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Abstract— Channel identification of a time-varying channel is Different techniques for channel identification are consid-
considered using superimposed training. A sequence of known ered in the literature [1]-[7]. Many of these techniques, [1]-
symbols with lower power is arithmetically added to the informa- [4], [7] obtain the channel estimate using first-order statistics.

tion symbols before modulation and transmission. The channel |, - - . . L
estimation is done exploiting the known superimposed data in Within the first-order statistical approaches, periodicity of the

the transmitted signal. Two iterative algorithms are considered Pilots is explicitly used in [4], [7], whereas [4] also uses the cy-
in this paper: recursive least squares (RLS) and the expectation clostationary nature of the received symbols. A superimposed

maximization (EM). Performance of the proposed algorithms pilot scheme for guard interval based systems is studied in [3].
is compared with a simple avergaing scheme and the LMS 1pq scheme in [5] uses first-order statistics to obtain the initial
algorihm. For short data blocks RLS outperforms EM, but with - - . .
large blocks EM is superior. estimate of the_ c_hannel_ and fu_rth(_ar improves this estimate
using Deterministic Maximum Likelihood (DML) approach.
The approach in [6] also starts with an initial estimate of the
channel using first-order statistics and improves the estimate
using decision feedback after symbol detection.

In the conventional approach of channel identification using This paper considers two iterative algorithms namely RLS
pilots, pilot symbols are time-multiplexed with informationand EM algorithms for channel estimation. These two algo-
symbols before transmission. This technique wastes batighms have not yet been considered for channel estimation in
width, causing a reduction in data rate. For a time-varyirije context of superimposed pilot training in the literature.
channel, the conventional technique needs to transmit piRLS is an iterative algorithm to obtain the least squares
data frequently enough to keep up with the channel variatiggstimate [13]. In this scheme a small number of known
An alternative approach, studied in [1]-[7], is known agilot symbols are transmitted, just like the conventional time
superimposed pilot training. The idea behind this approasultiplexed scheme, to improve the initial convergence time.
is superimposing or arithmetically adding known pilot datéfter this the RLS algorithm tracks the channel. As the
at a lower power to the information data before modulatiosecond approach this paper derives an EM algorithm to obtain
Channel identification is done utilizing the superimposed dafae maximum likelihood estimate of the channel. The EM
in transmitted symbols. The major advantage of this scher@lgorithm iteratively converges to a local maximum of the
is that the wastage of bandwidth is eliminated. In particular,li&elihood function [14]. This algorithm make use of the
time-varying channel can be tracked using the superimpossidtistical properties of transmitted sequences. Initial training
pilots with out causing further wastage of resources. But thégth the known pilot symbols are used in the EM algorithm.
downside of this approach in a system with fixed transmiBoth RLS and EM are iterative algorithms but there is a
power is the allocation of power to superimposed pilots froglear distinction between two. RLS make use of the previous
the power budget for information data. This causes a reducti@hannel estimates right from the beginning of the algorithm,
in the transmit power of information signals and effectivelyvhereas the standard EM algorithm iterates over the same
reduces the of signal to noise ratio (SNR), adversly affectiigceived block repeatedly and treats blocks independently. In
the bit error rate (BER). The optimal power allocation tghis paper, we propose a variant of the EM algorithm which
achieve the balance between channel estimation accuracy &g@rporates memory to allow noise to average out.
effective SNR is studied in [10]. Application of superimposed The organization of this paper is as follows. Section II
pilot training is found in multi-carrier systems such as orthoglescribes the system model and the problem formulation.
onal frequncy division multiplexing (OFDM) [12]. In OFDM Section Il explains the RLS algorithm and shows how to
systems, it is shown that the superimposed scheme is not oifiorporate initial training. Derivation of the EM algorithm
applicable for channel estimation/detection but also for peakf@ channel identification is given in Section IV. Simulation
average power ratio (PAPR) reduction [11]. Application of thiesults are presented in Section V followed by conclusions in
scheme is also extended to multi-input multi-output (MIMO$ection VI.
systems in [8] and [9].

I. INTRODUCTION

Il. SYSTEM MODEL AND PROBLEM FORMULATION
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be the ith superimgosed pilot transmitted, and lgtf = B. Selection of Scaling Factod;

[ Chiovnens Ch—L+1 | ata time index:. The received symbol |n the scheme of channel estimation using the RLS algo-
yx in presence of the noisey is given by rithm, a small number of pilot symbols with full power are
1 I transmitted for the initial training followed by the superim-

_ ha(k)sps hi(k)en_s 1 posed p|Iqt symbols. The initial pilots have a better SNR than

Yk ; (k)s—i + ; (k)ex—i + nx, (@) the superimposed ones and should be given more weight.

In this scheme an approximate expression for the scaling
wheren;, is Gaussian distributed\/(0,02). This paper ex- factor is derived as follows. Let be the number of full pilot
plores the options of estimating the channel vebt@r) given symbols transmitted ankl—p be the number of superimposed
the received symbol; and the superimposed pilot symbopilot symbols transmitted. Treating the contribution of the
vectorc; for the time indicesl < j < k. transmitted symbols in the received symbols as noise, (1) is

modified as

y; = h' (i), + w;, %)
wherew; is the noise from the information symbols and from

A. RLS Algorithm the channel. The distribution af; is approximated to be white

The weighted least squares estimate of the channel vedgtussian\V'(0,07) for 1 < i < p and (0,07, + o) for
is h that minimizes the error function p+1 S 7 S I{i, WhereO’? is the information Symb0| power and
o2 is the channel noise power. The log likelihood function of
received data given the channel veclog p(y; | h(7)) is
‘ i — h(i)"ci)?
log p(y; | h(i)) K- {@2(52))
wheree; = y; — h(k)Tc; is the symbol error andv(k, i) is N {(yi _ h(;l)TCZ_)2

I1l. RLS ALGORITHM FOR CHANNEL IDENTIFICATION

k
b= > wlh, il @
i=1 ]Jﬁiﬁp (6)

the weight function. The least squares estimate is given as = ] p+1<i <k,

2(02 4 02)

A k g where K is the terms independent gf and h(:). Log like-
h(k) = [Zw(k,i)cicf] > w(k,i)ciy;, (3) lihood functionlogp(yy ...yx | h(1)...h(k)) = logp(y1 |
i=1 i=1 h(1)) + ... +logp(yx | h(k)) is given by
where>>F | w(k,i)c(i)c(i)T is the weighted correlation ma- logp(y1 ... ye [ h(1)...h(k)) = @)
trix of the superimposed data vectors. Estimation of the P2 k o2
channel coefficient vectan(k) using (3) is computationally K — Z 20’2 + Z m ;
costly. For each newk, inversion of the weighted correlation i=1 """ d=ptl TN s

matrix of superimposed data is necessary. This can be avoidad, o .
using the RLS algorithm, as it updates the correlation matr :
with an increment oft without matrix inversion. This gives . .
a benefit in terms of computational complexity. Consider a f . e e?

weighting function of the formw(k, i) = A;A\*~%, where\*—! h = amg mhm; 202 * ,;1 2(c2 + 02) ®
is a forgetting factor that helps to forget the past history of = p’_p X

a time-varying channel4; scales theith error and scaling B . o0l +0? 9 9

is used to emphasise or de-emphasise an error. With this - o2 ;61 + Z G-

= y; — h(i)Tc; is the symbol error. The maximum
fkelihood estimate of the channel can be obtained from (7) as

2
i

specification of4;, the RLS algorithm in [13] becomes ) ) ) =t i
Comparing (2) with (8), scaling factot; for A =1 is
Initialization step, fork = 0 02 +02 )
b s A={ T lsisp ©)
ro = 1 p+1<i<k
h0) = 0 This weighting will be used in the results of Section V. It
Repeat fork = 1,2,. .. is worth noting that for a static channel, the least squares
M, — A Pr_ick estimate (3) with a scaling factor of (9) in the presence of white
k= - . o ; S .
A7+ A—lc{Pk_lck Gaussian noise is the maximum likelihood (ML) estimate.
~T
§ = Yy —hp_1C IV. CHANNEL IDENTIFICATION USING EM ALGORITHM
h(k) = h(k—1)+ My (4)  Although RLS gives the ML estimate when the symbols
P. = A 'Py_1—A"'MyclP,_,, are independent, more powerful techniques such as EM are

generally required. This section illustrates how the EM algo-
where ¢ is a small positive constant, which is used forithm can make use of the embedded pilots. For expositional
initialization. P, is the inverse of the weighted correlatiorsimplisity the case of independent symbols and white noise
matrix andM;, = P;cs,. will be given, but the general case is similar.
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A. Introduction to EM Algorithm The aim of the EM algorithm is to estimate channel co-

Let # be the parameter to be estimated from a giveqfficient vectorh from rece_ived symb_olg_by exploiting_the
observationy which is an outcome of a sample spaceThen Presence of known superimposed pilatsn the transmitted
the maximum likelihood estimate dfis data.

6 = argmax p(y | 0) (20)

C. EM Algorithm for Channel Identification
wherep(y | 0) is the conditional probability density function

. This section derives an EM algorithm for the problem
of the observed data given the unknown parameter. One V§®fined in Section IV-B. There exists constant matrides=

of computing ML estimate is by using the EM algorithm. Th%H/ah- € RMXN j = (. I —1 such that (13) becomes
EM algorithm iteratively converges to a local maximum of the ! ’ o

likelihood function. The framework of the EM algorithm is as L1 L1
follows. y = <Z hiJi> s+ (Z hiJi> c+n. (15)

Let x be an outcome of a sample spa&e such thatx =0 =0
is not observed directly but only by means mf Thenz is The framework for the EM algorithm is as follows. The
termed “complete data” to indicate that there is a many to oggmplete data i = [ s yT ]T, which is the combination
mapping fromX to Y, and the observatiop is referred as of information symbols and the received data. The received
the incomplete data. Let be the parameter to be estimatedgatay is the incomplete data. (Note that the complete and
Let p(X | 0) denote the probability density function of theincomplete data are defined in the previous subsection). Simi-
complete data given the unknown parameter. The aim beh[@ﬂy the unknown parameters to be estimaﬁ_:’dire the chan-
the EM algorithm is to findd that maximizeslogp(X [ 0) nel coefficientsh = [ ho...... hi_1 ]T. The distribution of
under the condition that is not directly observable, given onlyihe noise vecton is defined in Section IV-B ad/ (0,021 ).
an observationy. The EM algorithm does this job in two stepye assume the distribution of transmitted symbol vestis
namely the Expectation step (E-step) and the Maximizatig@ro mean white Gaussian with a covariance matrixfy.

step (M-step). For a given estimate of the unknown paramefgrinis framework, the E-step and the M-step are
9] and an observatiop the E-step is given as

h|ht = Ellogp(x|h)|y,h?* 16
QO 10%) = B [logp(x [0) [1.04] . (@) Q1 = flgp(x | | v01] 16
ht+1 = argmax Q(h | h*) a7
wherek is the iteration count. The M-steff* ! to be thef h
that maximizesQ (6 | 6%1): To calculate (16), the conditional distribution of the complete
. data given the unknown parametgfx | h) is required. This
(k1] — (k]
0 e mgaXQ(e | 0%). (12) distribution derived in Appendix |, is a multivariate Gaussian

. . . _ T T T T
After initializing 6%, the EM algorithm applies (11) and (12)distribution. The mean vectany = [ 0" c"H" |, where
repeaatedly for increasing until 81* converges. 0 is a null vector of dimensiorV and the covariance matrix

Ry is

B. Channel Model _ { o2l y o2HT }
XX -

Grouping the transmitted symbols into blocks, system model oiH  onla + UiHHT
(1) can be represented as follows. Consider a transmissigi,
scheme in which known pilot symbotsc RY are superim- r Lo
posed on the transmitted data symbeis RY. Considering a R-L — %‘g'N + éH H —2H (19)
finite impulse response chanrigl ¢ RM*~ with zero mean o —2%H Ly |
additive white Gaussian noisec R with covariance matrix !
021, the received symbol vectgre R is given by

(18)

The logarithm of joint distribution off ands givenh is

M+ N 1
y=Hs+Hc+n, (13) logp(x | h) = —% log 27 — 3 log det Ryx
where the channel is assumed to be of known ledgth N — 1 T
. .. ——(X—=my)" Ry (X — My). 20
M + 1, with channel coefficient® = [ ho...... hi_1 ]T. 2( x)" R ( x) (20)
The channel matrixi € R**¥ is constructed from the |n the above expression the first term is independent of
channel vectoh and is a Toeplitz matrix given as Similarly det Ryx = o202, which is also independent d4.
hp—1 ... ho 0O 0 ... 0 Thus

0 hp,_1 ... h 0 1

. L ! _ _ 0 _ (14) logp(s,y | h) =K — E(STHTHS—F

0 0 . 0 iy . ho 2¢"HTHs + cTHTHe — 2yTHs — 2yTHc), 1)

The above channel model describes a block of symbols framhere K contains the terms independentf To find the con-
a continuous transmission of data i.e. it is not block baseitional expectation gively and h*! in (16), the conditional
transmission with guard intervals. probability density function o§ giveny andh!*!, p(s |y, h{*)



is required. It is the Gaussian distributidfi(u, B), with mean D. Incorporating Memory to EM

and variance shown in Appendix Il to be The standard EM algorithm, as described above, finds the
. . . ML estimate of the channel given a single block of data.
ulkl = 52 (aZIN + o2HIH H[’“]> HF™ (y — 1) However, if the block is short, then the significant uncertainty

1 due to the data symbols can make even the optimal estimate
Bk — (12|N + 12H[k]TH[k]> . (22) poor. Moreover, if the channel varies slowly compared to
O On the block length, then previous blocks provide significant
From (16) and (17), the combined iterative step to find ﬂ{"ralformation about the current channel. These observations
maximum Iikelihood'estimate is motivate a heuristic modification to the EM algorithm.
Each step of the EM algorithm produces a channel estimate
hlk+1] — El svlh hikl ] 23 which reflects both the observatian,and the initial estimate,
arg X {ng( SARDRR } (23) Rl If the initial estimate,h[?, is taken to be the estimate
R 1] i from the previous block, and only a small number of update
This implies thath satisfies steps are performed, then the correlation of the channel can be
P exploited; averaging is performed over a larger number of data
E |5 —{logp(sy [N}y, h[k]} =0,0<i<L—1. (24) symbols, resuling in a better channel estimate. The heuristic
i EM algorithm is then simply to start with an initial channel
Substituting (21) in (24) gives estimateh[%(0), and for each blocki, perform a single update
to obtainAal! (i) from Rl (3), and seth[?l(i + 1) = Al (7).

1 T TyT T 1T TyT
E[E(STH Jis+c'HT s+ ¢TI Hs + c"H J;c V. SIMULATION

—yTais—yT30) |y, h[’“}] =0,0<i<L-—1. (25) BER results of the proposed algorithms are compared with
those of a simple averaging scheme and the Least Mean

Let ul*! and B/*! be the mean and covariance gfs | y,h) Squares (LMS) algorithm. The channel is estimated using the
whenh = h*l and define the matri®*! = BI*! + ylklylkl”, given schemes and a minimum mean square error (MMSE)

Then (25) can be rewritten equalizer [15] is constructed for equalization. The channel is
modeled as a time-varying channel using Jakes’ model [16]
tr(HT3;PF) + c"HTJ,ul™ 4 cTITHUM 4 cTHT J,c with a Doppler frequency,; = 400Hz and with a transmission

—yT3uM —yT3c=0, 0<i<L—1. (26) rate f, = 4Mbps. This Doppler frequency corresponds to a
- speed of60km/hr. A baseband channel is considered, and so

SubstitutingH = Z]L_—Ol h;J; in (26) gives only the real part of Jf_;lkes’ channel model_ is used. The length
of the channel used i& = 3. The transmitted symbols are
L—1 from a binary phase shift keying (BPSK) constellation. For
> by [tr(JjTJ,P[’“]) +cTIT3ulM 4 cT3T3;ulM 4 73T J;c|  all schemes initial training is performed with 8 pilot symbols
j=0 followed by the superimposed training. The superimposed

pilots are chosen as random binary data. For all schemes
excluding EM with short symbol blocks, twenty percent of

=yT3ulFl 4 yTJc, 0<i<L—1. (27) the power is allocated for pilots.
The RLS algorithm uses a forgetting factar= 0.996 and
This is a set of linear equations of the form the scaling factor is calculated using (9).
The simple averaging scheme is as follows. Treating trans-
Dh=d (28)  mitted information symbols as noise, the channel model (13)
can be represented as

where the matriXD € RX*L and vectord € R” are given by
y=Hc+n, (30)
- T 1 plk] T 1T 1.,k T 1T 7 .4k TqT 7. . . .
Dyj = tr(3f 3;PM) + ¢ 373l + ¢T3 3;ul + ¢373ic. yneren has both the channel noise and information symbol
noise. Considering the specific structure of the channel matrix

given in (14), (30) can be rewritten as

d; =yTI;ul 4y, 0<i,j < L—1. (29) y=Ch+n, (31)

and

: o . where C € RM*L s constructed fromc. The channel is
The EM algorithm for estimating the channel coefficiehnts . - M T .
. . . estimated a$ = (1/M) .~ y;C!, wherelM is the number
can be summarized as follows. Obtain the constant matrlc:0 <vmbol blocks transmi{ted énﬁis the index of the theth
J;, = aH(ahi,z’ = 0,...L — 1 and initialize the channel y

. . block.
vector hl%), At an iterationk (k = 0, 1, ...) use (22) to o o
calculate ™ and B, Determine P¥ from the relation _, CONSIdering the system model given in (31), the LMS

Pl — gl 4 k™ Use (29) to calculate andD. Obtain algorithm estimates the channel recursively as
the new estimate of the chanr@f*!! by solving (28). h; = Ah;_1 + (1 — \)yC. (32)
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Fig. 1. BER performance comparison of RLS algorithm, LMS algorithm
and Simple averaging scheme Fig. 2. Convergence of RLS algorithm with and without initial training at
10dB SNR.

The value of theh is set to the channel estimate from initial
training, and\ = 0.996.

Equalization is done using an MMSE equalizer with a
tap length of7. All the BER results are averaged ovep0
realizations of the channel and 800 transmitted symbols in  107;
each realization. The BER comparison is presented in Figure
1. The results show that the RLS algorithm performs bettef
than the other schemes. It outperforms simple averaging duge
to the forgetting factor). Since the LMS algorithm uses the
same forgetting factor, it performs similarly to RLS at low
SNR. However, since it converges more slowly, its BER is
dominated by the high error rate before it converges; this
gives rise to its worse performance at high SNR. The simple
averaging scheme performs worst because it does not considero,zi ‘ ‘ ‘ ‘ ‘
the channel variation. Figure 2 presents the convergence o 10 15
the RLS algorithm with and without initial training. It can
be seen that the initial training reduces convergence time angl 3. BER performance comparison of standard EM algorithm and EM
this helps the use of RLS algorithm from the beginning afigorithm with memory.
data transmission.

The EM algorithm with and without memory uses a block
length of 20 and fifty percent of the power is allocated to 1" .
the pilot symbols. The stanadard EM algorithm iterates over a
single block200 times, whereas EM with memory does only
1 iteration. Figure 3 presents the comparison of the standard
EM algorithm and the EM algorithm with memory. EM with
memory significantly outperforms the standard EM algorithm.
Figure 4 shows the BER performance comparison of the EM
algorithm (without incorporating the strategy in Section IV-D) “
and the RLS algorithm for a block length of 400 symbols. The
channel is assumed to be time-invariant over the block. EM is o M
showing a better peformance towards higher SNR. This result —k RLS
indicates that EM needs more information about the channel .|
for improved channel estimation.

All the schemes presented have a high error floor at high
SNR. This is because all these schemes treat the information
symbols as noise. Thus even if the channel SNR is infinite
there will be an error in estimating the channel, which causé'ﬁt'
non-zero BER.

20
SNR (dB)

11
SNR (dB)

4. BER performance comparison of standard EM with RLS for a block
h of 400.



VI. CONCLUSION (s— UfAle[k]TY’)TA(S— OfAle[k]TY') — K,

The RLS algorithm has been shown to outperform a Simm@nereA = [021 + UEH[k}TH[k]] and ¥’ is terms independent

(time-invariant) averaging scheme and at high SNR it alsg 5 conditional distribution of transmitted symbaisgiven
outperforms LMS. The heuristic EM algorithm which incory, (] andy is

porates memory from block to block greatly improves it’s
performance. EM shows a better performance than the RLS

p(s| h*y) =

algorithm for large block sizes.

APPENDIXI

The distribution P(y | h) is Gaussian with mean and

covariance calculated from (13) as
Ely|h] = Hc
covly | h] = E[(Hs+n)(Hs+n)" | h]

= E[Hss"H” +Hsn" + ns"H” + nn” | h]
o?HHT + 021

sinceH ands are independent. Moreovexs | h) = p(s) is
Gaussian withE[s] = 0 and coVs| = o21 5. Moreover

El(y - E(y | h))(s— E(s|h))" | h]
E[(Hs+n)s" | h] = o2H

cov(y,s| h)

Rux = cov(x,x | h) { coU(s, s | h)

cov(y,s| h)

APPENDIXII
The conditional distribution (s| y,h[’“]> can be obtained
from (13) as follows:
_ ppmph™ | n,9)p(y | n,s,h")
p(y, ht*)

cov(s,y | h) }
cov(y,y | h)
o2HT

o2y + o?HHT }

2
oiln
2
o:H

p(s,n | hiFy)

~ p(p()p(h™ | n,s)s(y — HMs— HMc —n)
p(y, hl)

/ p(sn [h* y)dn

dn

/p(S)p(n)p(h““] I n,9)5(y — HMs — HF¢ — n)
p(y, h!*))

p(s| h*y) = p(s)p(y — HMs— HMe) K, (33)

where K includes all the factors independent af Denote

y — H¥lc by y’. Equation (33) is expanded as
p(s|hiHy) =

02875+ o2y — HIFlg)T(y — HMg)]),

—1
252
20207

K’ exp (
where K’ contains the terms independentofAlso
o2s's+ o2(y — HFlg)T(y — HIFg)

= 025 s+ o2y'Ty — 202y THIFs 4 o2sTHM  Hklg

—1
2,52
20207

K" exp (5357 (s — 2AT HI ) TA(s = 2A7 HIy)),

where K is terms independent of and from this equation
mean vector and covariance matrix are obtained as

ul = E(s |y, h™) =
T -1 T
o (GiIN + o2H H[’“]) HEE (y — HIFe)

(ﬁm + U%H[k]TH[’“]>_1

BI¥) = cov(s, s |y, h!*))
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