
WORKSHOP ON END-TO-END SERVICE DIFFERENTIATION (EESD2003) 1

CLAMP: Differentiated Capacity Allocation in
Access Networks

Lachlan Andrew, Stephen Hanly and Rami Mukhtar
ARC Special research Centre for Ultra-Broadband Information Networks (CUBIN)

Department of Electrical and Electronic Engineering
University of Melbourne, Victoria 3010, Australia
{lha,hanly,rgmukht }@ee.mu.oz.au

Abstract— This paper presents a solution for providing
differentiated capacity allocation in an access network. The
system is based on CLAMP, an algorithm that can differ-
entiate between flows sharing the same FIFO queue. The
system is suitable for small access networks, such as those
based on DSL and HFC modems and wireless LAN ac-
cess points. The deployment of CLAMP is completely con-
tained within the access network; no changes to the remain-
der of the network are required. CLAMP provides the op-
portunity to enforce local policies on TCP flows that origi-
nate from sources distributed globally. The performance of
CLAMP is verified by both simulation and analysis.

Index Terms— End-to-end flow control, differentiated
services, low bandwidth access networks, distributed re-
source allocation.

I. I NTRODUCTION

Shared access networks, in which one to tens of flows
simultaneously share a low bandwidth connection to the
internet, are increasingly common. In such networks, the
low bandwidth connection will typically be the bottle-
neck. Examples include home and office networks with
low-bandwidth connections to the internet such as digital
subscriber line (DSL) or hybrid fibre/coax connections,
private connections between branch offices, and most im-
portantly, wireless LANs, in which the wireless link is the
bottleneck. In such networks, with limited resources, the
apportioning of bandwidth is especially important. It may
be desirable to give preference to certain applications over
others, for example giving priority to HTTP traffic over
FTP traffic. In other circumstances, it may be desirable
to distinguish between users (e.g., CEO versus intern, or
parents versus children).

The deployment of a mechanism to provide differenti-
ated bandwidth allocation within the access network must

This work was in part funded by the Australian Research Council
(ARC).

be completely independent of the rest of the internet. Ac-
cordingly, it has to inter-operate with existing TCP sender-
side implementations. Furthermore, the mechanism must
be cheap and easily implementable.

This paper presents an algorithm for differentiated ca-
pacity allocation byCurtailing theLarge TCPAdvertised
windows toMaximizePerformance, which we refer to as
CLAMP. It is applicable to access networks in which all
receivers and the last hop router can all be configured to
run CLAMP. It is most useful when there is no control
over the sender (as is usually the case) and when there are
one to tens of TCP flows simultaneously sending packets
through the same access point.

CLAMP does not need any per flow state information,
and it is totally distributed, making it very easy to imple-
ment. This paper assumes that all flows share a single
first-in-first-out (FIFO) queue. This is the simplest ap-
proach and will be shown to be sufficient to provide dif-
ferentiated service at the transport layer. However it is not
a critical assumption for CLAMP, which is still useful in
more general contexts [1].

This paper presents the CLAMP algorithm, describes
how it is to be implemented, and provides analytical and
simulation results illustrating its performance.

II. RELATED WORK

Many end-to-end solutions exist for enforcing Quality
of Service (QoS) on the Internet. The bulk of the pro-
posals are end-to-end models that fall into two main cate-
gories: 1) the integrated services model (Intserv) [2] and
2) the differentiated services model (Diffserv) [3].

Intserv is capable of providing two classes of service,
fixed delay for applications requiring a bounded transmis-
sion delay, and enhanced best effort for applications re-
quiring low loss transmission of their datagrams. Intserv
is based on the widespread implementation of RSVP [4],
a signalling protocol that facilitates the reservation of re-
sources along the end-to-end path in order to meet the



WORKSHOP ON END-TO-END SERVICE DIFFERENTIATION (EESD2003) 2

flow’s QoS requirements. In addition to the widespread
deployment of RSVP, Intserv requires per flow state in-
formation to be maintained by routers. Finally, senders
must take part in the initiation of the resource reservation.

The aim of Intserv is totally distinct from that of
CLAMP. Intserv is an Internet wide solution that focuses
on providing a specific level of service to certain flows.
Its deployment must be Internet wide, and its use is usu-
ally selected by the sender. In contrast CLAMP provides
the access network administrator with a means to allocate
the capacity of the access network in any desired propor-
tion. It does not rely widespread Internet deployment, and
the allocation policy is under the control of the access net-
work administrator.

Diffserv attempts to overcome the complexity and scal-
ability issues attributed to Intserv by dividing all flows
into aggregate service classes [5] as indicated by setting
combinations of the type-of-service bit in the IP header
corresponding to either low delay, high throughput or low
loss rate service. The application of Diffserv would pro-
vide a means to apply a particular allocation policy to the
access network. However, it would have to be done by the
sender, which is out of the control of the access network’s
administrator. Since CLAMP is a receiver side solution, it
overcomes this limitation.

The operation of CLAMP is closest to the idea of a
work conserving Round Robin scheduler with weighted
service rates [6–8]. A Round Robin scheduler maintains
a separate queue at the access point for each flow. In a
weighted service regime, it will provide a different pro-
portion of the service time to each queue. Unlike a multi-
queue solution, CLAMP only requires the use of a single
FIFO queue. Although the complexity of a multi-queue
system for a relatively small number of flows is not unrea-
sonable, the implications of a multi-queue system make
its implementation impractical. The main difficulty lies
in determining when to assign and de-assign a “virtual”
queue to an identified flow. IP flows are stateless, and de-
termining when a particular flow starts and stops is not
trivial. CLAMP avoids this complexity by letting the re-
ceiver dynamically limit the proportion of data buffered
in the single FIFO queue attributed to a particular flow,
in a decentralised mannar. Accordingly, the access point
does not need to maintain any state information. Further-
more, since CLAMP works with a single FIFO queue at
the access point, its implementation is simple, and it can
be implemented in a variety of different access network
scenarios.

The goals of CLAMP are similar to those outlined
in [9], which proposes the eXplicit Control Protocol
(XCP). However, unlike CLAMP, XCP requires modifi-

Fig. 1. Model ofk flows sharing a single bottleneck access link.

cations to the sender and estimates of the RTT. Since RTT
estimates are a key part of the operation of XCP, it would
be difficult to apply it to a receiver-side implementation.
XCP is more suited to a future internet when widespread
changes are made to all clients and routing architectures.

III. SYSTEM TOPOLOGY

The topology of interest is shown in Fig. 1. There are
k flows of data packets controlled by TCP that share a
single bottleneck link from an access point, with output
rateµc. Each flow,i, has a sending node,Si, that is lo-
cated somewhere in the Internet and a receiving nodeRi

located within the access network. Each flow is controlled
by TCP.

Some flows carrying inelastic data, such as UDP traffic,
that pass through the access point will not be controlled by
TCP or any other congestion control mechanism. Our in-
terest does not lie in controlling these flows, and so we
assume they take a fixed fraction of the access link capac-
ity, and the remaining bandwidth is to be shared among
elastic flows via TCP. Our aim is to use CLAMP to ensure
that these flows conform to a desired capacity allocation
policy.

IV. T HE ALGORITHM

The CLAMP algorithm assumes that each sending node
implements TCP flow control. Under the assumption
that sources are greedy, the total number of packets and
acknowledgements in flight at any time,t, is equal to
the minimum of the sender’s current congestion window
(CWND) and the receiver’s current advertised window
(AWND). CWND is solely controlled by the sender, and
can not be explicitly set by an element located in the



WORKSHOP ON END-TO-END SERVICE DIFFERENTIATION (EESD2003) 3

access network. However, the value of AWND is con-
trolled by the receiver. We propose CLAMP, an algo-
rithm that will select the current value of AWND for
each nodei, denotedwi(t), in a decentralized way, such
that each flow obtains a proportional share of the chan-
nel rate,µc, and the equilibrium buffer occupancy of the
access router,q(t), can be controlled as discussed below.
CLAMP is an enhancement of an algorithm that we pro-
posed in [10]. It has been modified here to provide dif-
ferentiated rate allocation, and operation compatible with
non-greedy sources.

CLAMP retains compatibility with theend-to-endIn-
ternet framework [11,12]. It only requires aggregate (as
opposed to flow-by-flow) feedback from the access point,
and is fully compliant with existing transport layer stan-
dards.

The CLAMP system is comprised of two distinct com-
ponents, both of which reside in the access network. The
first component is a software agent that is integrated into
the access point, be it a DSL central office modem or wire-
less LAN access point. The second component is a soft-
ware agent located in the receiver. It may take the form of
a network interface driver, network interface card adapter
or a modification to the operating system kernel. Both of
these components will now be described in more detail.

A. Access Router Agent

The software agent in the access point simply samples
the queue length,q, of the FIFO queue at regular intervals.
It then computes a convex monotonic increasing function
of q, p(q), which is then passed to each receiver. This may
be achieved by inserting the value into the TCP header of
each packet leaving the access router (for example in the
TCP options field). Alternatively each receiver can explic-
itly request the value from the access point as required.
This paper paper focuses on the affine function

p(q) =
bq − a

µc
, (1)

whereµc is the rate of the bottleneck link, and the constant
b determines how sensitive the bottleneck queue size is
to the number of flows. The parametersa andb control
the equilibrium mean queue size,q∗, as will be seen in
Section VI.

B. Receiver Agent

A software agent located at the receiver intercepts the
value ofp(q) advertised by the access point and sets the
advertised window value,w(t), in all outgoing TCP ac-
knowledgments according to the following algorithm. For

simplicity, the algorithm will be described for flowi in
the case of equal-length packets. Lettk denote the time
instant when thekth packet is received by the receiving
client. The algorithm is:

w(tk) =


w(tk−1)− 1 if ∆w(tk) < −1
w(tk−1) + ∆w(tk) if − 1 ≤ ∆w(tk) ≤ ∆
w(tk−1) + ∆ if ∆w(tk) > ∆

(2)
where

∆w(tk) = [φiτ − p(q(tk))µ̃(tk)](tk − tk−1) (3)

andφi > 0 is a positive constant,τ > 0 (packets/sec)
is a constant, and̃µ (packets/sec) is an estimate of the
received rate. The term inτ tries to increase the win-
dow at a constant rate, while the term inµ̃ reduces it at
a rate which increases with the occupancy of the queue
and with the proportion of traffic due to the flow. The cur-
rent received rate,̃µ, is estimated using a sliding window
averaging function,

µ̃(tk) =
α

tk − tk−α
, (4)

where the integerα is a smoothing factor. This choice of
estimator is somewhat arbitrary, and other estimators may
prove to be more effective.

The maximum window increase in (2) is limited to a
constant,∆ > 0. This prevents largetk− tk−1 from caus-
ing large changes inw when packets arrive infrequently,
such as when a source becomes idle for an extended pe-
riod of time.

Furthermore, the limit on the window decrease in (2) re-
flects that fact that a packet can only be removed from the
network when it is received. This remains compliant with
the recommendations of Section 3.7 of RFC 793 [13].

The flow control algorithm can provide non-uniform
sharing of the bottleneck bandwidth by appropriately set-
ting the constantsφi. It will be shown by simulation in
Section V and by analysis in Section VI that, under certain
conditions, flowi will obtain the proportionφi/

∑k
j=1 φj

of the bottleneck capacity. The remainder of the paper is
dedicated to analyzing the performance of the system (2)
and how to configure its parameters for stable operation.

Finally, note that the algorithm as described does not
prevent the window size falling to zero. Since window up-
dates only occur on receiving a packet, this would cause
the window to remain at zero indefinitely. There are sev-
eral techniques that can be used to deal with this special
case. However, a simple solution is to limit the minimum
window size to a constant,wmin. The simplest case is to
takewmin = 1.



WORKSHOP ON END-TO-END SERVICE DIFFERENTIATION (EESD2003) 4

Fig. 2. Simulation network topology

V. SIMULATION RESULTS AND DISCUSSION

This section demonstrates that the proportion of capac-
ity each flow obtains can be set by appropriately choosing
values ofφi of each flowi. This is done by simulating a
test network topology running the CLAMP system.

The algorithm was implemented as an event driven net-
work simulator. The main objective of the simulation
was to simulate a true system as accurately as possible.
Each sender implemented TCP flow control, all routers
employed drop tail queues.

The simulation topology used for experimentation is
illustrated in Fig. 2, in whichX1 and X2 are routers,
S1, S2, . . . , Sk are sending clients, andR1, R2, . . . , Rk

are receiving clients. All links are bidirectional, with char-
acteristics as shown in Table I.

Node 1 Node 2 Capacity Delay
Si X1 10 Mb/s di/2
X1 X2 1.5 Mb/s 1 msec
X2 Ri 10 Mb/s 1 msec

TABLE I
L INK CONFIGURATION

For simplicity, all packets were of fixed size. An agent
was placed in the router,X1, that constantly monitored
the total FIFO queue size, and inserted the value into
the header of all outgoing packets. Agents at the receiv-
ing nodes ran the algorithm as described in Section IV,
placing the computed window size (rounded to the near-
est packet) into theawnd field of outgoing acknowledge-
ments. Except when stated otherwise, all simulation pa-
rameters are indicated in Table II.

A. Differentiated Sharing of Access Capacity

The first experiment was to verify that CLAMP does
in fact provide differentiated sharing of the access point’s
capacity. Accordingly, the system shown in Fig. 2 was
simulated fork = 4. The sourcesS1, S2, S3 andS4 were
started at 0, 50, 100 and 150 seconds respectively. The re-
sults as shown in Figs. 3-4 illustrate how CLAMP is effec-
tive in dividing the access point’s capacity independently

TABLE II
SIMULATION PARAMETERS

Parameter Value
TCP Packet Size 500 Bytes
CLAMP τ 10000 Bytes/s
CLAMP ∆ 80000 Bytes
CLAMP b 2 s−1

CLAMP a 2000 Bytes/s
d1 0.41224 s
d2 0.2943 s
d3 0.075644 s
d4 0.0001421 s

0 50 100 150 200
0

2

4

6

8

10

12

14

16
x 10

5

time (s)

G
oo

dp
ut

 (
bi

t/s
)

S
1

S
2

S
3

S
4

Fig. 3. Simulation of CLAMP providing differentiated allocation of
the access point’s capacity to each flow,φ1 = 0.5, φ2 = 1, φ3 =
1.5, φ4 = 2.

of the respective RTTs of each flow. Note that, at each
stage, the allocation of capacity is in proportion to the ra-
tio of theφs. For example, in Figure 3, the ratio of the ca-
pacities at 75 s is 2 : 1.5 : 1 and at 175 s it is 2 : 1.5 : 1 : 0.5.
The values ofφi for all i in each experiment are given in
the captions of the respective figures.

It is important to highlight that, given disparate propa-
gation delays, TCP would have provided greater capacity
to the flows with the shorter RTTs. In contrast CLAMP
avoids this limitation, by controlling TCP to provide any
given proportional allocation of capacity.

B. Bottleneck in the Core

This section investigates the effect of a bottleneck else-
where in the core as a result of congestion in the core. In
this situation, CLAMP will not be able to provide the de-
sired allocation of capacities to all flows. This is due to
the effect that the flows which pass through a bottleneck
in the core will be constrained by that bottleneck. How-
ever, CLAMP will divide the remaining capacity between
the unconstrained flows according to the desired propor-
tion allocation.



WORKSHOP ON END-TO-END SERVICE DIFFERENTIATION (EESD2003) 5

0 50 100 150 200
0

2

4

6

8

10

12

14

16
x 10

5

time (sec)

G
oo

dp
ut

 (
bi

ts
/s

ec
)

S
1

S
2

S
3

S
4

Fig. 4. Simulation of CLAMP providing differentiated allocation of
the access point’s capacity to each flow,φ1 = 1, φ2 = 0.5, φ3 =
0.5, φ4 = 1.

Congestion in the core is simulated by starting a cross
traffic TCP session within the core.

The network topology that was simulated is illustrated
in Fig. 5. Si, i = 1, 2, 3, 4 are greedy TCP sources and
Ri are the matching receivers, running CLAMP. BothX1

andX2 are core routers,X3 the access router running the
CLAMP router agent, andX3 a LAN switch. All link ca-
pacities and delays are listed in Table I and other simula-
tion parameters are listed in Table II. For this experiment
φi = 1, for all i, so that each flow gets an equal share of
the bottleneck capacity.

The cross traffic source is another TCP source fed by
a greedy traffic source, which was started at 100 s and
stopped at 300 s. Fig. 6 is plot of the sequence numbers of
the received acknowledgments versus time.

The parallel lines before the 100 second mark indicate
that all four flows are receiving an equal share of the bot-
tleneck link capacity. After the introduction of cross traf-
fic within the core, linkX2–X3 replacesX3–X4 as the
bottleneck for connections 1 and 3. At this time CLAMP
automatically relinquishes control of these connections
back to TCP, but continues to control connections 2 and 4.
Connection 1, with its very long RTT, gets almost no ca-
pacity from linkX2–X3, while connections 2 and 4 share
the spare bandwidth on linkX3–X4 almost fairly. Af-
ter 300 seconds, the cross traffic source ceases transmis-
sion, restoringX3–X4 as the bottleneck, and subsequently
CLAMP resumes control of all the flows. After a transient
period, once again each flow obtains an equal share of the
bottleneck link capacity (all four lines becoming parallel
again). While connection 1 is controlled by TCP, itsw(t)
becomes very large. As a result, it gets a greater share of
the bandwidth during the transient after 300 seconds, in-
creasing the long-term fairness of CLAMP. If fairness on
short timescales is desirable, then the maximum value of
w(t) can be clipped.

Fig. 5. Simulated topology that includes cross traffic.

0 100 200 300 400 500
0

1

2

3

4

5

6
x 10

4

se
q 

no
time (sec)

S
4
 

S
2
 

S
1
 

S
3
 

Fig. 6. Plot of sequence number when two flows are controlled by a
bottleneck in the core.

VI. T HE FLUID -FLOW MODEL

In order to provide deeper insight into the algorithm’s
performance, this section presents the analysis of a fluid
flow model of the system. In particular, this model is used
to determine the system’s equilibrium point, which veri-
fies the proportional sharing that was observed in the sim-
ulations. Conditions required for stable operation are also
obtained, which are necessary for setting the parameters
of the algorithm.

For each flowi, letdi be the propagation time as defined
in Section IV,wi(t) be the window size, andBi(t) be the
buffering at the bottleneck queue attributed to the flow,
satisfying

q(t) =
k∑

i=1

Bi(k). (5)

Consider a fluid flow approximation to the system de-
scribed in Section IV, with perfect mixing of fluid at the
bottleneck queue, i.e., the proportion of fluid leaving the
queue attributed to flowi is Bi(t)/

∑k
j=1 Bj(t).

The total number of packets in the network at timet
attributed to flowi is equal to the number buffered in the
bottleneck queue plus the number in flight. The number in
flight at timet is equal to the number that left the queue in
the interval(t, t−di] plus or minus added or removed due



WORKSHOP ON END-TO-END SERVICE DIFFERENTIATION (EESD2003) 6

to changes in window size during that interval. Hence,

wi(t) = Bi(t) +
∫ t

t−di

(
Bi(s)
q(s)

µc +
dwi

dt

∣∣∣∣
t=s

)
ds. (6)

Differentiating (6) gives the rate of change of buffering
at the bottleneck queue attributed to flowi:

dBi

dt
=

dwi

dt

∣∣∣∣
t−di

+
Bi(t− di)
q(t− di)

µc −
Bi(t)
q(t)

µc. (7a)

Under the flow control algorithm (2), a fluid model of
the window size evolution is

dwi

dt
=


−Bi(t)

q(t) µc if gi(t) ≤ −Bi(t)
q(t) µc

gi(t) if −µc < q(t)
Bi(t)

gi(t) ≤ µc∆
Bi(t)
q(t) µc∆ + ε otherwise

(7b)
whereε is a small constant, and

gi(t) = φiτ − p(q(t))
Bi(t)
q(t)

µc. (7c)

The term(Bi(t)/q(t))µc∆ reflects the maximum incre-
ment to the window size,∆, that can occur with every
packet that arrives at the receiver in the physical model.
The extra termε serves the same purpose aswmin in the
actual algorithm; it prevents the window from being stuck
at 0. A small value ofε will provide the necessary com-
pensation; a large value will unduly distort the model.

The term−Bi(t)/q(t)µc, for the case whengi(t) ≤
−µcBi(t)/q(t), represents the fact that in the physical
model, the window cannot be decreased at the sender
faster than the rate of arrival of acknowledgements from
the receiver, which is the rate of arrival of packets at the
receiver from the bottleneck queue.

Another discrepancy between the physical model and
the fluid model concerns delay. In the fluid model, the
only delay in the system is the propagation delay in the
network, modelled as a constant. In the real, physical
system, packets are also delayed in the bottleneck queue.
However, information regarding the total queue size does
not suffer this latter delay.

Clearly, there are discrepancies between the physical
model and the fluid model. Nevertheless, the fluid model
offers many advantages from the point of view of analyti-
cal understanding. It will be shown later that insights from
the fluid model do carry over to simulation results for the
physical model that were presented in Section V.

Although the fluid model has been described by differ-
ential equations, it is important to recognize that there are
points of discontinuity in the fluid model. These occur
whenever the bottleneck queue empties, for then the total

output rate of the bottleneck queue switches fromµc to
zero. Then, when the queue starts to fill again, the output
rate switches back toµc, another point of discontinuity.
To be consistent with this physical description, we define
0/0 ≡ 0 in the last terms of (7a). It is easy to see that
when the queue empties, the first two terms of (7a) sum
to a non-negative value, so noBi will go negative during
this period, and at some later point the queue will begin
to increase again and become strictly positive. The point
in time when the queue starts to increase again is another
point of discontinuity of the fluid model, as the total out-
put rate of the queue switches back toµc. However, apart
from these isolated points of discontinuity, the system is
continuous, and is properly described by the differential
equations between points of discontinuity.

The change in the total queue size is obtained by sum-
ming (7a) overi,

dq

dt
=

k∑
i=1

dwi

dt

∣∣∣∣
t−di

+
k∑

i=1

Bi(t− di)
q(t− di)

µc − ρ(t)µc, (8)

whereρ(t) is the utilisation of the bottleneck channel at
time t.

Lemma 1:If 0 ≤ Bi(t) ≤ wi(t) for all t ≤ 0 and all
i = 1, . . . , k, then under (7),

0 ≤ Bi(t) ≤ wi(t) (9)

for all t ≥ 0 and alli = 1, . . . , k. Moreover,Bi(t) > 0
wheneverq(t) > 0.

Proof: Assume first thatBi(t) ≥ 0 for all i andt,
from which it follows thatq(t) ≥ 0. Then (7b) implies
dwi/dt ≥ −µcBi(t)/q(t), and the integrand in (6) is al-
ways non-negative, giving the second inequality.

To see thatBi(t) ≥ 0 for t ≥ 0, note that this is triv-
ially true during the periods when the queue is empty. For
during these periods, the last term of (7a) is by definition
zero, and the sum of the other two terms is non-negative.

The other intervals to consider are when the queue is
nonzero. In this case, suppose thatBi(t) decreases, pass-
ing through zero at some timêt, at which point its deriva-
tive must be negative. But thenBi(t̂) = 0, so the last
term of (7a) is zero. But the sum of the first terms is non-
negative by (7b), providing a contradiction. Hence,Bi(t)
cannot become non-positive during these periods.

The next part of the analysis characterises the equilib-
rium behaviour of the fluid model. Let

T = τ

k∑
j=1

φj (10)

denote the aggregate rate at which users would increase
their window sizes ifp(·) were zero.



WORKSHOP ON END-TO-END SERVICE DIFFERENTIATION (EESD2003) 7

Lemma 2:There is a unique equilibrium point defined,
for all i, by

B∗
i =

φi∑k
j=1 φj

p−1

(
T

µc

)
. (11)

Proof: Substituting (11) into (7) shows it is an equi-
librium. To see it is unique, assume there is another equi-
librium point,B+, with q+ =

∑k
i=1 B+

i anddwi/dt = 0
for all i. At B+, gi(t) = 0 for all i by (7b) (noting that
ε > 0), whence for alli, (7c) implies

B+
i =

φiτq+

µcp(q+)
. (12)

Summing (12) overi yields

q+ = p−1

(
T

µc

)
. (13)

Substitution of (13) into (12) shows thatB+
i = B∗

i , estab-
lishing uniqueness.
Lemma 2 says that under the assumptions that all sources
are greedy and the system is stable, flowi will obtain the
proportionφi/

∑k
j=1 φj of the bottleneck link capacity.

VII. STABILITY ANALYSIS: NECESSARY

CONDITIONS

This section presents some necessary conditions for the
stability of (7) whenp(·) is given by (1). Note that for a
system to be asymptotically stable, its linearisation must
also be stable, and that in any linearised systemp(·) must
take this form.

A. Equal Delays

Theorem 1:Let di = d for all i, Bi(t) ≥ 0 for all t <
0, andp(·) be given by (1). Then a necessary condition
for the total queue size,q(t), to converge under (7) is:

b <
π

2d
. (14)

Proof: Near equilibrium, the window evolution is
governed by the equations

dwi

dt
= gi(t)

since locally the other terms in (7b) are not biting. Substi-
tuting this expression into (8) and summing overi gives
the linear equation

dq

dt
= T + a− bq(t− d), (15)

which can be analyzed by standard techniques [14]. Tak-
ing the unilateral Laplace transform gives

Q(s) =
q(0−)

s + be−ds
. (16)

The (infinite number of) poles of (16) determine the lim-
iting behaviour of (15). Ford = 0 the system has a single
real pole located ats = −b, hence is stable for allb ≥ 0.
For b ≥ 0 asd is increased, an infinite number of poles
will appear from infinity on the left half plane, and ul-
timately cross the imaginary axis. Applying the method
shown in [14], p26, (14) is obtained as a necessary and
sufficient constraint for stability of (15).

B. Arbitrary Delays: Constant Queue Size

It will be seen that significant insight into the behaviour
of (7) can be obtained by considering the simplified sys-
tem defined by (7a) for the case whereq(t) = q∗ is con-
stant,q∗ = (T + a)/b is the equilibrium value. In this
case equations (7a) decouple to form the linear constant
coefficient delay equations,

dBi

dt
= φiτ +

(µc − T )
q∗

Bi(t− di) +
µcBi(t)

q∗
. (17)

Proposition 1: A necessary and sufficient condition
for (17) to converge for allb < b0, is that either

T ≤ 2µc, (18)

or

di ≤
1
b0

cos−1

(
µc

µc − T

)
T + a√

T 2 − 2µcT
. (19)

Proof: The stability of equation (17) for any value
of b, is equivalent to the poles of the unilateral Laplace
transform of the unforced equation,

Mi(s) =
Bi(0−)/q∗

s + (µc/q∗) + (µc − T/q∗)e−sdi
(20)

=
Bi(0−)/q∗

A(s) + C(s)e−sdi

all being in the left half plane. The stability analysis now
follows that of [14]. For sufficiently smalldi this sys-
tem is stable, as it is a retarded system. Letdi(b) be the
smallest positive delay such thats = jω, ω ∈ R, is a
pole. By the continuity of poles, the system will be stable
for all di < di(b). Since poles occur in complex conju-
gate pairs, this is further equivalent toA(jω)A(−jω) =
C(jω)C(−jω) [14], or equivalently

ω2 =
T 2 − 2µcT

(q∗)2
.



WORKSHOP ON END-TO-END SERVICE DIFFERENTIATION (EESD2003) 8

This has no non-zero real solution forT ≤ 2µc, and there-
fore (17) is always stable in this case. This establishes the
sufficiency of condition (18). It remains to show that, if
T > 2µc then (19) is necessary and sufficient.

WhenT > 2µc, di(b) can be found by equating the real
part of the denominator of (20) to zero:

µc

q∗
− µc − kτ

q∗
cos

(
di(b)

√
T 2 − 2µcT

q∗

)
= 0

or equivalently

cos

(
di(b)

√
T 2 − 2µcT

q∗

)
=

µc

µc − T
.

Taking the smallest positive argument argument ofcos(·),

di(b) = cos−1

(
µc

µc − T

)
q∗(b)√

T 2 − 2µcT
.

Note thatdi(b) increases to infinity asb decreases to zero.
Define

β ≡ cos−1

(
µc

µc − T

)
T + a√

T 2 − 2µcT
.

Necessity:if di > β/b0 then there exists ab < b0 such
thatdi(b) = di, and hence (17) is not stable.Sufficiency:
if di < β/b0 then for allb < b0, di < β/b, and hence (17)
is stable.

Corollary 1: The condition ((18) or (19)) is necessary
for the stability of the unique equilibrium of (7).

VIII. C ONCLUSIONS

This paper has presented CLAMP, an algorithm for dif-
ferentiated proportional allocation of the capacity of a bot-
tleneck link. The algorithm fits into the Internet end-to-
end framework, requiring only aggregate congestion in-
formation from the final router in the network. It is com-
pletely compatible with existing TCP senders and routers
in the core network.

Simulation results have indicated that CLAMP is an ef-
fective access network modification that provides differ-
entiated proportional sharing of the access point’s capac-
ity.

A fluid flow approximation of the system was presented
and analyzed in order to determine conditions for which
the algorithm is stable. These results can be used to con-
figure the algorithm’s parameters for stable operation.

REFERENCES

[1] L. L. H. Andrew, S. V. Hanly, and R. G. Mukhtar, “CLAMP:
Maximizing the performance of TCP over low bandwidth vari-
able rate access links,”Submitted for publication in 2002.

[2] R. Braden, D. Clark, and S. Shenker, “Integrated services in the
internet architechture: an overview,” RFC 1633, IETF, 1994.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An architecture for differentiated services,” RFC
2475, IETF, 1998.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Re-
source reservation protocol (RSVP) – version 1 functional spec-
ification,” RFC 2205, IETF, 1997.

[5] J. Postel, “Service mappings,” RFC 795, IETF, 1981.
[6] S. Morgan, “Queueing disciplines and passive congestion control

in byte-stream networks,” inProc. INFOCOM, vol. 2, pp. 711–
720, IEEE, IEEE, 1989.

[7] L. Kleinrock, Queueing Systems. New York, NY: John Wiley and
Sons, 1975.

[8] E. Hahne, “Round-robin scheduling for max-min fairness in data
networks,”IEEE Journal on Selected Areas in Communications,
vol. 9, pp. 1024 –1039, September 1991.

[9] D. Katabi, M. Handley, and C. Rohrs, “Internet congestion con-
trol for future high bandwidth-delay product environments,” in
Proc. ACM Sigcomm 2002, August, 2002.

[10] L. Andrew, S. Hanly, and R. Mukhtar, “Analysis of rate adjust-
ment by managing inflows,” inProc. 4th Asian Control Confer-
ence, (Singapore), pp. 47–52, 2002.

[11] J. H. Saltzer, D. P. Reed, and D. D. Clark., “End-to-end argu-
ments in system design,”ACM Transactions in Computer Sys-
tems, vol. 2, no. 4, pp. 277–288, 1984.

[12] S. H. Low, “A duality model of TCP and queue management
algorithms,” inProc. ITC Specialist Seminar on IP Traffic Mea-
surement, Modeling and Management, (Monterey, CA), 2002.

[13] Information Sciences Institute University of Southern California,
“Transmission control protocol,” RFC 793, IETF, 1981.

[14] J. E. Marshall, H. Ǵorecki, K. Walton, and A. Korytowski,Time-
Delay Systems: Stability and Performance Criteria with Appli-
cations. New York, NY: Ellis Horwood, 1992.


