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ABSTRACT

Blocking probabilities in Wavelength Division Multiplex op-
tical networks are hard to compute for realistic sized systems,
even though analytical formulas for the distribution exist (un-
der maximal packing of wavelengths) . This computational
difficulty is mainly due to the structure of the state space,
which imposes strong coupling constraints amongst compo-
nents of the occupancy vector. Direct simulation is often used
to estimate the blocking probabilities. This paper presents a
new method based on the Gibbs sampler, for which the es-
timation is “localised” (distributed computation) and carried
out conditioning on an appropriate filtration. The filtered esti-
mators benefit from the variance reduction of conditional ex-
pectations as well as a reduction in computational effort due
to the local estimation. Our simulation results suggest that
that these methods dramatically outperform the currently used
computational methods. For some systems, other techniques
may prove impossible to implement whilst our method is not
subject to the curse of dimensionality.

Keywords: Blocking probabilities, dynamically reconfigurable opti-
cal networks, performance evaluation of loss networks, Markov chain
Monte Carlo, filtered Monte Carlo.

1 INTRODUCTION

Wavelength Division Multiplexing (WDM) networks are a
promising and practical means of exploiting the enormous ca-
pacity of optical fibre communication systems, as discussed
by Ramaswami (1993) and Borella et al. (1997). This paper
proposes a new simulation technique, the Filtered Sequential
Gibbs Sampler, and applies it to the analysis of a loss net-
work model for circuit switched WDM networks, in which
connections that are established between two nodes are held
for a substantial time. The primary performance measure is
the blocking probability, the probability that a caller will be
unable to place a call from a particular origin to destination
because there are insufficient unused wavelengths on the route
to carry the call. A maximum blocking probability is often
imposed by regulatory authorities or commercial pressure, but
over-dimensioning a network is very costly. Thus it is impor-
tant to know accurately and quickly the blocking probability
of a candidate network design.

It is possible to distribute the available wavelengths stat-
ically among the origin/destination (O/D) pairs so that no two
O/D pairs whose paths share a link can ever use the same
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wavelength. Alternatively, wavelengths can be allocated dy-
namically as calls arrive and depart, as assumed here. A use-
ful lower bound on the overall blocking probability of these
networks is obtained using themaximum packing strategy
of Everitt and Macfayden (1983). The approach, originally
proposed for cellular telephony, assumes that a call can be ad-
mitted if several linear constraints on the number of calls be-
tween each O/D pair are satisfied. An advantage of the maxim-
um packing formulation is that it allows a closed product-form
expression for the stationary probabilities, subject to the (dif-
ficult) determination of a normalising constant. Everitt (1991)
and Everitt (1994) claim that this product form solution applies
to other more complex wavelength allocation strategies.

Section 2 summarises the known results for the blocking
probability given by the maximum packing bound. Evaluating
these blocking probabilities requires evaluation of a normalis-
ing constant, and this problem grows exponentially in the num-
ber of routes and/or wavelengths (see Nelson, 1993), which
has led most researchers to use simulation instead.

Two simulation approaches seem natural: generation of
the random variables with the truncated probabilities that ap-
pear in the closed form solution, and simulation of the original
process. In this paper we deal with the first approach. Direct
simulation of the target distribution can be done via a trunca-
tion of a multivariate Poisson vector, but as explained in Sec-
tion 3, this approach may become impractical. Section 4 intro-
duces a Markov chain Monte Carlo (MCMC) method, namely
the Gibbs sampler, to solve this problem. To our knowledge,
our studies are the first to implement MCMC methods for per-
formance evaluation in loss networks. In Section 4 the esti-
mation of the Gibbs sampler is performed locally (distributed
computation) and a filtering technique is used to improve the
efficiency. Our proposed method is a filtered Monte Carlo sim-
ulation applied to the MCMC with local estimation that bene-
fits from a variance reduction as well as ease of computation.
Section 5 presents the numerical results which indicate how
our method outperforms the currently used methods for direct
simulation.

2 NETWORK MODEL

Consider a WDM network withΛ wavelengths, in which each
node can transmit and receive on any wavelength. Each wave-
length carries only one call on a given link. Thewavelength
continuity constraintrequires that at nodes without “wave-
length converters”, the same wavelength be used on the incom-
ing link as the outgoing link. This model covers WDM net-
works with no, partial or full wavelength conversion, and also
traditional TDM networks (with time slots replacing wave-
lengths). Only one route is used per O/D pair (fixed routing).



2.1 Maximum and Clique Packing
Maximum packing admits an incoming call on a given route
if a rearrangement of wavelengths of ongoing connections can
be found to free a sequence of wavelengths that satisfies the
continuity constraint. The call is then connected and held for
a random time.

Let R be the number of routes in the network. Letni de-
note the number of calls using theith route. Define a graph
G = (V,E) where each vertex represents a route, and there is
an edge between two vertices if the corresponding routes share
a link. Allocating wavelengths to routes then corresponds to
“colouring” G so that vertexi is allocatedni colours, and no
two adjacent vertices are allocated the same colour. This is
called ann-colouring, wheren = (n1, . . . , nR). For a WDM
network under the wavelength continuity constraint, themax-
imum packingstrategy will admit a new call if there is ann-
colouring ofG using at mostΛ colours, wheren is the occu-
pancy vector after admission of the call, andΛ is the number of
wavelengths per optic fibre. Networks with partial conversion
require a reinterpretation of a “route”.

In general, the necessary and sufficient conditions for ad-
mission can be quite complex (see Kind, Niessen, and Mathar,
1998), and so a simple set of necessary conditions, known as
theclique packingconditions, is commonly used instead. To
simplify notation, this paper describes the proposed method
applied to clique packing, rather than maximal packing.

Definition 1 A clique of a graphG is a subgraph which is
completely connected, that is, there is an edge between each
pair of vertices. Amaximal cliqueis one which is not a sub-
graph of any larger clique ofG.

For any maximal cliquec of G, let nc denote the total
number of calls on the routes inc. Maximum packing will
only admit a call on routei whennc ≤ Λ− 1 for all cliquesc
containing routei. These necessary conditions are the clique
packing conditions. Raymond (1991) notes that clique packing
is not equivalent to maximum packing. Nonetheless, it results
in approximately equal blocking performance.

Let S be the set of all permissible network occupancies.
For clique packing,S is given by

S =

{
n ∈ NR :

∑
j∈Cl

nj ≤ Λ, ∀l = 1, . . . , L

}
(1)

whereCl is the lth clique andL is the number of cliques
in the network. In general,S is such that, ifxi are spec-
ified for all i 6= j, then there is maximum occupancy
Λj(x) for route j. That is, an occupancy vectorn =
(x1, . . . , xj−1, nj, xj+1, . . . , xR) is in S if and only if

0 ≤ nj ≤ Λj(x). (2)

2.2 The Closed Form Solution
The network dynamics can be modeled as a continuous-time
stochastic process. Letn(t) = (n1(t), . . . , nR(t)) be the state
of the process at timet, whereni(t) represents the number of
wavelengths in use on routei at timet, and let the state space
beS described above.

Calls arrive at each routei following independent Pois-
son processes with corresponding intensitiesλi, i = 1, . . . , R.

Upon arrival of a call for routei at timet, it is accepted if there
is still at least one wavelength available, that is, if the current
state satisfies:

max
l:i∈Cl

∑
j∈Cl

nj(t−) < Λ.

The call is said to be connected, andni(t) = ni(t−)+1, while
nj(t) = nj(t−) for j 6= i. If an incoming call to routei finds
all wavelengths in use at one of the cliquesCl 3 i, then the
call is blocked(lost) andn(t) = n(t−). Calls stay connected
for a random “holding” time, assumed independent of the rest
of the process history. All holding times are identically dis-
tributed with mean1/µ. When a call on routei terminates, the
occupancy componentni(t) is decreased by one.

Definition 2 The performance measure of interest is called
the blocking probability, and it is defined as the long term
probability that an incoming arrival is lost:

B = lim
t→∞

∑R
i=1 Yi(t)
A(t)

,

whereYi(t) is the total number of calls lost on routei up to
timet andA(t) is the total number of arrivals up to timet.

From the dynamics of the process, it follows that the set
of blocking states for routei is given by:

Bi =

n ∈ S : max
l:i∈Cl

∑
j∈Cl

nj = Λ

 , i = 1, . . . , R, (3)

so that incoming calls to routei are blocked if the current state
is in the setBi. The blocking probability can be expressed in
terms of the blocking probabilities per route:

B =
R∑
i=1

(
λi
λ

)
Bi, (4)

Bi =
∑
n∈S

π(n)1{n∈Bi}, (5)

where π(·) are the stationary probabilities of the process
{n(t)} andλ =

∑R
i=1 λi. Let ρi = λi/µ be the “offered

traffic” to routei, then it can be shown (see V´azquez-Abad,
Andrew, and Everitt, 1999) that:

π(n) =
1
G

R∏
i=1

(
ρnii
ni!

)
, n ∈ S (6)

G =
∑
n∈S

R∏
i=1

(
ρnii
ni!

)
,

whereG is called the normalising constant.

3 PERFORMANCE ESTIMATION

Evaluating blocking probabilities using (5)–(6) directly is a
difficult numerical problem for realistic sized networks. A typ-
ical WDM backbone network may have over 20 nodes and 32
or more wavelengths. The simplest approach is to calculate
the normalising factorG, where the sums are over the space
S, and then explicitly sum (6) over all statesn ∈ Bi. The



number of routes isR = n2/2 + o(n2), and for densely con-
nected networks, the number of states isO(ΛR). Thus com-
putingG directly takes of the order ofΛn

2/2 multiplications.
For a modest network of 10 nodes with eight wavelengths, this
requires around845 ≈ 1040 multiplications, or1021 years on a
1 Tflops computer. These times are clearly impractical, which
leaves simulation as the only option. Two approaches seem
natural for simulation as a numerical method for approximat-
ing the required probabilities: generation of the random vari-
ables with the truncated probabilities that appear in the closed
form solution, and simulation of the original process. In this
paper we deal with the first approach.

3.1 Relative Efficiency

Suppose that a random variableX can be generated under the
distributionπ of (6) (denotedX ∼ π). ThenS consecutive
replications can be used to form the sample average estima-
tor, sayŶ (S). While simulation is a viable numerical tool, it
yields a random estimator as an approximation and it is es-
sential to estimate also the approximation error. Typically,
asymptotic normality ofŶ (S) can be established, in which
case theprecision errorat an approximate confidence levelα

is εS = z1−α/2

√
Var(Ŷ (S)) (zq is the qth quantile of the

standard normal distribution) and it can be shown to be of the
orderO(S−1/2) for the estimators considered in this paper.

Design of many networks, such as those carrying multi-
media traffic, relies on estimates of blocking probabilities
under different loads as well as different model parameters.
When estimating probabilities, it is often desirable to achieve
a certain prespecified relative precision, e.g.,εS = 0.01B.
A fixed relative precision can be obtained faster by either de-
creasing the CPU time required to generateX or by using an
estimator ofB with reduced variance. The appropriate per-
formance measure for the simulation methods that we shall be
describing here is therelative efficiency, which measures the
trade-off between longer simulations and smaller relative er-
ror, and is defined by:

Er(Ŷ (S)) =
B2

CPU[Ŷ (S)]Var[Ŷ (S)]
,

whereCPU[Ŷ (S)] denotes the average CPU time of the sim-
ulation that produces theS samples. Theasymptotic relative
efficiencyis defined aslimS→∞ Er(Ŷ (S)), if this limit exists.

3.2 Direct Simulation

The method of acceptance/rejection is a natural method for
generating a random variableX ∼ π with the stationary
probability π(n) of (6). In the sequel, use subscripts to de-
note iterations and parenthesis for individual components, so
X = (X(1), . . . , X(R)) ∈ NR . For eachk = 1, 2, . . ., gener-
ate a vectorMk = (Mk(1), . . . ,Mk(R)) of independent Pois-
son random variables with respective meansρi, i = 1, . . . , R,
and let k∗ be the first index such thatMk∗ ∈ S. Then
X = Mk∗ has the desired distributionπ in (6), as shown
by Vázquez-Abad, Andrew, and Everitt (1999). This method is
used in Everitt and Macfayden (1983) and Yates (1997) to cal-
culate (4) as follows. Random variables{Xs, s = 1, . . . , S}
are generated with independent and identical replications of

ni

Tetrahedron of edges of length 
Hypercube of side length 

n r

nj

nk

Λ
Λ −

Figure 1: Projection of the feasibility regionS.

Mk∗ . Next, compute:

Ys =
R∑
i=1

(
λi
λ

)
1{Xs∈Bi},

which identifies for which routes the stateXs is a blocking
state and weights the probability accordingly. Notice that
states may block several routes, since there existi 6= j such
thatBi∩Bj 6= ∅. By construction,Ys is an unbiased estimator
of the blocking probability:E[Ys] = B. Using independence,
the sample mean converges in the order ofO(S−1/2), where
S is the simulation length.

GeneratingR independent Poisson random variables can
be made very fast by means of pre-calculated tables and ef-
ficient search methods. However, the acceptance probabil-
ity, G, can be very low for moderately large networks, and
E[k∗] = G−1. In previous studies we have used millions of it-
erations of the algorithm, on average, before obtaining a sam-
ple in the feasible setS. To visualise why this happens, con-
sider routesi, j andk in a clique, and imagine the feasible
region projected onto(ni, nj, nk) as shown in Figure 1. If the
remaining routes in the clique carry a total ofnr connections,
then the projection of the feasible region for this constraint is a
tetrahedron contained in the hypercube of side lengthΛ− nr.
Clearly other cliques will impose further constraints onni, nj
andnk. The volume of the feasible region can be considerably
smaller than the whole space, resulting in many rejected sam-
ples. Moreover, the probability distribution for heavily loaded
networks will give more weight to infeasible samples:G in-
creases withρi, i = 1, . . . , R.

The relative efficiency of the method decreases as the di-
mensionR, or the loadρi per route increases, since more of
the generated samples must be rejected. The main contribution
of this paper is to introduce a simulation method that (a) avoids
rejection of samples, thus improving the computational effort,
and (b) uses conditioning for variance reduction. Both prop-
erties will result in an increase of the relative efficiency, as we
shall show.

4 MONTE CARLO CHAIN SIMULATION
This section presents the construction of a Markov chain
{Xk, k = 1, 2, . . .} with state spaceS that is ergodic and
whose limit probabilities are uniquely determined and given
exactly byπ in (6), that is:

∀ n ∈ S lim
k→∞

P(Xk = n) = π(n). (7)

Such simulation methods are known under the generic name
of Markov chain Monte Carlo (MCMC) methods. Instead
of using the continuous-time physical process of call connec-
tions and route/wavelength assignments, a different process is



simulated to estimate the blocking probabilityB. This arti-
ficial (or “surrogate”) process is defined in discrete time as a
Markov chain and it no longer has the interpretation of be-
ing an “occupancy process”: calls do not arrive, connect or
get rejected, and there is no concept of wavelength assignment
or holding times for the Markov chain. The Gibbs sampler
is a special case of the MCMC method called the sequen-
tial Metropolis Hastings algorithm and is described in Chib
and Greenberg (1995), Gilks, Richardson, and Spiegelhalter
(1996), Ross (1997) and Br´emaud (1999), among others.

4.1 The Standard Gibbs Sampler
In the sequel, the algorithms for generatingXk+1 from Xk

require the following notation. ForX ∈ NR , define:

X−j = (X(1), . . . , X(j − 1), X(j + 1), . . . , X(R)),

which is a vector inNR−1 , missing componentj. Given any
x ∈ S and an index1 ≤ j ≤ R, the notationπ(·|x−j) is used
for the conditional probability of thej-th component given all
the others:

π(y|x−j) = P[X(j) = y|X−j = x−j ] =
π(xy)∑Λj(x)

x(j)=0 π(x)
,

wherexy(i) = x(i) for i 6= j andxy(j) = y, andΛj(x) is the
state dependent bound such that all states in the sum lie inS.

Definition 3 The Randomised Gibbs Sampleris a Markov
chain{ξk}, whereξk+1 satisfies:

ξk+1(i)
{

= ξk(i) if i 6= σk,
∼ π(·|ξ−σkk+1 ) otherwise,

whereσk ∼ U{1, . . . , R} is chosen uniformly amongst theR
components, independently of the history of the process.

Denote byqs a distribution on{1, 2, . . . , R}. Let the
Markov chain{ξk} have transition probabilities:

P[ξk+1 = y|ξk = x] ={
qsπ(y(s)|x−s) if y(i) = x(i), i 6= s
0 otherwise.

It can be shown by a reversibility argument (see Ross, 1997
and Brémaud, 1999, Chapter 7) that the stationary probabili-
ties of the process{ξk} are preciselyπ(n), n ∈ S, as required
in (7). In this paperqs represents the uniform distribution.
The conditional distribution of the randomly chosen compo-
nent is very simple to generate whenπ has a product form. In
particular, for (6) it is a one dimensional Poisson distribution
truncated to (2). For each1 ≤ j ≤ R, let

Pj(m) =
m∑
n=0

ρnj
n!

m = 1, . . . , Λ. (8)

At every stepk, let j = σk and calculateΛj(ξk). For clique
packing,

Λj(ξk) = Λ− max
i:j∈Ci

∑
c∈Ci

ξk(c)1{j 6=c}. (9)

Then the required conditional probability is a Poisson dis-
tribution with parameterρj truncated atΛj(ξk) ≤ Λ, i.e.,

the corresponding distribution satisfiesP[ξk+1(j) ≤ m] =
Pj(m)/Pj(Λj(ξk)),m = 0, . . . , Λj(ξk) and can be generated
very efficiently by simple reading of the arrayPj . As a result,
no samples are rejected and the chain lies completely within
the state spaceS. Referring back to Figure 1, the Gibbs sam-
pler updates one component at a time, drawing the random
number from the one-dimensional truncated Poisson distribu-
tion within the feasible region only.

Consider the random variables:

Yk =
R∑
i=1

(
λi
λ

)
1{ξk∈Bi}. (10)

Using dominated convergence,Yk → B w.p. 1 and the sam-
ple averages ofYk will converge toB. Brémaud (1999) has
an analysis of the convergence rates (Chapter 7) of the Gibbs
sampler. For this example the chain{ξk} is geometrically er-
godic and sample averages converge toB also in the order of
O(S−1/2), with S samples.

There is no need for the order of the updates to be ran-
dom. By selecting the components cyclically, the following
algorithm avoids the generation of the random variableσk for
each new sample generated.

Definition 4 Consider a Markov Chainζk+1 satisfying:

ζk+1(i)
{

= ζk(i) if i 6= σk = k mod(R) + 1,
∼ π(·|ζ−σkk+1 ) otherwise. (11)

For anyr ∈ {1, . . . , R}, define thePeriodic Gibbs Samplerby

ζ
(r)
k ≡ ζr+Rk, which is a periodic sample of the chain{ζk}.

Due to the fixed order in which the updates take place for the
R stages of each iteration, the chain is no longer reversible,
as explained by Br´emaud (1999). Instead of using the balance
equations for reversible chains, one proves directly thatπ is
a stationary probability for the process{ζ(r)

k }, as explained
by Vázquez-Abad, Andrew, and Everitt (1999): one shows that
π(m) =

∑
n∈S π(n) P[ζ(r)

k+1 = m|ζ(r)
k = n]. Irreducibility of

the finite state chain ensures the existence of a unique ergodic
measure for this example, so that ifπP = π, whereP is the
transition matrix of the chain, then (7) will also be true. By a
similar argument as before, using the CLT for ergodic Markov
Chains, the estimators:

Y
(r)
k =

R∑
i=1

(
λi
λ

)
1n

ζ
(r)
k ∈Bi

o (12)

are consistent and their sample average converges with rate
O(S−1/2), whereS is the number of simulations.

4.2 The Gibbs Sampler with Local Estimation

The Gibbs sampler as described in the previous section is the
current state of the art. Because the periodic sampler is con-
sistent for everyr, so is theaveraged estimator:

1
R

R∑
r=1

E[Y (r)
k ]→ B ask →∞.



Proposition 1 Consider the chains{ξk} and{ζk} in station-
ary state, andf :S → R a function with finite stationary vari-
anceυ2. The ratio between the efficiency of the randomised
estimator and the averaged estimator is:

Er[ 1
R

∑R
k=1 f(ζk)]

Er[f(ξ1)]
=

υ2

υ2 +
1
R

R∑
i6=j=1

Cov[f(ζi), f(ζj)]

.

Proof : The variablesζ1, . . . , ζR have a common distri-
bution π. Let σ ∼ U{1, . . . , R} be a uniformly distributed
index, independent of{ζi}. Then, conditioning onσ:

Var[f(ζσ)]

=
1
R

R∑
i=1

Var[f(ζi)|σ = i] + Var [E[f(ζi)|σ = i]]

=
1
R

R∑
i=1

Var[f(ζi)] ≡ υ2,

where we have used thatE[f(ζi)|σ = i] is independent ofi,
from the assumption that allζi have a common distribution,
and therefore their variance (w.r. toσ) is zero. Then the effi-
ciency of the randomised estimator is proportional to1/υ2.

The averaged estimator, on the other hand, satisfies:

Var

[
1
R

R∑
i=1

f(ζi)

]
=

1
R

υ2+
1
R

R∑
i6=j=1

Cov[f(ζi), f(ζj)]

.

Because the averaged estimator requires computingR evalua-
tions of the functionf while the randomised only requires one,
the efficiency of the averaged one is proportional to

1

υ2 +
1
R

R∑
i6=j=1

Cov[f(ζi), f(ζj)]

.

The proof is finished by noticing thatξ1
L= ζσ, because the dis-

tribution of ξ0 is the same as the distribution of allζi, and
componentσ is the one being updated. /

Corollary 1 Assume that the stationary covariance of a func-
tion f(ζk) within periods is negative (positive), that is:
Cov(f(ζi), f(ζj)) < (>) 0, i 6= j; i, j ∈ {1, . . . , R}, where
ζ1 ∼ π has the stationary distribution. Then the average esti-
mator(1/R)

∑R
k=1 f(ζk) has a better (worse) efficiency than

the randomised Gibbs samplerf(ξ1), givenζ0 = ξ0 ∼ π.

The averaged version of the estimation is equivalent to
what we call the “sequential” Gibbs sampler, which follows
the chain{ζk} and sets the estimation in terms of

Yk =
R∑
i=1

(
λi
λ

)
1{ζk∈Bi}. (13)

This estimator may present the problem of high correlations,
as is apparent from Proposition 1. Most of the terms in the
sums for (10) or (13) will not be affected by changes in the
componentσk: if changes in componentσk do not affect the

state of the cliques that contain routei, thenP[1{ζk+1∈Bi} =
1{ζk∈Bi}] = 1. In our simulations, there areR = 300 routes
and in many iterations the component being updated does not
greatly influence the statisticYk+1 given its previous valueYk.
Although we cannot give a formal proof of this fact, this sim-
ple observation leads to the conjecture that the statistics{Yk}
are highly correlated, and this computation is of little use, hin-
dering efficiency.

For any i, the estimatorsYk,i = 1{ζk+1∈Bi} are con-
sistent forBi. Indeed, since{ζk} has stationary probability
π, then limk→∞ E[Yk,i] = π(Bi) = Bi. To alleviate the
problem of inefficient calculations in the sums, we propose
to choose only one termi(k) to be updated at iterationk. Ju-
dicious choice of the sequence of updates for the sequential
Gibbs sampler can in fact introduce a degree of negative cor-
relation into the estimates. Consider two consecutive updates
with σk andσk+1 in a common clique. Ifζk(σk) is large, then
Λσk(ζk) ≥ ζk(σk) will be large. ThusE[Yk,σk |ζk] will be
small, since it decreases monotonically withΛσk(Xk). More-
over, ζk+1(σk) ≤ Λσk(ζk) is allowed to be large. If indeed
ζk+1(σk) is large, thenΛσk+1(ζk+1) ≤ Λ− ζk+1(σk) will be
small (sinceσk+1 andσk are in a common clique), causing
E[Yk+1,σk+1 |ζk+1] to be large. Thus if consecutive updates
are often in the same clique, then a smallYk,σk will often be
followed by a largeYk+1,σk+1 . This effect arises due to the
truncation of the state space, and should thus become more
apparent as the blocking increases.

Using consistency and ergodicity of the sequential Gibbs
sampler, it follows that for eachi = 1, . . . , R,

lim
S→∞

1
S(i)

S∑
k=1

Yk,i1{σk=i} → Bi

a.s., whereS(i) =
∑

1{σk=i} counts the number of iterations
whereσk = i, and the convergence is of the orderO(S1/2).
We call these thelocal estimates.

4.3 Filtered Gibbs Sampler
Consider a Markov Chain{Xk} and an estimator of the form:

X̄S =
1
S

S∑
k=1

f(Xk),

which is a sample average (other functional forms can also
be considered in the general setting). The method known as
Filtered Monte Carlois based on conditioning at each stage,
as explained by Ross (1997), obtaining:

X̄ ′S =
1
S

S∑
k=1

E[f(Xk)|Xk−1].

For a single random variable it is always true thatVar(X) =
Var(E[X |Z]) + E(Var[X |Z]), and therefore conditioning en-
tails a variance reduction. For example, ifX is a Bernoulli
variable, it always takes the extreme values0 and1, while its
conditional expectation is a probabilityP(X = 1|Z) ∈ [0, 1]
and thus has less variability. However, it is not always the case
for Markov chains thatVar[X̄ ′S ] ≤ Var[X̄S ], due to the corre-
lation structure. Fortunately, when estimating probabilities we
can always ensure variance reduction.



Proposition 2 Let {Xk} be a stationary Markov chain with
state spaceS ⊂ N

R andf(x) = 1{x∈A} the indicator func-
tion of a setA ∈ S. ThenVar[X̄ ′S ] ≤ Var[X̄S ].

Proof : The variance of the sample average is:

Var[X̄S ] =
1
S

Var[f(X1)] +
1
S2

S∑
k 6=j=1

Cov[f(Xk), f(Xj)].

The first term contains the variance of the Bernoulli variable
Var[f(X1)] = P(A)(1 − P(A)), which is no smaller than the
variance of the conditional expectationVar{E[f(X1)|X0]} as
usual. Callκk = P(Xk+1 ∈ A|Xk), then:

Var[X̄ ′S ] =
1
S

Var[κ1] +
1
S2

S∑
k 6=j=1

Cov[κk, κj ].

For any two adjacent terms,

Cov[f(Xk), f(Xk+1)]
= E [f(Xk)f(Xk+1)]− P(A)2

= E [E[f(Xk)f(Xk+1)|Xk, Xk−1]]− P(A)2

= E [E[f(Xk)κk|Xk−1]]− P(A)2.

Use now the fact thatf(Xk) = 1{Xk∈A} to establish that the
inner conditional expectation has valueκk on the set where
Xk ∈ A (conditioned onXk−1) and zero otherwise, so that

Cov[f(Xk), f(Xk+1)]
= E

[
E[1{Xk∈A}|Xk−1]κk

]
− P(A)2

= E[κk−1 κk]− P(A)2

= Cov[κk−1, κk].

Using a similar argument for other terms, it can be shown that
Cov[f(Xk), f(Xj)] ≥ Cov[κk, κj ], completing the proof.

/
Applying this method to the Gibbs samplers requires

evaluation of the conditional probabilities:

P[Xk+1 ∈ Bj|Xk] =
Pj(Λj(Xk))− Pj(Λj(Xk)− 1))

Pj(Λi(Xk))
≡ g(Λj(Xk); ρj)

wherePj(·) are given in (8) andΛj(Xk) is given in (9). There-
fore conditioning not only reduces the variance, but when it is
feasible to pre-computeg(·; ·), calculation of the probabilities
is as simple as reading a table. This is the case when network
traffic is uniform, or the load on each route is selected from a
small set.

Our proposed method combines the filtering with the dis-
tribution of the estimation via the local estimates as follows.

Definition 5 The Filtered Sequential Gibbs Sampleris con-
structed from the chain{Xk} with transitions governed by:

Xk+1(i)
{

= Xk(i) if i 6= σk = k mod(R) + 1,
∼ π(·|X−σkk+1 ) otherwise.

by evaluating the sample average:

Ŷ (S) =
R

S

S∑
k=1

(
λσk
λ

)
P[Xk+1 ∈ Bσk |Xk]. (14)

Each of the periodic Gibbs samplers embedded in the
computation of (14) is dedicated to estimatingBσk . Since
S(σk)/S → 1/R asS → ∞, the Filtered Gibbs sampler is
strongly consistent for the blocking probabilityB. Yet the dis-
tribution of the estimation considerably improves the compu-
tational effort, as the results of the following section show.

Filtering can be applied analogously to the randomised
version of the Gibbs sampler, which is done in the results of
the following section.

5 NUMERICAL RESULTS
The network topology used was a5 × 5 mesh-torus topology
with clique packing. Two networks were considered: one with
Λ = 8 wavelengths per link, and one withΛ = 32 wavelengths
per link. The performance of the estimators was compared for
a range of loads. The loads were selected to yield blocking
probabilities in the range10−6 to 0.1, which is typical of cur-
rent networks.

The method of batch means (see Alexopoulos and Seila,
1998) was used to estimate the variance of the estimators. This
method is based on regroupingβ consecutive samples to form
a “batch mean”̄Ys, s = 1, . . . , S and simulating a total ofS
batches:

Ȳs =
1
β

β∑
k=1

Y(s−1)β+k, Ŷ (S) =
1
S

S∑
s=1

Ȳs,

and V̂ = V̂ar[Ŷ (S)] =
1

S(S − 1)

S∑
s=1

(Ȳs − Ŷ (S))2.

The experiments usedS = 10000 samples, with a batch
size of β = 10000. Because of its low computational ef-
ficiency, the A/R algorithm usedS = 1000 and β = 100
(with no reduction in resulting efficiency). The early rejec-
tion approach of V´azquez-Abad, Andrew, and Everitt (1999)
was used for A/R. These experiments were conducted on a
266 MHz Pentium II processor using the gnu C++ compiler
under the Linux operating system. In the simulations that fol-
low, the arrival rate was the same over all of the routes, so that
ρi ≡ ρ is constant.

Table 1 shows the estimator of the blocking probability,
its standard deviation and the CPU time required for the A/R
method, which shows the expected deterioration as load and
number of wavelengths increase.

Figure 2 shows the relative efficiency for direct simula-
tion of π using A/R, and the variants of the Gibbs sampler
described in Section 4.1. The computation of the Gibbs al-
gorithms is dominated by the evaluation of the state blocking
probability, and is thus similar in all cases. Since the random
and sequential variants increase the correlation between con-
secutive states, they increase the variance, resulting in reduced
efficiency. While the periodic Gibbs sampler performs com-
parably with A/R when the probability of rejection is low, it
outperforms A/R substantially as the size of the state space
and/or the load grows, as expected.

The estimated blocking probabilities and their estimated
standard deviations are shown in Table 2 for the the peri-
odic (P) and filtered sequential (F) Gibbs samplers. At first
sight, it seems from the table that our proposed method does
not perform better than the periodic sampler, exhibiting al-
ways greater variance. However, the periodic estimator is



ρ Ŷ (1000)
p
V̂ time (s)

Λ = 8 wavelengths
0.05 2.93333e-06 1.19608e-06 32.3
0.1 0.0003878 1.41897e-05 32.4
0.15 0.00427497 4.77054e-05 32.8
0.2 0.0181383 9.8596e-05 35.7
0.25 0.0456161 0.000160489 46.3
0.3 0.0836662 0.000203071 83.6
0.35 0.128659 0.000248271 253

Λ = 32 wavelengths
1.0 0.0001242 7.89775e-06 32.5
1.2 0.00199897 3.12384e-05 33.2
1.4 0.0122448 7.6496e-05 40.7
1.6 0.0383563 0.000138135 97.7
1.8 0.0779384 0.00019375 1290
2 0.124802 0.000237888 273000

Table 1: Estimated blocking probabilities, its standard devia-
tion, and the required CPU time for direct simulation.

ρ ŶP (10000)
p
V̂P ŶF (10000)

p
V̂F

Λ = 8 wavelengths
0.05 3.198e-06 4.018e-08 3.324e-06 2.721e-07
0.1 0.0003803 4.409e-07 0.0003764 3.203e-06
0.15 0.004307 1.509e-06 0.004297 1.252e-05
0.2 0.01836 3.047e-06 0.01832 2.762e-05
0.25 0.04607 4.733e-06 0.04605 4.290e-05
0.3 0.08466 6.025e-06 0.08476 5.414e-05
0.35 0.128772 6.923e-06 0.128901 6.095e-05

Λ = 32 wavelengths
0.8 2.057e-06 3.186e-08 2.075e-06 1.126e-07
1.0 0.0001258 2.522e-07 0.0001249 1.083e-06
1.2 0.002027 1.014e-06 0.002023 5.291e-06
1.4 0.01240 2.508e-06 0.01240 1.462e-05
1.6 0.03836 4.193e-06 0.03834 2.517e-05
1.8 0.07771 5.663e-06 0.07769 3.131e-05
2 0.1233 6.651e-06 0.1233 3.369e-05

Table 2: Estimators and standard deviation for periodic,ŶP ,
and filtered,ŶF , sequential Gibbs samplers.

R = 300 times slower. It requiresR transitions of the Markov
chain (11) per sample, compared to one for the sequential sam-
pler, and thereR terms in the sum (12), compared to one for
local estimation.

Figure 3 shows the corresponding efficiencies when the
Gibbs samplers are implemented via their filtered versions
with local estimation. These versions are substantially more
efficient than the standard Gibbs sampler. The filtered sequen-
tial Gibbs algorithm is at least an order of magnitude better
than direct simulation. Some of the improvement comes from
the greater speed of local estimation, but filtering reduces the
variance by an additional factor of two compared to the unfil-
tered local variant.

In teletraffic engineering, a network is typically designed
to satisfy a maximum blocking probability dependent on hu-
man factors, which does not vary as the network grows. Thus
the efficiency for a given blocking probability (Figure 4) is an
important performance measure for an algorithm. The ratio of
the relative efficiencies is the inverse ratio of the CPU times
required to achieve a fixed relative precision. As seen from
the plot, forB = 0.0004, Λ = 8 (moderate network sizes and
loads) our method requires 4.2 times less CPU time to com-
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Figure 2: Efficiency against offered load for direct simulation,
and random, periodic and sequential Gibbs samplers applied
to a5× 5 mesh-torus.

pute the approximation at the same level of relative error. For
the more realistic model withΛ = 12 at B = 0.12, the gain
factor is 93,931: if our method requires 1 minute, the usual
A/R would need 65.2 days to complete the simulation.

Not only does our proposed method clearly outperform
A/R, but its performance continues to increase for increasing
load at lower blocking rates asΛ increases, dramatically over-
coming the curse of dimensionality.

6 CONCLUDING REMARKS

The MCMC method proposed for blocking probability calcu-
lations, which we call the filtered Gibbs sampler, not only out-
performs the usual acceptance/rejection method, but its rela-
tive efficiency actually grows with problem size and with in-
creasing load. Most of the efficiency improvement for block-
ing probabilities is a consequence of the combination of fil-
tering and localisation of the estimation. For some systems,
other techniques may prove impossible to implement whilst
our method overcomes the curse of dimensionality.

As mentioned before, any distributionqs can be used for
the randomised Gibbs sampler. Moreover, in the localised es-
timation, it is not necessary to usei(k) = σk. Future work
involves adaptively establishing which componentσk should
be used for theestimation(not only for the updates) in order
to minimise the overall variance: those indicesi for which
Bi is small could be allocated more samples. This method,
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Figure 3: Efficiency against offered load for direct simulation
and filtered Gibbs samplers applied to a5× 5 mesh-torus.
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Figure 4: Efficiency against blocking probability for direct
simulation and filtered sequential Gibbs samplers withΛ = 8
andΛ = 32 wavelengths.

known as stratification, could in principle yield even better
performance of the Gibbs sampler and is the subject of future
research.
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