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1 Introduction

This letter presents an amended proof of an important result, the binary output property (BOP),
in the theory of cellular neural networks (CNNs) [1, 2]. A CNN is a dynamical system of the form

ẋ = −x + Ay + k, (1)

where x is the state vector, y = f(x) is the corresponding output vector, k represents the input
and bias terms, and A is the constant feedback matrix. Typically f is the piecewise linear function
fL(x) = (|x + 1| − |x− 1|) /2.

The BOP is important in applications [3–5] and theory [6, 7], and may be stated thus:

Property 1 (BOP) A convergent CNN with aii > 1 for all i will, for a given input, k, converge
to a state with |yi| = 1 for all i for almost all initial conditions.

The standard proofs of the BOP given in [1, 2] are unclear on the technical justification of one of
the steps involved. Section 2 of this letter describes an example which demonstrates the weakness
of existing proofs of the BOP, and Section 3 provides a more rigorous proof.

2 The Previous Approach

In [1] and [2] a proof of the BOP was presented which treats the system (1) as a set of uncoupled
first order systems. It is then assumed that the dynamics of these uncoupled systems are the same
as those of the single coupled system. It is not obvious that this is the case. In particular, in [2]
it was stated that each individual uncoupled equation will settle in a state with xi 6∈ (−1,+1)
for all initial conditions, xi(0), except one, with no reference to the initial conditions of the other
equations, xj(0), j 6= i. However, in the following example, for any xi(0) ∈ (−1,+1) there exists
an xj(0) such that the system will remain in a state with xi ∈ (−1,+1). Consider the system(
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which is a CNN satisfying the requirement aii > 1. In the linear region x ∈ (−1,+1)2, yi =
fL(xi) = xi, and so (2) can be written as

ẋ =
(

1 1
1 1

)
x. (3)

Clearly the solution of this will not diverge for any initial condition of the form x = (u,−u)T

with u ∈ (−1,+1), and thus for any x1(0) ∈ (−1,+1), there exists an x2(0) = −x1(0) for which
x1(t) ∈ (−1,+1) for all t, as required.

The key to this example is the fact that there is a non-positive eigenvalue, λ ≤ 0 of A − I,
where I denotes the identity matrix. Thus it has a set of equilibria in (−1,+1) which is of measure
zero in R2, but whose projection onto the coordinate axes is of non-zero measure in R1. Note that
because the set of equilibria is of measure zero in R2, this system does not violate the BOP, but
merely casts doubt upon an aspect of the original proof, namely the decoupling of the system.
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3 New Proof of the Binary Output Property

A more rigorous proof of the BOP can be obtained by considering the complete coupled system. As
the CNN is convergent by hypothesis, it is sufficient to show that every equilibrium with |xi| < 1
for some i is unstable. It can be shown that an equilibrium point will be unstable if there is at
least one positive eigenvalue of AD− I in the corresponding homogeneous linearised system,

ẋ = (AD− I)x, (4)

where D = diag(f ′(x1), . . . , f ′(xn)) and I denotes the identity matrix. This has been shown to be
the case when A− I is diagonally dominant and has positive diagonal elements [8]. With the aid
of the following theorem, it will be shown to hold for general A with aii > 1, so the BOP depends
only on the diagonal elements, as stated in [1, 2].

Theorem 1 Let α and β be positive real numbers. If A is an n × n matrix whose diagonal
elements, aii, are real and satisfy aii > α, and D = diag(δ1, . . . , δn) is a real diagonal matrix with
δi = 0 or δi ≥ β for all i, and not all δi are zero, then AD has at least one eigenvalue λ with
Re(λ) > αβ.

Proof: The trace of AD,
∑n

i=1 aiiδi, is equal to the sum of its eigenvalues. Each zero on the
diagonal of D causes an entire column of AD to be zero, and thus corresponds to a zero eigenvalue.
Thus the sum of the m non-zero eigenvalues is equal to the sum of the m non-zero diagonal elements
of AD. Since the non-zero elements aiiδi are all greater than αβ, their sum must exceed mαβ,
and so at least one of the eigenvalues must have real part greater than αβ. Thus AD has at least
one eigenvalue λ with Re(λ) > αβ as required. 2

With the aid of this theorem, the BOP may now be proved for f = fL. In the linearised
system (4), D = diag(δ1, . . . δn) with δi = 1 if xi ∈ (−1,+1) and 0 if x 6∈ [−1,+1]. Any linearisation
with xi ∈ (−1,+1) for some i satisfies the conditions of Theorem 1 with α = β = 1. Hence AD
has at least one eigenvalue with real part greater than 1 and AD−I will have a positive eigenvalue.
Thus there will be no stable equilibrium in that linearisation. If xi = ±1 for some i then there will
be multiple linearisations possible. If xj ∈ (−1,+1) for some j 6= i, then all possible linearisations
satisfy the conditions of Theorem 1, and none will have a stable solution, as required by the BOP.
Alternatively if xj 6∈ (−1,+1) for all j 6= i then |yj | = 1 for all j as required by the BOP. This
establishes the BOP when f = fL.

4 Conclusion

This letter has pointed out a weakness in the standard proofs of the binary output property in
CNN theory, and provided a more rigorous proof based on the eigenvalues of the system matrix.

Theorem 1 is more general than is required to prove the BOP. Indeed it can be used to prove
results about binary outputs of CNNs using output functions other than fL [9].

5 Acknowledgements

The author thanks Dr. A. L. Andrew for many helpful discussions, and M. Palaniswami for com-
ments on this manuscript. While performing this work, the author was supported by a scholarship
from the Australian Telecommunications and Electronics Research Board (ATERB).

References

[1] L. O. Chua and L. Yang, ‘Cellular neural networks: Theory’, IEEE Trans. Circuits and Systems
35(10), 1257–1272 (1988).

2



[2] J. A. Nossek, G. Seiler, T. Roska, and L. O. Chua, ‘Cellular neural networks: Theory and
circuit design’, Int. J. Circuit Theory Appl. 20(5), 533–553 (1992).

[3] T. Matsumato, L. O. Chua, and H. Suzuki, ‘CNN cloning template: Connected component
detector’, IEEE Trans. Circuits and Systems 37(5), 333–335 (1990).

[4] G. Seiler and J. A. Nossek, ‘Winner-take-all cellular neural networks’, IEEE Trans. Circuits
and Systems II 40(3), 184–190 (1993).

[5] L. L. H. Andrew, ‘Improving the robustness of cellular winner-take-all neural networks’, IEEE
Trans. Circuits and Systems II, 43(4), 329-334, (1996).

[6] L. O. Chua and T. Roska, ‘Stability of a class of nonreciprocal cellular neural netowrks’, IEEE
Trans. Circuits and Systems 37(12), 1520–1527 (1990).

[7] F. Zou and J. A. Nossek, ‘Stability of cellular neural networks with opposite-sign templates’,
IEEE Trans. Circuits and Systems 38(6), 675–677 (1991).

[8] F. A. Savaci and J. Vandewalle, ‘On the stability analysis of cellular neural networks’, IEEE
Trans. Circuits Systems I 40(3), 213–215 (1993).

[9] L. L. H. Andrew, ‘Binary output of cellular neural networks with smooth activation’, IEEE
Trans. Circuits Systems I 44(9), 821-824 (1997).

3


