an approximate confidence level GeneratingR independent Poisson random variables can
is €5 = 21_as2 Var(V(S)) (z, is the gth quantile of the be made very fast by means of pre-calculated tables and ef-

standard normal distribution) and it can be shown to be of figiént search methods. However, the acceptance probabil-
order®(S~1/2) for the estimators considered in this paper. 1Y, G, can be very low for moderately large networks, and

Design of many networks, such as those carrying muffl¥"] = G- In previous studies we have used millions of it-

media traffic, relies on estimates of blocking probabilitigdations of the algorithm, on average, before obtaining a sam-
under different loads as well as different model parametdf' In the feasible sef. To visualise why this happens, con-
When estimating probabilities, it is often desirable to achie¥ide" routes, j andk in a clique, and imagine the feasible

a certain prespecified relative precision, e, = 0.01B. '€9ion projected onton;, n;, 1) as shown in Figure 1. If the

A fixed relative precision can be obtained faster by either d§Maining routes in the clique carry a totalof connections,
creasing the CPU time required to gener&ter by using an then the projection of the feasible region for this constraintis a
estimator ofB with reduced variance. The appropriate pefgirahedron contained in the hypercube of side ledgthrn, .
formance measure for the simulation methods that we shalgga!y other cliques will impose further constraintsiann;
describing here is theelative efficiencywhich measures the2nd7x- The volume of the feasible region can be considerably

trade-off between longer simulations and smaller relative Sfmaller than the whole space, resulting in many rejected sam-
ror, and is defined by: ples. Moreover, the probability distribution for heavily loaded

networks will give more weight to infeasible samplé&s:in-
B2 creases withp;,i = 1,..., R.
The relative efficiency of the method decreases as the di-
mensionR, or the loadp; per route increases, since more of

- . . the generated samples must be rejected. The main contribution
whgrecpu[Y(S)] denotes the average CPU tlmg of thg SN this paper is to introduce a simulation method that (a) avoids
ulation that produces th& samples. Thasymptotic relative

- . X . e T rejection of samples, thus improving the computational effort,
efficiencyis defined adims—.oc £-(Y'(5)), if this limit exists. and (b) uses conditioning for variance reduction. Both prop-

3.2 Direct Simulation erties will result in an increase of the relative efficiency, as we
' shall show.

The method of acceptance/rejection is a natural method for
generating a random variabl& ~ 7 with the stationary 4 MONTE CARLO CHAIN SIMULATION

probability w(n) of (6). In the sequel, use subscripts to derhis section presents the construction of a Markov chain
note iterations and parenthesis for individual components,(sp, 1 = 1,2, ...} with state spaces that is ergodic and

X =(X(1),...,X(R)) € N". Foreachk = 1,2,..., gener- whose limit probabilities are uniquely determined and given
ate avectoy, = (My(1),..., Mx(R)) of independent Pois- exactly byr in (6), that is:

son random variables with respective means = 1, ..., R,

and letk* be the first index such that/,- € S. Then VneS lim P(X; =n)=mx(n). @)

X = My has the desired distribution in (6), as shown hoee

by Vazquez-Abad, Andrew, and Everitt (1999). This method$ich simulation methods are known under the generic name
used in Everitt and Macfayden (1983) and Yates (1997) to cal-Markov chain Monte Carlo (MCMC) methods. Instead
culate (4) as follows. Random variabléX,, s = 1,...,S} of using the continuous-time physical process of call connec-
are generated with independent and identical replicationstiohs and route/wavelength assignments, a different process is

3.1 Relative Efficiency

&Y (9)) = CPUY (S)|Var[Y'(S)]’




simulated to estimate the blocking probabiliy This arti- the corresponding distribution satisfi®§;1(j) < m] =

ficial (or “surrogate”) process is defined in discrete time asPa(m)/P;(A;(&x)), m =0, ..., A;(&) and can be generated
Markov chain and it no longer has the interpretation of beery efficiently by simple reading of the arr&y. As a result,

ing an “occupancy process”: calls do not arrive, connect mo samples are rejected and the chain lies completely within
getrejected, and there is no concept of wavelength assignntieatstate spac&. Referring back to Figure 1, the Gibbs sam-
or holding times for the Markov chain. The Gibbs sampleter updates one component at a time, drawing the random
is a special case of the MCMC method called the sequenmber from the one-dimensional truncated Poisson distribu-
tial Metropolis Hastings algorithm and is described in Chiion within the feasible region only.

and Greenberg (1995), Gilks, Richardson, and Spiegelhalter Consider the random variables:

(1996), Ross (1997) and 8maud (1999), among others.

R
4.1 The Standard Gibbs Sampler Y, = Z (%) Lic,eB,)- (10)
In the sequel, the algorithms for generatifg,; from X =1
require the following notation. FaxX e N, define: Using dominated convergencs, — B w.p. 1 and the sam-
X =(X1),...,X(G-1),X(G+1),..., X(R)), ple averages oY} will converge toB. Brémaud (1999) has

an analysis of the convergence rates (Chapter 7) of the Gibbs
which is a vector inN®*~1 | missing component. Given any sampler. For this example the chdif), } is geometrically er-
xr € Sand anindex < j < R, the notationr(-|z—7) is used godic and sample averages convergétalso in the order of
for the conditional probability of thg-th component given all O(S~*/2), with S samples.

the others: There is no need for the order of the updates to be ran-
i , i m(zy) dom. By selecting the components cyclically, the following
N = PIX —ylX—7 = J] — T \YS . - - ! -
m(yle™) [X() =yl 7] ZA(J' ()ﬂv)o () ’ algorithm avoids the generation of the random variafléor
z(j)=

each new sample generated.
wherez, (i) = z(¢) for i # j andz, (j) = y, andA;(z) is the
state dependent bound such that all states in the sumdle inDefinition 4 Consider a Markov Chaigy; satisfying:

Definition 3 The Randomised Gibbs Samplés a Markov [ =G0) if i # o}, = kmod(R) + 1,
chain{¢;}, where¢; satisfies: k+1(0) { ~7(|¢.7F)  otherwise. (11)
NEXO) if i # oy, , o
Ert1(7) { ~ 7(€.%F) otherwise, Foranyr € {1,..., R}, define thderiodic Gibbs Sampléay

(k’") = (+rk, Which is a periodic sample of the chafigy }.
wherecy, ~ U{1,..., R} is chosen uniformly amongst ttfe
components, independently of the history of the process. Due to the fixed order in which the updates take place for the
R stages of each iteration, the chain is no longer reversible,
Denote byg, a distribution on{1,2,..., R}. Letthe as explained by Biaud (1999). Instead of using the balance
Markov chain{,.} have transition probabilities: equations for reversible chains, one proves directly tha
Plesr = yléx = 2] = a stationary probability for the proce$$kr)}, as explained
’ o o by Vazquez-Abad, Andrew, and Everitt (1999): one shows that
{qs”(y(sﬂx ) Wy =i F s ey 2 xn) P, = m|¢™) = ). Ireducibility of
0 otherwise. L LomeS T L ekt ko : -
the finite state chain ensures the existence of a unique ergodic
It can be shown by a reversibility argument (see Ross, 199gasure for this example, so thatiP = 7, wherelP is the
and BEmaud, 1999, Chapter 7) that the stationary probabtfiansition matrix of the chain, then (7) will also be true. By a
ties of the procesét, } are preciselyr(n), n € S, as required Similar argument as before, using the CLT for ergodic Markov
in (7). In this paper, represents the uniform distributionChains, the estimators:
The conditional distribution of the randomly chosen compo-

nent is very simple to generate wherhas a product form. In v _ zR: Ai 1 (12)
particular, for (6) it is a one dimensional Poisson distribution L. A {qg”e&,}
truncated to (2). For each< j < R, let =1
m on are consistent and their sample average converges with rate
Pj(m) = Z % m=1,...,A. (8) O(S5~1/2), whereS is the number of simulations.

4.2 The Gibbs Sampler with Local Estimation

At every stepk, let j = o1 and calculate\ ; . For clique . . . . L
y stepk J = o 5(&) g The Gibbs sampler as described in the previous section is the

acking, o .
P g current state of the art. Because the periodic sampler is con-
. —A— . sistent for every,, so is theaveraged estimator
A; (§x) = A f?gg ; &c(c)l{#c}' 9)
c i R
1 r

Then the required conditional probability is a Poisson dis- = ZE[Yk( |- B ask — .
tribution with parametep; truncated at\;(&;) < A, ie., r=1



Proposition 1 Consider the chaingé,.} and{(} in station- state of the cliques that contain routehenP([1¢, c5,} =
ary state, andf: S — R a function with finite stationary vari- 1;¢, ¢g,;] = 1. In our simulations, there ar@ = 300 routes
ancev?. The ratio between the efficiency of the randomisadd in many iterations the component being updated does not

estimator and the averaged estimator is: greatly influence the statistlé., 1 given its previous valu#;.
Although we cannot give a formal proof of this fact, this sim-
Ele S, F(G)] v? ple observation leads to the conjecture that the statiélig$
Ef(&)] 1 E ' are highly correlated, and this computation is of little use, hin-
v + = > Cov[£(G), £(G)] dering efficiency.
i#j=1 For anyi, the estimators,; = 1y, ,eB,} are con-
Proof : The variables, ..., (r have a common distri- sistent forB;. Indeed, sincg(;} has stationary probability

m, thenlimy_, E[Ys ;] = n(B;) = B;. To alleviate the
problem of inefficient calculations in the sums, we propose
to choose only one terii{k) to be updated at iteratiof Ju-

butionwt. Leto ~ U{l,..., R} be a uniformly distributed
index, independent df¢; }. Then, conditioning ow:

Var[f(¢o)] dicious choice of the sequence of updates for the sequential
R Gibbs sampler can in fact introduce a degree of negative cor-
1 . . lation into the estimates. Consider two consecutive updates
= —= Var[f((;)|lo =] + Var [E[f(()|o =1 rela X ' ; X P
R ; LF(G)] ] [ELf (Gl I with o, ando; in a common clique. I, (o) is large, then

R Ao, (Ck) > Ci(ow) will be large. ThuskE[Yy ., |Cx] will be
_ 1 3 Varlf(G)] = o, small, since it decreases monotonically with, (.Xy). More-

R~ over, (k+1(0k) < Ao, (k) is allowed to be large. If indeed

o Cet1(ow) is large, them,, . | (Cet1) < A — Cpg1(ow) will be

where we have used theff(¢;)|oc = i] is independent of, small (sinces,; andoy, are in a common clique), causing
from the assumption that afl have a common distribution,E[YHLM+1 |Ce+1] to be large. Thus if consecutive updates
and therefore their variance (w.r. & is zero. Then the effi- 3re often in the same clique, then a small,, will often be
ciency of the randomised estimator is proportional ©0®.  followed by a large¥y.: 1.4, ,,. This effect arises due to the

The averaged estimator, on the other hand, satisfies: truncation of the state space, and should thus become more
apparent as the blocking increases.

R R . . .. . .
1 NERRr ‘ ‘ Using consistency and ergodicity of the sequential Gibbs
Var R Z;f(g) RV +R;1C°V[f(g)’ FGI- sampler, it follows that for each=1,..., R,
1= i#j=
S
Because the avgraged gstimator requ.ires compﬂtie_galua- lim L Z Yiil{s—i) — Bs
tions of the functiory while the randomised only requires one, S—o0 S(i) Pt

the efficiency of the averaged one is proportional to

a.s., wheres(i) = 3 1;,,—;; counts the number of iterations
whereo;, = i, and the convergence is of the ora@(S'/?).
We call these théocal estimates

1

— .
e 3 Covlf(), 1G] | ,
iAj=1 4.3 Filtered Gibbs Sampler
L . c _ Consider a Markov ChaifiX;;} and an estimator of the form:
The proof s finished by noticing th&t = (,,, because the dis-
tribution of &, is the same as the distribution of dll, and ~ 18
component is the one being updated. < Xg = 5 Z f(Xk),
k=1

Corollary 1 Assume that the stationary covariance of a func- = .
tion f£(¢x) within periods is negative (positive), that iswhich is a sample average (other functional forms can also

Cov(f(Gi), f(¢5)) < (>) 0, i #j; 4,5 € {1,..., R}, where be considered in thg general setting)._ Th_e method known as
¢, ~ 7 has the stationary distribution. Then the average esfiltered Monte Carlois based on conditioning at each stage,
mator (1/R) Y°F | £(¢x) has a better (worse) efficiency thaiS explained by Ross (1997), obtaining:

the randomised Gibbs samplé(, ), givenly = & ~ .

S
= 1
[ J—
The averaged version of the estimation is equivalent to Xs = S ;EWX’“)|X’“_1]'
what we call the “sequential” Gibbs sampler, which follows h
the chain{¢,} and sets the estimation in terms of For a single random variable it is always true tWat(X) =
Var(E[X|Z]) 4+ E(Var[X|Z]), and therefore conditioning en-
R . . . . .
v — Z Ai 1 (13) tails a variance reduction. For example Xfis a Bernoulli
k= N ) iakeBi} variable, it always takes the extreme valOeand1, while its

=t conditional expectation is a probabiliB(X = 1|2) € [0,1]

This estimator may present the problem of high correlatioasid thus has less variability. However, it is not always the case
as is apparent from Proposition 1. Most of the terms in ther Markov chains thaVar[X%] < Var[Xs], due to the corre-
sums for (10) or (13) will not be affected by changes in thation structure. Fortunately, when estimating probabilities we
component: if changes in component, do not affect the can always ensure variance reduction.



Proposition 2 Let { X} be a stationary Markov chain with Each of the periodic Gibbs samplers embedded in the
state spaces ¢ N* and f(z) = 1;,¢4) the indicator func- computation of (14) is dedicated to estimatifig,. Since
tion of a setd € S. ThenVar[X§] < Var[Xg]. S(ox)/S — 1/R asS — oo, the Filtered Gibbs sampler is
strongly consistent for the blocking probabiliB; Yet the dis-

Proof : The variance of the sample average is: tribution of the estimation considerably improves the compu-

1 18 tational effort, as the results of the following section show.
Var[Xs] = EVar[f(Xl)] + 3 Z Cov[f(Xy), f(X;)]. Filtering can be applied analogously to the randomised
k#j=1 version of the Gibbs sampler, which is done in the results of

The first term contains the variance of the Bernoulli variabtlr(]ae following section.

Var[f(X1)] = P(A)(1 — P(A)), which is no smaller than the5 NUMERICAL RESULTS
variance of the conditional expectativar{E[f(X1)|Xo]} as

usual. Calls, — P(Xy.; € A|X), then: The network topology used washax 5 mesh-torus topology

with cligue packing. Two networks were considered: one with

- 1 1S A = 8wavelengths per link, and one with= 32 wavelengths
Var[X§] = EVar[m] + I Z Cov[kg, K. per link. The performance of the estimators was compared for
kj=1 a range of loads. The loads were selected to yield blocking

probabilities in the rang&0~° to 0.1, which is typical of cur-

For any two adjacent terms,
y ) rent networks.

Cov[f(Xk), f(Xk+1)] The method of batch means (see Alexopoulos and Seila,
— E[f(X0)f(Xpsr)] — P(A)2 1998) was used to estimate t_he varlance_of the estimators. This
method is based on regroupifggonsecutive samples to form

= E[E[f(Xe)f(Xps1)| Xk, Xe—1]] — P(A)?

) a “batch meanv;, s = 1,...,S and simulating a total of
= E[E[f(Xg)rr|Xk-1]] — P(A)". batches:
Use now the fact that (X)) = 1(x,c4) to establish thatthe _ 1 2 . 1
inner conditional expectation has valtig on the set where Ys = 3 Zy(sfl)ﬁﬂw Y(5) = S ZYS’
X} € A (conditioned onX},_) and zero otherwise, so that k=1 s=1
S
~ —~ A ]_ — ~
Cov[f(Xk), [ (Xk+1)] and V =Var[Y(5)] = SE-D > (Y. -V (9))>
= E [E[]-{XkeA}|Xk—1]“k] — P(A)2 s=1
= Elkp_1 kn] — P(A)? The experiments usesli = 10000 samples, with a batch

size of 5 = 10000. Because of its low computational ef-
ficiency, the A/R algorithm used = 1000 and3 = 100
Using a similar argument for other terms, it can be shown ti{#fth no reduction in resulting efficiency). The early rejec-
Cov[f(Xy), f(X;)] > Covlkk, #;], completing the proof. tion approach of ¥zquez-Abad, Andrew, and Everitt (1999)
4 was used for A/R. These experiments were conducted on a

Applying this method to the Gibbs samplers requir@$6 MHz Pentium Il processor using the gnu C++ compiler
evaluation of the conditional probabilities: under the Linux operating system. In the simulations that fol-
low, the arrival rate was the same over all of the routes, so that

= Cov|kg—_1, Kk

P[Xis1 € B,|X)] = Pi(A; (X)) — Pj(A;(Xk) — 1)) pi; = pis constant. - . B
Pj(Ai(Xg)) Table 1 shows the estimator of the blocking probability,
= g(A;(Xg);pj) its standard deviation and the CPU time required for the A/R

) i o . method, which shows the expected deterioration as load and
whereP;(-) are givenin (8) and; (Xx) is givenin (9). There- |\ mber of wavelengths increase.

fore conditioning not only reduces the variance, but when it is Figure 2 shows the relative efficiency for direct simula-
feasible to pre-computg-; -), calculation of the probabilitiestiOn of  using A/R, and the variants of the Gibbs sampler
is as simple as reading a table. This is the case when netWgtkcripe in Section 4.1. The computation of the Gibbs al-
traffic is uniform, or the load on each route is selected fromygyithms is dominated by the evaluation of the state blocking
small set. _ o _ probability, and is thus similar in all cases. Since the random

_ Our proposed method combines the filtering with the digpq sequential variants increase the correlation between con-
tribution of the estimation via the local estimates as fOHOWSsecutive states, they increase the variance, resulting in reduced

Definition 5 The Filtered Sequential Gibbs Samplisrcon- €fficiency. While the periodic Gibbs sampler performs com-

structed from the chaifiX;} with transitions governed by: ~ Parably with A/R when the probability of rejection is low;, it
outperforms A/R substantially as the size of the state space

Xepa(i)d = Xi(i) if i # ox = kmod(R) +1, and/or the load grows, as expected.

i ~7(-|X,T) otherwise. The estimated blocking probabilities and their estimated
standard deviations are shown in Table 2 for the the peri-
odic (P) and filtered sequential (F) Gibbs samplers. At first
X RSEL /A sight, it seems from the table that our proposed method does
Y(S) = 3 Z ( ;’“) P[Xk+1 € Bo,|Xk].  (14) not perform better than the periodic sampler, exhibiting al-

k=1 ways greater variance. However, the periodic estimator is

by evaluating the sample average:




[p [ vaoco [Vv [ time (s) |
A = 8 wavelengths
0.05 || 2.93333e-06| 1.19608e-06| 32.3
0.1 0.0003878 | 1.41897e-05| 32.4
0.15 || 0.00427497 | 4.77054e-05| 32.8
0.2 0.0181383 | 9.8596e-05 | 35.7
0.25 || 0.0456161 | 0.000160489| 46.3
0.3 0.0836662 | 0.000203071| 83.6
0.35 || 0.128659 0.000248271| 253
A = 32 wavelengths
1.0 0.0001242 | 7.89775e-06| 32.5
1.2 0.00199897 | 3.12384e-05| 33.2
1.4 0.0122448 | 7.6496e-05 | 40.7
1.6 0.0383563 | 0.000138135| 97.7
1.8 0.0779384 | 0.00019375 | 1290
2 0.124802 0.000237888| 273000

Table 1: Estimated blocking probabilities, its standard devia-

tion, and the required CPU time for direct simulation.

Lo

[ v (10000) [ V7

[ ¥+(10000) [ Ve

A = 8 wavelengths
0.05 || 3.198e-06 | 4.018e-08|| 3.324e-06 | 2.721e-07
0.1 0.0003803 | 4.409e-07|| 0.0003764 | 3.203e-06
0.15 || 0.004307 | 1.509e-06|| 0.004297 | 1.252e-05
0.2 0.01836 3.047e-06|| 0.01832 2.762e-05
0.25 || 0.04607 4.733e-06|| 0.04605 4.290e-05
0.3 0.08466 6.025e-06|| 0.08476 5.414e-05
0.35 || 0.128772 | 6.923e-06|| 0.128901 | 6.095e-05

A = 32 wavelengths
0.8 2.057e-06 | 3.186e-08|| 2.075e-06 | 1.126e-07
1.0 0.0001258 | 2.522e-07|| 0.0001249 | 1.083e-06
1.2 0.002027 | 1.014e-06|| 0.002023 | 5.291e-06
14 0.01240 2.508e-06(| 0.01240 1.462e-05
1.6 0.03836 4.193e-06|| 0.03834 2.517e-05
1.8 0.07771 5.663e-06|| 0.07769 3.131e-05
2 0.1233 6.651e-06(| 0.1233 3.369e-05

Table 2: Estimators and standard deviation for periofﬁa,

and filtered Y, sequential Gibbs samplers.

R = 300 times slower. It requireg transitions of the Markov
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Figure 2: Efficiency against offered load for direct simulation,
and random, periodic and sequential Gibbs samplers applied
to a5 x 5 mesh-torus.

pute the approximation at the same level of relative error. For
the more realistic model with = 12 at B = 0.12, the gain
factor is 93,931: if our method requires 1 minute, the usual
A/R would need 65.2 days to complete the simulation.

Not only does our proposed method clearly outperform

chain (11) per sample, compared to one for the sequential séiR, but its performance continues to increase for increasing
pler, and thereR terms in the sum (12), compared to one fd@ad at lower blocking rates asincreases, dramatically over-
local estimation.
Figure 3 shows the corresponding efficiencies when the
Gibbs samplers are implemented via their filtered versions CONCLUDING REMARKS
with local estimation. These versions are substantially mdree MCMC method proposed for blocking probability calcu-
efficient than the standard Gibbs sampler. The filtered sequi@tions, which we call the filtered Gibbs sampler, not only out-
tial Gibbs algorithm is at least an order of magnitude betteerforms the usual acceptance/rejection method, but its rela-
than direct simulation. Some of the improvement comes frdive efficiency actually grows with problem size and with in-
the greater speed of local estimation, but filtering reduces theasing load. Most of the efficiency improvement for block-
variance by an additional factor of two compared to the unfikkig probabilities is a consequence of the combination of fil-
tered local variant.
In teletraffic engineering, a network is typically designesther techniques may prove impossible to implement whilst
to satisfy a maximum blocking probability dependent on haur method overcomes the curse of dimensionality.
man factors, which does not vary as the network grows. Thus As mentioned before, any distributign can be used for
the efficiency for a given blocking probability (Figure 4) is athe randomised Gibbs sampler. Moreover, in the localised es-
important performance measure for an algorithm. The ratiothation, it is not necessary to usg:) = o,. Future work
the relative efficiencies is the inverse ratio of the CPU timawolves adaptively establishing which componeptshould
required to achieve a fixed relative precision. As seen frdre used for thestimation(not only for the updates) in order
the plot, forB = 0.0004, A = 8 (moderate network sizes ando minimise the overall variance: those indice®r which
loads) our method requires 4.2 times less CPU time to coBy-is small could be allocated more samples. This method,

coming the curse of dimensionality.

tering and localisation of the estimation. For some systems,



versidad Nacional Awrioma de Mxico, and her Ph.D. de-

100000 pr——— ' L gree in Applied Mathematics in 1989 from Brown University.
10000 L /igi?@ ] Her research interests include stochastic control and simula-
I o /z’:ﬂ ] tion with applications in telecommunications, manufacturing,
@ 1000 | e = transportation, insurance and finance. She is a member of
g . SIAM, INFORMS and IEEE. She is Web Editor of the IN-
g 100 ¢ ] FORMS College on Simulation and Associate Editor of the
s Lol ] IEEE CSS.
. y Accept/reject -=— ] . .
. 7 _filtered sequential Gibbs -+-- Lachlan L. H. Andrew is a research fellow in the Depart-
1 ¢ 7 filtered randomised Gibbs -<--- . . . . . .
i e ] ment of Electrical and Electronic Engineering at the Univer-
or LT ! L] sity of Melbourne, Australia. He received his B.Sc. in com-
0.05 o 10 0.20  0.30 puter science in 1992, B.E. in electrical engineering in 1993
oad per route, rho_i . . . . . .
_ and Ph.D. in engineering in 1996, all from the University of
(a) 8 wavelengths per link . . . )
Melbourne. His research interests include performance anal
ysis and resource allocation in optical and wireless communi-
T - - cation networks. He is a member of the IEEE and associate
100000 [ A E
- e 1 member of the IEE.
10000 |- e : References:
7 ] e ] ) .
= 1000 F P J Alexopoulos, C., and A. Seila. 1998. Output data analysis.
g : T TN 1 chapter 7. IrHandbook of Simulatigred. J. Banks, 225—
S 100f Py . 272. John Wiley & Sons.
® I ] Borella, M. S., J. P. Jue., D. Banerjee., B. Ramamurthy., and
10 ¢ /,i;i/f/merg:j <o Cceptireject 3 B. Mukherjee. 1997. Components for WDM lightwave
+ fitereq randbmised Gibbs o - ] networks.Proc. IEEE 85(8):1274-1307.
ol S ! i 3 Brémaud, P. 1999Markov Chains, Gibbs Fields, Monte Carlo
08 1O adperrouterthoi 20 Simulation, and QueueJexts in Applied Mathematics, 31,

New York: Springer.
Chib, S., and E. Greenberg. 1995. Understanding the
Metropolis-Hastings algorithmThe American Statistician
49(4):327-335.
Everitt, D. 1991. Product form solutions in cellular mobile
i i i i i communication systems. [Feletraffic and Datatraffic in a
& ] Period of Changeed. A. Jensen and V. Iversen, 483-488.
10000 L A ] North-Holland.
[ A ] Everitt, D. 1994. Traffic engineering of the radio interface for
3 cellular mobile networksProc. IEEE 82(9):1371-1382.
Everitt, D., and N. Macfayden. 1983. Analysis of multicel-
lular mobile radiotelephone systems with lo&. Telecom
3 Technol. J.1(2):37-45.
] Gilks, W., S. Richardson., and D. Spiegelhalter. 199&rkov

(b) 32 wavelengths per link

Figure 3: Efficiency against offered load for direct simulation
and filtered Gibbs samplers applied td6 & 5 mesh-torus.

100000 |

T
+ O
1

1000 [

100

relative efficiency (1/s)

10 AR, 32 —o— \
I AR, 8 —+— |

L filtered, 32 o g

filtered, 8 ——- 7 Chain Monte Carlo in Practice London: Chapman and
01 L - s - s s ] Hall.
le-06 1e-05 0.0001 0.001 001 01 1 Kind, J., T. Niessen., and R. Mathar. 1998. Theory of maxi-

blocking probability A . k
mum packing and related channel assignment strategies for

Figure 4: Efficiency against blocking probability for direct cellular radio networksMath. Meth. Op. Res48(1):1-16.
simulation and filtered sequential Gibbs samplers wite 8 Nelson, R. D. 1993. The mathematics of product form queuing
andA = 32 wavelengths. networks.Computing Survey25(3):339-369.

Ramaswami, R. 1993. Multiwavelength networks for com-
known as stratification, could in principle yield even better puter communicationdEEE Commun. Mag31(2):78-88.
performance of the Gibbs sampler and is the subject of fut®gymond, P.-A. 1991. Performance analysis of cellular net-

research. works. IEEE Trans. Commun39(12):1787-1793.
AUTHOR BIOGRAPHIES Rosrsési. 1997.Simulation Second ed. Boston: Academic

Felisa J. Vazquez-Abadis Professor at the Department o¥azquez-Abad, F., L. Andrew., and D. Everitt. 1999. Esti-
Computer Science and Operations Research at the Universityation of blocking probabilities in cellular networks with
of Montreal. She is also Fellow at the Department of Elec-dynamic channel assignment. (submitted).

trical and Electronic Engineering at the University of MelYates, J. 1997. Performance analysis of dynamically-
bourne. She received her B.Sc. degree in Physics in 1988configurable wavelength division muliplexed networks.
and her M.Sc. degree in Statistics and OR in 1984 from Uni-PhD thesis, University of Melbourne, Australia.



