
Optimal Sleep Patterns for Serving Delay-Tolerant Jobs

Ioannis Kamitsos
Electrical Engineering
Princeton Univ., USA

kamitsos@princeton.edu

Lachlan Andrew
Swinburne Univ. of Technology

Australia
landrew@swin.edu.au

Hongseok Kim
Electrical Engineering
Princeton Univ., USA

hongseok@princeton.edu

Mung Chiang
Electrical Engineering
Princeton Univ., USA

chiangm@princeton.edu

ABSTRACT
Sleeping is an important method to reduce energy consump-
tion in many information and communication systems. In
this paper we focus on a typical server under dynamic load,
where entering and leaving sleeping mode incurs an energy
and a response time penalty. We seek to understand under
what kind of system configuration and control method will
sleep mode obtain a Pareto Optimal optimal tradeoff be-
tween energy saving and average response time. We prove
that the optimal “sleeping” policy has a simple hysteretic
structure. Simulation results then show that this policy re-
sults in significant energy savings, especially for relatively
delay insensitive applications and under low traffic load.
However, we demonstrate that seeking the maximum en-
ergy saving presents another tradeoff: it drives up the peak
temperature in the server, with potential reliability conse-
quences.

Categories and Subject Descriptors
C.4 [Computer-Communication Networks]: Perfor-
mance of systems—Modeling Techniques, Performance At-
tributes.

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Energy efficiency, sleep state, Markov Decision Process,
Pareto tradeoff, switching cost

1. INTRODUCTION
Reduction of energy consumption of computing infrastruc-
ture has been motivated by several reasons: economic, envi-
ronmental, and the concern of overheating. Mechanisms for
“greening”vary from traffic engineering and routing schemes

[7, 22], to speed scaling techniques [21, 23] and process mi-
gration and network virtualization techniques [27].

Among these tools, the ability to put devices into low-
power “sleep” modes is of great importance. A significant
amount of energy is wasted by devices idling when there is
no load [19]. For example, in the case of network traffic ar-
riving at a server, a typical server consumes around 50-60%
of peak power when it is idle, and a typical data center has
an average utilization of around 20-30% [20, 5], and net-
works also typically have very low utilization [15, 16]. Mod-
ern processors have several different sleeping modes that can
achieve significant energy savings [28].

In studies such as [20] it has been shown that putting a
server to sleep is a feasible solution. Specifically, it is dis-
cussed that almost all server components (CPU, DRAM,
fans, PSU, etc.) can be put in a minimal power consuming
sleeping mode (PowerNap), where only some network inter-
face card (NIC) can stay awake and wake up the server when
there is some incoming packet that needs to be processed ac-
cording to the sleep scheduling algorithm. In [11] a similar
idea is presented, where routers can go to sleep when there
is no incoming traffic and wake up automatically on sens-
ing an incoming packet. A different approach is proposed
in [17], where traffic is shaped into bursts at the edge of
the network and routers within the network sleep between
successive traffic bursts.

Most of the work in the systems literature wakes the server
as soon as there is work to do. However, when the cost of
waking the device is significant, then much more energy can
be saved by allowing the server to remain asleep until enough
number of jobs are present. By formulating the problem
as a Markov decision process problem (MDP), we find the
sleeping policy that optimally balances energy consumption
and mean response time. Specifically, we focus in this paper
on a typical server in a server farm [9]. Extension to a
network of servers remains future work.

In the literature there is related work in operations research
that studies queueing control from a mathematical point of
view [29, 10]. In contrast, the main contribution of our work
is that we adopt an analytic approach towards a systems
driving formulation specifically for green IT in the context
of delay-tolerant jobs arriving at a processor. We focus on
the engineering side, explore the special structure of green-

ing formulation and provide intuitive explanation specific to
greening formulation. Specifically,

1. Lemma 1 and Theorem 1 show that the optimal sleep
policy has a simple, two-threshold based hysteretic
structure.

2. Observing the fact that servers are mostly underuti-
lized and turning on/off the server is viable, we pro-
vide a framework that determines the Pareto-optimal
server turning on/off decision considering both energy
efficiency and average response time. We also factor
in the switching cost that accounts for the energy con-
sumption for turning on/off the server. Our sleep pol-
icy is simple but demonstrates significant energy sav-
ings compared to a policy that never puts the server to
sleep. For a traffic load of 20%, we obtain almost the
theoretical maximum of 80% despite the cost of switch-
ing the server on and off, as can be seen in Fig. 6.

3. In Section 5 we provide extensive numerical results
that explore the impact of various system parameters,
such as switching cost or number of jobs in the queue,
on the optimal wake up threshold. These results give
insights in real system designing. For example, large
switching costs results in larger hysteresis in order to
prevent frequent on/off behavior. When congestion
cost is large (for example in less delay-tolerant appli-
cations), hysteresis decreases in order for the server to
wake up early.

4. In Section 6 we present numerical results which demon-
strate that higher energy savings achieved by increas-
ing the server sleeping period can result in a higher
probability of significant increase of server peak tem-
perature compared to ambient temperature.

The rest of the paper is organized as follows. Section 2.1
describes the basic problem formulation and introduces the
cost function that will need to be minimized in order to
obtain the optimal sleep policy. Section 2.2 gives analytic
results on optimal policy and optimal cost structure. We an-
alyze the system stationary distribution and include analytic
results on switching cost’s impact on ON/OFF decisioning
in Section 3. Section 4 introduces the algorithm used to cal-
culate the optimal policy and the algorithm applied for sys-
tem energy saving and energy consumption calculation. We
present extensive numerical results and main observations
and intuitions in Section 5. Section 6 studies the impact of
the size of hysteresis on server temperature, followed by the
conclusions and future work in Section 7.

2. SYSTEM MODEL
2.1 Problem Formulation
We consider a single core server with a finite buffer of size
B and two modes, ON (working) and OFF (sleeping). We
assume that jobs arrive to the server according to a Pois-
son process with rate λ; our model reasonably captures the
arrivals of jobs that are initiated by a large number of in-
dependent users. We also assume that jobs have indepen-
dent, identically exponentially distributed work with mean
1/s for analytical purposes. The memoryless property of the

arrivals allow us to formulate the problem as a continuous
time MDP problem. The notation that will be used in the
problem is summarized in Table 1.

The state space is Ω = {ON, OFF} × {0, 1, 2, . . . , B}. The
system is in state i = (W, Q) if there are Q jobs in the
system and the policy was W in the interval before the most
recent arrival or departure. We often write i(t), W (t) and
Q(t) to denote the state at continuous time t. The action
space F includes only two actions, i.e., F = {ON, OFF}.
The rate of doing work depends only on the action: If the
action is ON , then the server is in the ON mode, and work is
processed at rate 1; otherwise, the server is OFF and work
is not processed. When the server is ON, it consumes a
constant power Pon, and when it is OFF, it consumes no
power. Turning the server from OFF to ON or from ON to
OFF each consumes energy Ech.

We consider jobs that are “delay-tolerant”, in the sense that
they have no fixed deadline, but instead suffer a penalty
proportional to their “response time”, which is the delay
between when they arrive and when they finish service.
Our objective is to minimize a weighted sum of the ex-
pected response time and the energy consumed per job,
while at the same time whenever there is an ON → OFF or
OFF → ON switching an energy cost of Ech is considered.
When we put the server to sleep for a long time, we gain in
energy saving but we lose in delay and vice versa.

The solution to the MDP is a policy denoted by p, indicating
which action to perform (which mode to enter) in each state.
In other words, the objective is to find the optimal action
for each state. The action, either ON or OFF, in state i =
(W, Q) is denoted by the binary value p(i), or, equivalently,
p(W, Q) . By the Markov structure, the policy only changes
when a job arrives or departs.

The states evolve as follows:

W (t + 1) = p (W (t), Q(t)) , (1)

Q(t + 1) =

{
Q(t) + 1, if an arrival occurs,

Q(t)− 1, if a departure occurs.
(2)

Note that t+1 refers to the time of the next event. Then, the
transition probability at state (W, Q) with policy p(W, Q) is
given as follows.

For 1 ≤ Q ≤ B − 1,

Pr[(W, Q) → (p(W, Q), Q + 1)] =
λ

λ + sp(W, Q)
, (3)

Pr[(W, Q) → (p(W, Q), Q− 1)] =
sp(W, Q)

λ + sp(W, Q)
. (4)

For Q = 0,

Pr[(W, 0) → (p(W, 0), 1)] = 1. (5)

For Q = B,

Pr[(W, B) → (1, B − 1)] = 1. (6)

All other transition probabilities are zero.

Table 1: Main notation
Symbol Meaning [Units]

Pon Power consumed when server is on [Watts]

B Buffer size [Number of jobs]

i = (W, Q) i-th state in the state space

W Defines whether the server is ON or OFF

Q Queue length [Number of jobs]

s Service rate [jobs/sec]

λ Arrival rate [jobs/sec]

p(i) Policy for state i

Ech Energy consumed on transitions ON→ OFF
and OFF→ ON [kWh]

M
p(i)
i→j Transition probability of moving from state i

to state j under policy p(i)

V (i) Average cost of state i

g(i, p(i)) Cost per transition of state i under policy p(i)

hi Holding (or congestion cost) of state i

r Congestion cost coefficient [Joule/second]

ρ Traffic load

α Discount factor

S Energy saved [kWh]

C Energy consumption [kWh]

Remark 1. The transition probabilities depend only on p and
Q, and do not otherwise depend on W . This is important
to the structure of the optimal solution.

If the server is sleeping and there are B jobs in the buffer,
then the policy is always to turn the server ON.

We define g(i, p(i)) as the cost incurred at state i under
policy p(i), and it is given by

g(i, p(i)) =
1

λ + sWi+1
(Wi+1Pon + hi) + |Wi+1 −Wi|Ech,

(7)
where Ech is the energy we spend when we turn the server
ON or OFF (switching cost), and hi is the congestion cost
incurred by the jobs waiting to be processed. According to
[10] the congestion cost hi at state i is given by

hi = rQi (8)

where r is the congestion cost slope coefficient. Since
Wi+1 = p(i), the cost per transition becomes

g(i, p(i)) =
1

λ + sp(i)
(p(i)Pon + rQi) + |p(i)−Wi|Ech. (9)

The cost per transition (9) has three parts. The first,
p(i)Pon/(λ + sp(i)), is the cost incurred by the server be-
ing ON. The second, rQi/(λ + sp(i)), is the congestion cost
incurred by the number of jobs waiting in the queue to be
served. The final part is the cost of the energy required to
wake the server up or put it to sleep. Observe that there
is a tradeoff between the saving energy and congestion cost
by allowing the server to spend long periods OFF. However,
spending long periods OFF does not reduce the total op-
erating energy, since it merely delays the processing of the

jobs (with the exception of jobs lost because the buffer is
full). The energy is saved by reducing the number of times
we expend the energy Ech required to change the operating
mode of the server.

This energy/delay tradeoff is captured by the congestion cost
slope coefficient r, which measures how much emphasis is
put on the congestion cost. For example, if we have an
application that is rather delay insensitive (eg. files backup,
cache write back etc.), then r is relatively small. This allows
the server to sleep for more time and decreases the cost
incurred by the server being in ON mode. As a result, the
congestion cost is increased.

2.2 Optimal Control Structure
First we briefly describe the mathematical representation
and methodology to be used. Our problem is a continuous
time problem, hence it can be represented by a continuous
time Markov chain (given our assumption of memoryless
property of arrival process). In order to find the optimal
policy for each state i we apply dynamic programming, in
which we minimize the cost of this stage plus the expected
cost of all future stages. Since the cost of this stage will
depend on the duration of this stage, which itself depends
on the policy chosen, we find it convenient to apply the
technique of uniformization, described in Appendix A, which
causes the mean stage duration to be independent of the
stage. Furthermore, instead of minimizing the total cost,
we place greater emphasis on minimizing the cost in this
stage, and “discount” the cost of future stages. This reflects
the fact that the expected cost of later stages is less certain
due to imperfect knowledge of, for example, the arrival rate.
It has the added“technical”advantage of resulting in a finite
total discounted cost over an infinite time horizon, obviating
the need for more sophisticated methods often applied to
cost-per-stage problems [4].

The average discounted sum of costs that we aim at mini-
mizing is given by Bellman’s equation as shown below (for
each state i)

V (i) = min
p(i)

{
g(i, p(i))

β + v
+ α

∑
j∈Ω

M̂
p(i)
i→jV (j)

}
, (10)

where α is the discount factor. As explained in Appendix A,

v is the uniform transition rate and M̂
p(i)
i→j is the transition

probability from state i to state j under policy p(i) after
uniformization is applied. According to [4], the discount
factor is given by

α = v/(β + v). (11)

Parameter β is chosen so that α → 1. For a given cost
vector, the optimal policy for each state is

p∗(i) = argminγ∈F

{
g(i, γ)

β + v
+ α

∑
j∈Ω

M̂γ
i→jV (j)

}
. (12)

The fact that a cost is incurred whenever the server changes
mode induces an inclination not to change between ON and
OFF. This gives rise to hysteresis, defined as follows

Definition 1. A policy p is called hysteretic if p(d, Q) =
γ, d ∈ F implies p(γ, Q) = γ, γ ∈ F .

Intuitively, this says that if γ is the “best” mode to enter
when the occupancy is Q, then the system should stay there
if it is already there.

We now recapitulate some important results about this
model which will be useful for our simulation study. The
following lemma is proven in Appendix B.

Lemma 1. The optimal policy (12) is hysteretic.

Theorem 1. There exist two thresholds, −1 ≤ θOFF ≤
θON ≤ B such that for W ∈ {ON, OFF},

p(W, Q) = ON, for Q ≥ θON ,

p(W, Q) = OFF, for Q ≤ θOFF ,

p(W, Q) = W, for θOFF < Q < θON .

Proof. The assumptions of Theorem 1 in [18] are sat-
isfied hence the optimal hysteretic policy of our problem is
a monotone hysteretic policy, i.e, it is characterized by two
thresholds, θOFF and θON .

We call θON and θOFF the“ON threshold”and“OFF thresh-
old” respectively. It is noted that more delay tolerant jobs
can take more advantage of this kind of policy. Further-
more this policy structure implies useful properties of the
expected cost V .

Lemma 2. The offset of the optimal cost between W = 0
(for states above the ON threshold) and W = 1 (for states
above the OFF threshold) is directly proportional to the
switching cost Ech.

Proof. Let i be a state with Wi = OFF and p(i) = ON ,
and i′ be the state B + 1 positions afterwards in the state
space with Wi′ = ON and p(i′) = ON . Then by expanding
Bellman’s equation for these states we observe that the only
difference is the switching cost paid to wake up the server
when we are at state i. In other words we can write

V (i)− V (i′) =
1

β + v
Ech (13)

Remark 2. Minimizing a weighted sum of energy consump-
tion and mean response time results in a Pareto optimal
tradeoff between energy consumption and average delay,
where the average delay can be computed via Little’s law.

3. STEADY STATE CHARACTERIZATION
The optimal policy has a hysteretic threshold structure in
the sense of Definition 1: p(W, Q) = ON for Q ≥ θON ,
p(W, Q) = OFF for Q ≤ θOFF , and p(W, Q) = W for
θOFF < Q < θON . Denote the degenerate case in which
the server never turns off by θOFF = −1. The transition
probabilities from state i depend on Qi and p(i), but con-
ditional on these, are independent of Wi (the policy in the
previous state). The next two propositions offer insights on
the optimal thresholds properties.

Proposition 1. If the server buffer size B is infinite then
the optimal OFF threshold θOFF is θOFF ≤ 0.

Proof. If B = ∞, then all states with Q < θOFF are
transient states. To see that θOFF ≤ 0, assume instead that
θOFF > 0. Then the overall cost could be reduced by the
“holding” cost of one job by reducing both θON and θOFF

by 1, which has the effect of renaming each state (W, Q)
as (W, Q − 1). This would contradict the optimality of the
policy.

Somewhat surprisingly, if B is finite, it may be better to
have a large θOFF . In particular, if Pon > rB, then it is
cheaper to leave the server permanently off, and incur the
cost of keeping B jobs waiting. If there is an additional
penalty D for discarding a job, then the condition becomes
Pon > rB + λD. Physically, this corresponds to the case
when serving the jobs is simply uneconomic.

The following proposition, analogous to that of [12], shows
that for sufficiently large switching cost Ech, once the server
wakes up, it never goes to sleep again. The stationary proba-
bility π(OFF, Q) needed for the proof of the following propo-
sition is derived in Appendix C.

Proposition 2. If the switching cost Ech is sufficiently
large, θOFF = −1.

Proof. First note that the cost if θOFF = −1 is inde-
pendent of Ech, since the server never turns off. We claim
that the minimum cost with θOFF = 0 is unbounded as
Ech → ∞. Consider first the possibility that θON becomes
unbounded. The holding cost is bounded below by the cost
in states (OFF, Q), which is

θON−1∑

Q=θOF F +1

π(OFF, Q)h(OFF,Q)

=π(ON, θOFF)r
θON (θON − 1)

2
, (14)

since θOFF = 0. Note that π(OFF, Q), is calculated from
equation (34) in the Appendix. If θON becomes unbounded,
then this cost becomes unbounded. Conversely, if θON re-
mains bounded, then by solving the normalizing equation we
can see that π(OFF, θON) is bounded away from 0. The cost
is bounded below by the switching cost, Echπ(OFF, θON),
which tends to infinity as Ech tends to infinity.

4. ALGORITHM
The algorithm that we will follow in order to calculate
the optimal policy follows the value iteration algorithm for
MDP, as described below (Algorithm 1). The value iteration
algorithm provides an off-line computation of the optimal
policy. This type of algorithm is proven to converge [4] as
long as the cost per transition function g is bounded. It is
easy to see that in our problem this function is bounded.

Calculating the optimal policy via the policy iteration algo-
rithm would provide faster convergence. However, in order
to use the policy iteration algorithm it is necessary to invert

the matrix I − αM. where M is the transition probability
matrix. In our case I−αM was very close to singular, hence
the optimal policy calculated via policy iteration deviated
from the correct solution.

Algorithm 1 Value Iteration Algorithm

for each i ∈ Ω do
V0(i) = 0;

end for
repeat

for each i do
for each p(i) do

Qk(i, p(i)) = g(i,p(i))
β+v

+ α
∑
j∈Ω

M̂
p(i)
i→jVk−1(j);

end for
p∗k(i) = argminzQk(i, z);
V ∗

k (i) = Qk(i, p∗k(i));
end for

until ||Vk − Vk−1|| < ε(1− α)/2α;
Return policy p;

At iteration k − 1 of the algorithm, what is known is the
optimal average cost V ∗

k−1(i) for each state i (the initial cost
vector is V0 = 0). Then, for each state i, the optimal policy
of iteration k is given by

p∗k(i) = argminp(i)

{
g(i, p(i))

β + v
+ α

∑
j∈Ω

M̂
p(i)
i→jVk−1(j)

}
.

(15)

The optimal average cost (for iteration k) for each state i is
given by

V ∗
k (i) =

{
g(i, p∗k(i))

β + v
+ α

∑
j∈Ω

M̂
p∗k(i)

i→j Vk−1(j)

}
. (16)

The updated average costs V ∗
k (i) are the input for iteration

k + 1. This procedure is repeated until the convergence
criterion is satisfied. The convergence criterion we use is

||Vk − Vk−1|| < ε(1− α)/2α. (17)

To bound worst case delay we can add an additional time-
out mechanism that wakes up the server when there is no
arrival for an amount of time equal to a predetermined time-
out threshold. However, under Poisson arrivals it is unlikely
that there will be no arrival for a long time. Hence, for
simplicity, this timeout threshold was assumed to be infi-
nite, and the study of the optimal hybrid policy (job and
time threshold based) under non Poisson arrivals is a future
research direction.

After the optimal policy is calculated, it is important to
see what the achieved energy saving is. The energy saving
and energy consumption are calculated via ESCC (Energy
Saving/Consumption Calculation) algorithm presented be-
low. The energy saved is calculated as Pon times the total
simulation duration minus the energy consumed, C.

5. NUMERICAL RESULTS
For the first series of numerical experiments the traffic load
was ρ = λ/s = 0.2, with λ = 0.1s−1 and s = 0.5s−1.

Algorithm 2 ESCC Algorithm

{This is an off-line algorithm which calculates the energy
used by a simulated instance of the sleep control problem.
Inputs:

1. p(q): policy between qth and q + 1st events

2. t(q): time of qth event

Output:

1. C: array of energy consumed until state q

2. S: array of energy saved until state q

}
for q = 1 to maximum number of iterations do

run cost ← p(q − 1)× (t(q)− t(q − 1))× Pon

switch cost ← Ech × |p(q)− p(q − 1)|
C(q) ← C(q − 1) + run cost + switch cost
S(q) ← Pon × t(q)− C(q)

end for

This models an underutilized server. The buffer size is
B = 100. Decisions are made every time there is an arrival
or a departure. According to [9], a typical server consumes
about Pon = 250 W when in ON mode (power consumption
of CPU, memory, disk, PCI slots, motherboard, fans, and
power supply efficiency of 85%) and about 2% of Pon when in
sleeping mode. This value is very small and for the purpose
of simulations it was assumed to be 0. However, the energy
spent when the server is turned ON/OFF is not negligible
and assumed to be comparable to the energy spent on ON
mode. Initially we have Ech = 1.16×10−4 KWh. Later Ech

will be swept across a big range of values in order to study
its impact on the optimal policy structure. In addition, we
consider β = 0.005 in the MDP formulation, which results
in the discount factor being α = 0.992. This was chosen so
that α ≈ 1, but is not so close that rounding errors become
significant. If the discount factor was much smaller than 1,
this excessive discounting would result in turning the server
on sooner than necessary.

In the first series of simulations we study a delay insensitive
application (for example files backup) hence the congestion
slope coefficient r can be relatively small, i.e., not too much
emphasis is put on the congestion cost. In the initial phase
of the simulations r = 1.5 joule/second. This very low value
means we are willing to delay a job an entire second to save a
mere 1.5 joules. The optimal policy calculated via the value
iteration algorithm is shown in Figure 1. Observe that the
optimal policy is hysteretic indeed. Note that policy equal
to 0 corresponds to OFF and policy equal to 1 corresponds
to ON. Figure 2 zooms into the hysteresis. There is an ON
threshold where the server wakes up and an OFF threshold
where the server goes to sleep. As can be seen in Figure
2, the ON threshold is 10 jobs and the OFF threshold is
0. In other words, when the server is asleep, it stays OFF
until the queue builds up to 10 jobs, where it wakes up.
When the server is ON, it stays awake until all jobs are
processed and then goes to sleep. In these experiments, the
OFF threshold is always 0, in keeping with Proposition 1.
(By Proposition 2, this would not be the case if the switching
cost Ech were increased.) The intuition behind this is that,

0 20 40 60 80 100

0

1

Number of jobs

O
pt

im
al

 p
ol

ic
y

w=OFF
w=ON

Figure 1: Optimal Policy p∗(W, Q) for states, W ∈
{OFF, ON} and Q (the number of jobs).

0 5 10 15 20

0

1

Number of jobs

O
pt

im
al

 p
ol

ic
y

w=OFF
w=ON

Figure 2: Zoom into the optimal policy hysteresis.

since all jobs will eventually be processed, there is no point
in turning OFF when there are jobs in the system. If the
server went to sleep with jobs waiting to be processed, this
would unnecessarily increase the delay. However, when the
server eventually turns OFF after processing all the jobs,
then, as was shown in previous section, it is optimal to stay
asleep until the queue builds up to the ON threshold. The
optimal cost V (i) for each state in the state space is shown
in Figure 3 (for the states W = OFF and W = ON).

The system was simulated for 20000 iterations. Each iter-
ation corresponds to an event (arrival or departure) hence
the actual time between two iterations is exponentially dis-
tributed. The state switchings and queue length evolution
for the first 200 iterations are shown in Figures 4 and 5.
(Recall λ = 1/10s−1.) Observe that within the first 200 it-
erations the maximum number of jobs in the queue is 11.
However, within the 20000 iterations the maximum number
of jobs observed was 14. This is only 40% above the ON
threshold, indicating that the majority of the queueing de-
lay is that induced by the period of sleep. This is because
of the very low cost of delay, r, chosen in this example. Fig-
ure 6 presents how the fraction of energy saved evolves over
time. The y-axis is the ratio

R =
Energy Saved

Pon × Time
. (18)

It can be concluded that, after some point, the fraction of en-
ergy saved cannot increase beyond some convergence point.
When the traffic load is ρ = 20%, the fraction of energy
saved is almost 80%, because the delay tolerance allows the
optimal policy to remain off for long periods, and incur min-
imal switching overhead. Naturally, this ratio decreases un-
der higher traffic load.

0 20 40 60 80 100
3

4

5

6

7

8

9
x 10

4

Number of jobs

O
pt

im
al

 C
os

t

w=OFF
w=ON

Figure 3: Optimal cost V ∗(i) for states, W ∈
{OFF, ON} and Q (the number of jobs).

0 200 400 600 800 1000 1200

0

1

Time (sec)

W
 (

S
er

ve
r

aw
ak

e
or

 a
sl

ee
p)

Figure 4: Transitions ON→OFF and OFF→ON for
the first 200 iterations.

Table 2: Fixed Parameters
Parameter Symbol Value

Buffer size B 100

Discount factor α 0.992 (β=0.005)

Power consumed while ON Pon 250 W

Table 3: Parameters whose range we sweep over

Parameter Symbol Range

Traffic load ρ [0.1,0.96]

Congestion cost slope r [1,6] Joules/sec

Switching Cost Ech [2.9, 69.6]×10−5kWh

It is important to study the impact of system configuration
on optimal policy structure and system performance. In
this context, for the next series of experiments some system
parameters were kept fixed, while others were swept through
a big range of values. A summary of these parameters is
given in Tables 2 and 3. Figure 7 shows how the optimal
ON threshold varies with the ratio Ech/r. We study different
values of this ratio by varying the switching cost Ech from
2.9×10−5 to 6.96×10−4 kWh. This curve is consistent with
the formula

θON =

√
4λEch(1− ρ)

r

derived by Heyman [13]. Heyman’s formula is plotted on
the same figure as well.

It turns out that the optimal policy threshold increases with

0 200 400 600 800 1000
0

2

4

6

8

10

12

Time (sec)

Q
ue

ue
 L

en
gt

h

Figure 5: Queue length evolution (the first 200 iter-
ations).

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

Time (sec)

R
 %

Figure 6: The evolution of fractional energy savings
(the first 450 iterations). The fraction of energy
saved converges to almost 80%.

switching cost Ech. This result confirms the intuition, be-
cause when the switching cost increases, ON → OFF and
OFF → ON switchings become more energy consuming.
Too frequent ON → OFF and OFF → ON transitions
are avoided and consequently the hysteresis increases (or,
equivalently, ON threshold increases).

Another parameter which plays an important role on the
value of the optimal ON threshold is the congestion cost
slope coefficient r. Figure 8 shows how θON varies with r.
It is obvious that the larger the slope coefficient r, the lower
the optimal policy threshold. This is intuitively explained
by the fact that the larger the slope coefficient r (and thus
the more delay sensitive the application), the higher the em-
phasis given on congestion cost. This implies that the energy
saving is reduced in r (in order for the delay to be reduced
as well) hence the hysteresis in decreased (or, equivalently,
θON is reduced).

Figure 9 presents the tradeoff between energy consumption
and average delay, and how the switching cost Ech affects
the system’s performance. The tradeoff plots were gener-
ated by varying the congestion cost coefficient parameter r.
For fixed switching cost, by decreasing r (equivalently by
increasing the optimal ON threshold), the energy consump-
tion decreases and average delay increases. This quantifies
the basic intuition that while we gain in energy saving, a job
in queue has to wait more time for the server to wake up.
Note that the point (21.2, 1.835) corresponds to an optimal
ON threshold of 5 jobs.

It is common for systems to wake the server as soon as there

0 500 1000 1500 2000
0

5

10

15

20

25

E
ch

/r (jobs*sec)

O
N

 th
re

sh
ol

d

Experiment
Analysis

Figure 7: Optimal ON threshold over Ech/r for ρ =
20%. When Ech increases ON → OFF and OFF →
ON switchings become more energy consuming. The
hysteresis increases to avoid frequent ON → OFF
and OFF → ON transitions.

0 5 10 15 20
0

5

10

15

Congestion cost slope coefficient r

O
pt

im
al

 O
N

 th
re

sh
ol

d
Figure 8: Optimal ON threshold over r for ρ = 20%
and Ech = 1.16 × 10−4 kWh. When r increases, the
emphasis on congestion cost increases as well and
the hysteresis decreases.

is work to do, to minimize the impact on performance. This
corresponds to an ON threshold equal to 1. Further simu-
lations show that this instant-wakeup policy consumes 47%
more energy than the policy with θON = 5. This highlights
the practical benefit of allowing the server to remain idle
until sufficient work builds up.

Note also that for fixed Pon, the increase of Ech makes the
system perform worse: As Ech increases, the delay becomes
higher for a given energy consumption, and conversely the
energy consumption becomes higher for a given delay value.

Finally, it would be interesting to compare the energy con-
sumption achieved with the optimal policy described in the
previous sections with the energy consumption noticed with
a baseline policy that keeps the server ON all the time under
various traffic loads. Figure 10 shows how the ratio R of the
fraction of the energy saved varies with traffic load. A more
delay sensitive application was assumed (r = 3 Joules/sec).
We can observe that the percentage of energy saved is re-
duced with traffic load. Specifically, the increase of the traf-
fic load results in more jobs in the system waiting to be
processed, which reduces the server sleeping time. In other
words, the server has to be awake more time in order to
successfully process the incoming jobs. It is interesting to
see that the fraction of energy saved reduces from 87% (for
ρ = 10%) to 7.4% (for ρ = 90%).

20 40 60 80 100
1.5

1.6

1.7

1.8

1.9

2

Average Delay (sec)

A
cc

um
ul

at
ed

 E
C

 (
K

W
h)

(λ+s)E
ch

/P
on

=1

(λ+s)E
ch

/P
on

=1.7

Figure 9: Pareto-optimal curve for energy con-
sumption and average delay tradeoff: Ech = 1.16 ×
10−4 kWh and Ech = 1.98×10−4 kWh (ρ = 20%). Each
curve is obtained by varying the congestion cost co-
efficient r. When Ech increases, the system’s perfor-
mance becomes poorer.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Traffic load ρ

R
%

Figure 10: Fraction of energy saved over traffic load
ρ for r = 3 Joules/sec and Ech = 1.16 × 10−4 kWh.
The percentage of energy saved is reduced with traf-
fic load, since increased number of jobs reduces the
server sleeping time.

6. THERMAL CONSIDERATIONS
One of the key motivations to reduce energy consumption
is to reduce the high temperature produced inside a server.
This is because high temperature, and high thermal gradi-
ents, cause mechanical stress to the chips, which leads to fail-
ure [8]. Numerous techniques have been proposed to man-
age temperature; work related to our approach includes [2]
which considers operating at variable speed without sleep-
ing, and [8] which considers scheduling of jobs among cores
on a multiprocessor, again without sleeping.

We will now show that sleeping to reduce the energy con-
sumption can paradoxically increase the probability of dam-
agingly high temperatures.

Let T (t) be the amount by which the temperature at time t
exceeds ambient temperature, P (t) be the power expended
at time t, Cth be the thermal mass of the chip, and b measure
the thermal coupling between the chip and its environment.
By Newton’s law of cooling,

T ′(t) = P (t)/Cth − bT (t). (19)

In steady state, the average temperature is E[T] =
E[P]/(bCth). Hence the formulation of Section 2 can now be
reinterpreted as balancing the mean delay against the mean

0 10 20 30 40 50
0

50

100

150

ON threshold, θ
on

T
em

pe
ra

tu
re

 r
is

e
(K

)

95 %−ile
mean

Figure 11: Temperature rise over ambient, as a func-
tion of ON threshold, for λ = 10, s = 50, Cth = 1,
b = 1. After some point, the 95 percentile of the
server temperature rise (compared to ambient tem-
perature) increases with θON . Higher energy savings
increase the probability of damagingly high temper-
atures.

temperature.

However, damage is caused by the fluctuations in tempera-
ture, rather than the mean. Consider the impact of the ON
threshold θON on temperature. Provided the server sleeps
when it is idle, the average power consumed by normal oper-
ation is Ponλ/s independent of θON , whereas the switching
energy Ech decreases as θON increases. However, increasing
θON increases the burstiness of the activity. The idle pe-
riod is proportional to θON , and so the busy periods must
also be to maintain the utilization fixed at λ/s [25]. This
increase in busy periods causes an increase in temperature
towards Pon/(bCth), while the longer idle periods allow the
temperature to approach closer to the ambient.

This hypothesis was tested augmenting by Markov chain
simulator, to apply (19) on each interval. The temperature
was recorded only immediately before job arrival instants;
this reflects the true distribution of temperature, because
Poisson arrivals see time averages [24, 1]. Figure 11 shows
both the mean temperature and the 95th percentile of tem-
perature rise over ambient as θON is varied, for a load of
λ = 10 s−1 and s = 50 s−1, a thermal mass of Cth = 1 J/K
and thermal coupling of b = 1 s−1. This verifies that increas-
ing θON beyond a point increases the probability of very high
temperatures. The optimal point according to this metric
does not depend on the holding cost hi, and so need not
coincide with the optimal threshold for objective (9).

7. CONCLUSIONS AND FUTURE WORK
Sleeping is an important technique for reducing energy con-
sumption of ICT infrastructure. In this work we studied
a typical server’s energy consumption reduction achieved
when a weighted sum of energy consumption and conges-
tion cost is minimized. Sleeping induces a tradeoff between
energy consumed and system response time. By formulating
the problem as a Markov decision process, it was shown that
the resulting optimal policy has a simple hysteretic struc-
ture. When asleep, the server can stay in OFF mode until
the queue builds up to the point where the ON threshold is
met. After waking up, the server stays awake until all jobs

in the queue are processed and then is turned OFF. Under
this hysteretic policy, a significant fraction of energy can be-
saved, especially for low traffic load. We proved, however,
that when the energy required to wake up or put the server
to sleep is sufficiently large, then it is optimal, once awake,
to keep the server ON all the time.

We presented the algorithm used to solve the Markov deci-
sion process problem. Numerical results revealed that the
optimal policy hysteresis increases with switching cost and
decreases when more emphasis is given on congestion cost.
By comparing the optimal policy with a baseline policy that
never puts the server to sleep, it was shown that low utiliza-
tion can result in almost 87% energy saved, whereas very
high utilization results in only 7.4% energy saved compared
to the baseline policy. The empirical Pareto optimal trade-
off between energy consumption and average delay was pre-
sented quantifying the intuition that increasing switching
cost makes the system perform worse.

Finally, we presented a somewhat surprising result on a
related tradeoff: when the server’s sleeping time increases
beyond some point (or, equivalently, when hysteresis in-
creases), although there is a potential for higher energy sav-
ings, the probability of damagingly high server temperatures
is actually increased.

There are several directions along which this work can be
extended. We will study the case of non-Poisson arrivals and
heavy tail distributed job sizes. It would be interesting to
see what the optimal policy and system performance would
be if we considered a multicore server. We will also consider
multiple servers connected with each other and forming a
data center.

Acknowledgements
We thank Margaret Martonosi, Jennifer Rexford and Kevin
Tang for their useful comments during the preparation of
this work. This work was in part supported by the Princeton
University Grand Challenge grant on Green IT, the Google
gift grant to Princeton Green IT team and the Australian
Research Council grant FT0991594.

8. REFERENCES
[1] F. Baccelli, S. Machiraju, D. Veitch and J.C. Bolot.

The role of PASTA in network measurement. In ACM
SIGCOMM, 2006.

[2] N. Bansal, T. Kimbrel, K. Pruhs. Speed scalaing to
manage energy and temperature. J. ACM 54(1), 2007.

[3] L. A. Barroso and U. Hölzle. The Case for
Energy-Proportional Computing. Computer.
40(12):33-37, 2007.

[4] D.P. Bertsekas. Dynamic Programming and Optimal
Control, volume 2. Athena Scientific, Belmont, MA,
USA, 2007.

[5] P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C.
Lefurgy and R. Rajamony. The case for power
management in web servers. In Power Aware
Computing. January 2002.

[6] J. C. Cardona Restrepo, C.G. Gruber and C. Mas
Machuca. Energy Profile Aware Routing. In Proc.
Green Communications Workshop in conjuction with

IEEE ICC’09 (GreenComm09). Dresden, Germany,
2009.

[7] L. Chiaraviglio, M. Mellia and F. Neri. Reducing
Power Consumption in Backbone Networks. In Proc.
2009 IEEE Internat. Conf. on Communications (ICC
2009). Dresden, Germany, 2009.

[8] A. K. Coşkun, T. S. Rosing, K. A. Whisnant and K.
C. Gross. Static and dynamic temperatur-aware
scheduling for multiprocessor SoCs. IEEE Trans.
VLSI, 16(9):1127-1140, 2008.

[9] X. Fan, W-D. Weber, and L.A. Barroso. Power
Provisioning for a Warehouse-sized Computer. In
Proceedings of the ACM International Symposium on
Computer Achitecure. San Diego, CA, June 2007.

[10] J.M. George, and J.M. Harrison. Dynamic Control of
a Queue with Adjustable Service Rate.INFORMS
Operations Research. 49(5):720-731,
September-October 2001.

[11] M. Gupta and S.Singh. Greening of the Internet. In
ACM SIGCOMM. Karlsruhe, Germany, August 2003.

[12] M. Hersh and I Brosh. The optimal strategy structure
of an intermitently operating service channel.
European Journal of the Operational Research Society.
5:133-141, 1980.

[13] D.P. Heyman Optimal operating policies for M/G/1
queueing systems Operations Research. 16:362-382,
1968.

[14] S.K. Hipp, and U.D. Holzbaur. Decision Processes
with Monotone Hysteretic Policies. Operations
Research. 36(4):585-588, July-August 1988.

[15] H. Kim and G. de Veciana. Leveraging dynamic spare
capacity in wireless systems to conserve mobile
terminals energy. to appear in IEEE/ACM Trans.
Networking.

[16] M. Kodialam, T. V. Lakshman and S. Sengupta.
Traffic-oblivious routing for guaranteed bandwidth
performance. IEEE Comm. Mag., pages 46-51. 2007.

[17] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy
and D. Wetherall. Reducing Network Consumption via
Sleeping and Rate-Adaptation. 2007.

[18] F.V. Lu and R.F. Serfozo. M/M/1 Queueing Decision
Processes with Monotone Hysteretic Optimal Policies.
In Operations Research. 32(5), September-October
1984.

[19] J. Mogul. Improving energy efficiency for networked
applications. In Architectures for Networking and
Communications Systems (ANCS). 2007

[20] D. Meisner, B.T. Gold and T.F. Wenisch. PowerNap:
eliminating server idle power. In ASPLOS ’09:
Proceeding of the 14th international conference on
Architectural support for programming languages and
operating systems, pages 205-216. 2009.

[21] K. Pruhs, P. Uthaisombut and G. Woeginger. Getting
the best response for your erg. In Scandinavian
Worksh. Alg. Theory. 2004

[22] N .Vasic and D. Kostic. Energy-Aware Traffic
Engineering. In EPFL Technical Report
NSL-REPORT-2008-004. 2008.

[23] A. Wierman, L. Andrew and A. Tang. Power-Aware
Speed Scaling in Processor Sharing Systems. In Proc.
IEEE INFOCOM. April 2009.

[24] R. W. Wolff. Poisson arrivals see time averages.
Operations Research. 30(2):223-231, 1982.

[25] M. Yadin and P. Naor. Queueing systems with a
removalbe service station. Operations Research,
14(4):393-405, 1963.

[26] F. Yao, A. Demers and S. Shenker. A scheduling
model for reduced CPU energy. In Proc. IEEE Symp.
Foundations of Computer Science (FOCS), pages
374-382. 1995.

[27] M. Yu, Y. Yi and J. Rexford and M. Chiang.
Rethinking virtual network embedding: Substrate
support for path splitting and migration. ACM
SIGCOMM Computer Communications Review.
38(2):19-29, 2008.

[28] B. Zhai, D. Blaauw, D. Sylvester and K. Flautner.
Theoretical and practical limits of dynamic voltage
scaling. In DAC. 2004.

[29] Z.G. Zhang, E. Love and Y. Song. The optimal service
time allocation of a versatile server to queue jobs and
stochastically available non-queue jobs of different
types. Computers and Operations Research.
34(6):1857–1870, 2007.

APPENDIX
A. UNIFORMIZATION OF MARKOV

CHAIN
Uniformization aims at making the the times between suc-
cessive transitions independent of the time spent on each
state and transforming the continuous time Markov chain
into a discrete time one. The uniform version of the prob-
lem requires a uniform transition rate that is at least equal
to all the transition rates. The transition rates in the con-
tinuous time markov chain depend on the current state as
follows: If Qi ∈ {1, · · · , B − 1} and p(i) = 0 then vi = λ. If
Qi ∈ {1, · · · , B− 1} and p(i) = 1 then vi = λ + s. If Qi = 0
then vi = λ. If Qi = B then vi = s.

By defining v = λ + s as the new uniform transition rate,
we have vi ≤ v for all states i. In this way, the resulting
Markov chain is a discrete time Markov chain.

Let M
p(i)
i→j be the transition probability from state i to state

j under policy p(i). Then, the new transition probabilities
of the uniform version of the problem are given by

M̂
p(i)
i→j =

{
vi
v

M
p(i)
i→j if i 6= j

vi
v

M
p(i)
i→j + 1− vi

v
if i = j.

(20)

B. PROOF OF LEMMA 1
Theorem 1 of [14] proves that the optimal policy is hysteretic
if p(γ, Q) takes the form, for some function σ and m, such
as

p(γ, Q) = argminγ′∈F
{
σ(γ, γ′) + m(Q, γ′)

}
, (21)

where Q is the number of customers in the server and γ is
the action in F , and if the function σ satisfies the conditions

σ(γ, γ′) ≤ σ(γ, c) + σ(c, γ′), ∀γ, c, γ′ ∈ F , (22)

and

σ(γ, γ) = 0, ∀γ ∈ F . (23)

In our problem formulation, if p∗(Wi, Qi) is the optimal pol-
icy of state i, then according to equation (12) we can write

p∗(Wi, Qi) = argminγ∈F{σ(Wi, γ) + m(Qi, γ)}, (24)

where

σ(Wi, γ) =
1

β + v
|Wi − γ|Ech (25)

m(Qi, γ) =
1

β + v

(
1

λ + sγ
(γPon + rQi)

)

+ α
∑
j∈Ω

M̂γ
i→jV ((Wj , Qj)). (26)

Here, σ(Wi, γ) is the uniformized switching cost when pre-
vious policy was Wi and current policy is γ. As noted in
Remark ??, the transition probabilities M̂γ

i→j are indepen-
dent of the first component of the state i, namely W . Clearly
σ satisfies (22) and (23), and we can see that the properties
of Theorem 1 of [14] are satisfied. Hence the optimal policy
is hysteretic.

C. STEADY STATE PROBABILITIES
Let π(i) be the stationary probability of being in state i.

If θOFF ≥ 0, the global balance equations away from the
thresholds are

π(OFF, Q) =π(ON, θOFF)

Q ∈{θOFF + 1, . . . , θON − 1} (27)

π(ON, Q) = ρ(π(ON, Q− 1) + π(OFF, Q− 1))

Q ∈ {θOFF + 2, . . . , θON − 1} (28)

π(ON, Q) =ρπ(ON, Q− 1))

Q ∈{θON + 2, . . . , B} (29)

and near the thresholds are

π(ON, θOFF + 1) = ρπ(ON, θOFF) (30)

(ρ + 1)π(OFF, θON) = ρπ(ON, θOFF) (31)

π(OFF, θON) + π(ON, θON) = π(ON, θON + 1)/ρ (32)

ρπ(ON, θON − 1) + π(ON, θON + 1) = (ρ + 1)π(ON, θON).
(33)

In order to find all the stationary probabilities, we need to
express everything in terms of π(ON, θOFF) and then solve
the normalizing equation. Specifically for π(OFF, Q) that
is needed in the proof of Proposition 2 we have

π(OFF, Q) =π(ON, θOFF)

Q ∈{θOFF + 1, . . . , θON − 1} (34)

