
1

Iterative Algorithms for Channel Identification
Using Superimposed Pilots

Angiras R. Varma, Lachlan L. H. Andrew, Chandra R. N. Athaudage, Jonathan H. Manton

Abstract— Channel identification of a time-varying channel is
considered using superimposed training. A sequence of known
symbols with lower power is arithmetically added to the informa-
tion symbols before modulation and transmission. The channel
estimation is done exploiting the known superimposed data in
the transmitted signal. Two iterative algorithms are considered
in this paper: recursive least squares (RLS) and the expectation
maximization (EM). Performance of the proposed algorithms
is compared with a simple avergaing scheme and the LMS
algorihm. For short data blocks RLS outperforms EM, but with
large blocks EM is superior.

I. I NTRODUCTION

In the conventional approach of channel identification using
pilots, pilot symbols are time-multiplexed with information
symbols before transmission. This technique wastes band-
width, causing a reduction in data rate. For a time-varying
channel, the conventional technique needs to transmit pilot
data frequently enough to keep up with the channel variation.
An alternative approach, studied in [1]-[7], is known as
superimposed pilot training. The idea behind this approach
is superimposing or arithmetically adding known pilot data
at a lower power to the information data before modulation.
Channel identification is done utilizing the superimposed data
in transmitted symbols. The major advantage of this scheme
is that the wastage of bandwidth is eliminated. In particular, a
time-varying channel can be tracked using the superimposed
pilots with out causing further wastage of resources. But the
downside of this approach in a system with fixed transmit
power is the allocation of power to superimposed pilots from
the power budget for information data. This causes a reduction
in the transmit power of information signals and effectively
reduces the of signal to noise ratio (SNR), adversly affecting
the bit error rate (BER). The optimal power allocation to
achieve the balance between channel estimation accuracy and
effective SNR is studied in [10]. Application of superimposed
pilot training is found in multi-carrier systems such as orthog-
onal frequncy division multiplexing (OFDM) [12]. In OFDM
systems, it is shown that the superimposed scheme is not only
applicable for channel estimation/detection but also for peak to
average power ratio (PAPR) reduction [11]. Application of this
scheme is also extended to multi-input multi-output (MIMO)
systems in [8] and [9].
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Different techniques for channel identification are consid-
ered in the literature [1]-[7]. Many of these techniques, [1]-
[4], [7] obtain the channel estimate using first-order statistics.
Within the first-order statistical approaches, periodicity of the
pilots is explicitly used in [4], [7], whereas [4] also uses the cy-
clostationary nature of the received symbols. A superimposed
pilot scheme for guard interval based systems is studied in [3].
The scheme in [5] uses first-order statistics to obtain the initial
estimate of the channel and further improves this estimate
using Deterministic Maximum Likelihood (DML) approach.
The approach in [6] also starts with an initial estimate of the
channel using first-order statistics and improves the estimate
using decision feedback after symbol detection.

This paper considers two iterative algorithms namely RLS
and EM algorithms for channel estimation. These two algo-
rithms have not yet been considered for channel estimation in
the context of superimposed pilot training in the literature.
RLS is an iterative algorithm to obtain the least squares
estimate [13]. In this scheme a small number of known
pilot symbols are transmitted, just like the conventional time
multiplexed scheme, to improve the initial convergence time.
After this the RLS algorithm tracks the channel. As the
second approach this paper derives an EM algorithm to obtain
the maximum likelihood estimate of the channel. The EM
algorithm iteratively converges to a local maximum of the
likelihood function [14]. This algorithm make use of the
statistical properties of transmitted sequences. Initial training
with the known pilot symbols are used in the EM algorithm.
Both RLS and EM are iterative algorithms but there is a
clear distinction between two. RLS make use of the previous
channel estimates right from the beginning of the algorithm,
whereas the standard EM algorithm iterates over the same
received block repeatedly and treats blocks independently. In
this paper, we propose a variant of the EM algorithm which
incorporates memory to allow noise to average out.

The organization of this paper is as follows. Section II
describes the system model and the problem formulation.
Section III explains the RLS algorithm and shows how to
incorporate initial training. Derivation of the EM algorithm
for channel identification is given in Section IV. Simulation
results are presented in Section V followed by conclusions in
Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a time-varying channel vector given byh(k) =[
h0(k) . . . . . . hL−1(k)

]T
at time indexk. Let si be the

ith symbol transmitted, and define thekth transmitted sym-
bol vector sk =

[
sk . . . . . . sk−L+1

]T
. Similarly, let ci
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be the ith superimposed pilot transmitted, and letck =[
ck . . . . . . ck−L+1

]T
at a time indexk. The received symbol

yk in presence of the noisenk is given by

yk =
L−1∑

i=0

hi(k)sk−i +
L−1∑

i=0

hi(k)ck−i + nk, (1)

where nk is Gaussian distributed,N (0, σ2
n). This paper ex-

plores the options of estimating the channel vectorh(k) given
the received symbolyj and the superimposed pilot symbol
vectorcj for the time indices1 ≤ j ≤ k.

III. RLS A LGORITHM FOR CHANNEL IDENTIFICATION

A. RLS Algorithm

The weighted least squares estimate of the channel vector
is h that minimizes the error function

ξk =
k∑

i=1

w(k, i)|ei|2, (2)

whereei = yi − h(k)T ci is the symbol error andw(k, i) is
the weight function. The least squares estimate is given as

ĥ(k) =

[
k∑

i=1

w(k, i)cicT
i

]−1 k∑

i=1

w(k, i)ciyi, (3)

where
∑k

i=1 w(k, i)c(i)c(i)T is the weighted correlation ma-
trix of the superimposed data vectors. Estimation of the
channel coefficient vector̂h(k) using (3) is computationally
costly. For each newk, inversion of the weighted correlation
matrix of superimposed data is necessary. This can be avoided
using the RLS algorithm, as it updates the correlation matrix
with an increment ofk without matrix inversion. This gives
a benefit in terms of computational complexity. Consider a
weighting function of the formw(k, i) = Aiλ

k−i, whereλk−i

is a forgetting factor that helps to forget the past history of
a time-varying channel.Ai scales theith error and scaling
is used to emphasise or de-emphasise an error. With this
specification ofAi, the RLS algorithm in [13] becomes

Initialization step, fork = 0
P0 = δ−1I

ĥ(0) = 0

Repeat fork = 1, 2, . . .

Mk =
λ−1Pk−1ck

Ai
−1 + λ−1cT

k Pk−1ck

ξk = yk − ĥ
T

k−1ck

ĥ(k) = ĥ(k − 1) + Mkξk (4)

Pk = λ−1Pk−1 − λ−1MkcT
k Pk−1,

where δ is a small positive constant, which is used for
initialization. Pk is the inverse of the weighted correlation
matrix andMk = Pkck.

B. Selection of Scaling FactorAi

In the scheme of channel estimation using the RLS algo-
rithm, a small number of pilot symbols with full power are
transmitted for the initial training followed by the superim-
posed pilot symbols. The initial pilots have a better SNR than
the superimposed ones and should be given more weight.
In this scheme an approximate expression for the scaling
factor is derived as follows. Letp be the number of full pilot
symbols transmitted andk−p be the number of superimposed
pilot symbols transmitted. Treating the contribution of the
transmitted symbols in the received symbols as noise, (1) is
modified as

yi = hT (i)ci + wi, (5)

wherewi is the noise from the information symbols and from
the channel. The distribution ofwi is approximated to be white
GaussianN (0, σ2

n) for 1 ≤ i ≤ p andN (0, σ2
n + σ2

s) for
p+1 ≤ i ≤ k, whereσ2

s is the information symbol power and
σ2

n is the channel noise power. The log likelihood function of
received data given the channel vectorlog p(yi | h(i)) is

log p(yi | h(i)) = K −
[
(yi − h(i)T ci)2

2σ2
n

]
, 1 ≤ i ≤ p (6)

= K −
[
(yi − h(i)T ci)2

2(σ2
n + σ2

s)

]
, p + 1 ≤ i ≤ k,

whereK is the terms independent ofyi and h(i). Log like-
lihood function log p(y1 . . . yk | h(1) . . . h(k)) = log p(y1 |
h(1)) + . . . + log p(yk | h(k)) is given by

log p(y1 . . . yk | h(1) . . . h(k)) = (7)

K −



p∑

i=1

e2
i

2σ2
n

+
k∑

i=p+1

e2
i

2(σ2
n + σ2

s)


 ,

whereei = yi − h(i)T ci is the symbol error. The maximum
likelihood estimate of the channel can be obtained from (7) as

ĥ = arg min
h

p∑

i=1

e2
i

2σ2
n

+
k∑

i=p+1

e2
i

2(σ2
n + σ2

s)
(8)

= arg min
h

σ2
n + σ2

s

σ2
n

p∑

i=1

e2
i +

k∑

i=p+1

e2
i .

Comparing (2) with (8), scaling factorAi for λ = 1 is

Ai =

{
σ2

n+σ2
s

σ2
n

1 ≤ i ≤ p

1 p + 1 ≤ i ≤ k
(9)

This weighting will be used in the results of Section V. It
is worth noting that for a static channel, the least squares
estimate (3) with a scaling factor of (9) in the presence of white
Gaussian noise is the maximum likelihood (ML) estimate.

IV. CHANNEL IDENTIFICATION USING EM ALGORITHM

Although RLS gives the ML estimate when the symbols
are independent, more powerful techniques such as EM are
generally required. This section illustrates how the EM algo-
rithm can make use of the embedded pilots. For expositional
simplisity the case of independent symbols and white noise
will be given, but the general case is similar.
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A. Introduction to EM Algorithm

Let θ be the parameter to be estimated from a given
observationy which is an outcome of a sample spaceY . Then
the maximum likelihood estimate ofθ is

θ̂ = arg max p(y | θ) (10)

wherep(y | θ) is the conditional probability density function
of the observed data given the unknown parameter. One way
of computing ML estimate is by using the EM algorithm. The
EM algorithm iteratively converges to a local maximum of the
likelihood function. The framework of the EM algorithm is as
follows.

Let x be an outcome of a sample spaceX such thatx
is not observed directly but only by means ofy. Then x is
termed “complete data” to indicate that there is a many to one
mapping fromX to Y , and the observationy is referred as
the incomplete data. Letθ be the parameter to be estimated.
Let p(X | θ) denote the probability density function of the
complete data given the unknown parameter. The aim behind
the EM algorithm is to findθ that maximizeslog p(X | θ)
under the condition thatx is not directly observable, given only
an observationy. The EM algorithm does this job in two steps
namely the Expectation step (E-step) and the Maximization
step (M-step). For a given estimate of the unknown parameter
θ[k] and an observationy the E-step is given as

Q(θ | θ[k]) = E
[
log p(X | θ) | y, θ[k]

]
, (11)

wherek is the iteration count. The M-stepθ[k+1] to be theθ
that maximizesQ(θ | θ[k]):

θ[k+1] = arg max
θ

Q(θ | θ[k]). (12)

After initializing θ[0], the EM algorithm applies (11) and (12)
repeaatedly for increasingk until θ[k] converges.

B. Channel Model

Grouping the transmitted symbols into blocks, system model
(1) can be represented as follows. Consider a transmission
scheme in which known pilot symbolsc ∈ RN are superim-
posed on the transmitted data symbolss∈ RN . Considering a
finite impulse response channelH ∈ RM×N with zero mean
additive white Gaussian noisen ∈ RM with covariance matrix
σ2

nIM , the received symbol vectory ∈ RM is given by

y = Hs + Hc + n, (13)

where the channel is assumed to be of known lengthL = N−
M + 1, with channel coefficientsh =

[
h0 . . . . . . hL−1

]T
.

The channel matrixH ∈ RM×N is constructed from the
channel vectorh and is a Toeplitz matrix given as




hL−1 . . . h0 0 0 . . . 0
0 hL−1 . . . h0 0 . . . 0
...

.. .
.. .

. ..
. . .

. ..
...

0 0 . . . 0 hL−1 . . . h0


 . (14)

The above channel model describes a block of symbols from
a continuous transmission of data i.e. it is not block based
transmission with guard intervals.

The aim of the EM algorithm is to estimate channel co-
efficient vectorh from received symbolsy by exploiting the
presence of known superimposed pilotsc in the transmitted
data.

C. EM Algorithm for Channel Identification

This section derives an EM algorithm for the problem
defined in Section IV-B. There exists constant matricesJi =
∂H/∂hi ∈ RM×N , i = 0 . . . L− 1 such that (13) becomes

y =

(
L−1∑

i=0

hiJi

)
s+

(
L−1∑

i=0

hiJi

)
c + n. (15)

The framework for the EM algorithm is as follows. The
complete data isx =

[
sT yT

]T
, which is the combination

of information symbols and the received data. The received
data y is the incomplete data. (Note that the complete and
incomplete data are defined in the previous subsection). Simi-
larly the unknown parameters to be estimated,θ, are the chan-
nel coefficientsh =

[
h0 . . . . . . hL−1

]T
. The distribution of

the noise vectorn is defined in Section IV-B asN (0, σ2
nIM ).

We assume the distribution of transmitted symbol vectors is
zero mean white Gaussian with a covariance matrix ofσ2

s IN .
In this framework, the E-step and the M-step are

Q(h | h[k]) = E
[
log p(x | h) | y, h[k]

]
(16)

h[k+1] = arg max
h

Q(h | h[k]) (17)

To calculate (16), the conditional distribution of the complete
data given the unknown parameter,p(x | h) is required. This
distribution derived in Appendix I, is a multivariate Gaussian
distribution. The mean vectormx =

[
0T cT HT

]T
, where

0 is a null vector of dimensionN and the covariance matrix
Rxx is

Rxx =
[

σ2
s IN σ2

sHT

σ2
sH σ2

nIM + σ2
sHHT

]
(18)

with

R−1
xx =

[
1

σ2
s
IN + 1

σ2
n

HT H − 1
σ2

n
HT

− 1
σ2

n
H 1

σ2
n

IM

]
. (19)

The logarithm of joint distribution ofy ands given h is

log p(x | h) = − (M + N)
2

log 2π − 1
2

log det Rxx

−1
2
(x−mx)T R−1

xx (x−mx). (20)

In the above expression the first term is independent ofH.
Similarly det Rxx = σ2

sσ2
n, which is also independent ofH.

Thus

log p(s, y | h) = K − 1
2σ2

n

(sT HT Hs +

2cT HT Hs + cT HT Hc− 2yT Hs− 2yT Hc), (21)

whereK contains the terms independent ofH. To find the con-
ditional expectation giveny and h[k] in (16), the conditional
probability density function ofs giveny andh[k], p(s | y, h[k])
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is required. It is the Gaussian distributionN (u, B), with mean
and variance shown in Appendix II to be

u[k] = σ2
s

(
σ2

nIN + σ2
sH[k]T H[k]

)−1

H[k]T (y− H[k]c)

B[k] =
(

1
σ2

s

IN +
1
σ2

n

H[k]T H[k]

)−1

. (22)

From (16) and (17), the combined iterative step to find the
maximum likelihood estimate is

h[k+1] = arg max
h

E
[
log p(s, y | h) | y, h[k]

]
. (23)

This implies thath[k+1] satisfies

E

[
∂

∂hi
{log p(s, y | h)} | y, h[k]

]
= 0, 0 ≤ i ≤ L− 1. (24)

Substituting (21) in (24) gives

E[
1
σ2

n

(sT HT Jis+ cT HT Jis+ cT JT
i Hs + cT HT Jic

−yT Jis− yT Jic) | y, h[k]] = 0, 0 ≤ i ≤ L− 1. (25)

Let u[k] and B[k] be the mean and covariance ofp(s | y, h)
when h = h[k] and define the matrixP[k] = B[k] + u[k]u[k]T .
Then (25) can be rewritten

tr(HT JiP[k]) + cT HT Jiu[k] + cT JT
i Hu[k] + cT HT Jic

−yT Jiu[k] − yT Jic = 0, 0 ≤ i ≤ L− 1. (26)

SubstitutingH =
∑L−1

j=0 hjJj in (26) gives

L−1∑

j=0

hj

[
tr(JT

j JiP[k]) + cT JT
j Jiu[k] + cT JT

i Jju[k] + cT JT
j Jic

]

= yT Jiu[k] + yT Jic, 0 ≤ i ≤ L− 1. (27)

This is a set of linear equations of the form

Dh = d (28)

where the matrixD ∈ RL×L and vectord ∈ RL are given by

Dij = tr(JT
j JiP[k]) + cT JT

j Jiu[k] + cT JT
i Jju[k] + cT JT

j Jic,

and

di = yT Jiu[k] + yT Jic, 0 ≤ i, j ≤ L− 1. (29)

The EM algorithm for estimating the channel coefficientsh
can be summarized as follows. Obtain the constant matrices
Ji = ∂H/∂hi, i = 0, . . . L − 1 and initialize the channel
vector h[0]. At an iteration k (k = 0, 1, . . . ) use (22) to
calculate u[k] and B[k]. Determine P[k] from the relation
P[k] = B[k] + u[k]u[k]T . Use (29) to calculated andD. Obtain
the new estimate of the channelh[k+1] by solving (28).

D. Incorporating Memory to EM

The standard EM algorithm, as described above, finds the
ML estimate of the channel given a single block of data.
However, if the block is short, then the significant uncertainty
due to the data symbols can make even the optimal estimate
poor. Moreover, if the channel varies slowly compared to
the block length, then previous blocks provide significant
information about the current channel. These observations
motivate a heuristic modification to the EM algorithm.

Each step of the EM algorithm produces a channel estimate
which reflects both the observation,y, and the initial estimate,
h[k]. If the initial estimate,h[0], is taken to be the estimate
from the previous block, and only a small number of update
steps are performed, then the correlation of the channel can be
exploited; averaging is performed over a larger number of data
symbols, resulting in a better channel estimate. The heuristic
EM algorithm is then simply to start with an initial channel
estimateh[0](0), and for each block,i, perform a single update
to obtainh[1](i) from h[0](i), and seth[0](i + 1) = h[1](i).

V. SIMULATION

BER results of the proposed algorithms are compared with
those of a simple averaging scheme and the Least Mean
Squares (LMS) algorithm. The channel is estimated using the
given schemes and a minimum mean square error (MMSE)
equalizer [15] is constructed for equalization. The channel is
modeled as a time-varying channel using Jakes’ model [16]
with a Doppler frequencyfd = 400Hz and with a transmission
rate fs = 4Mbps. This Doppler frequency corresponds to a
speed of60km/hr. A baseband channel is considered, and so
only the real part of Jakes’ channel model is used. The length
of the channel used isL = 3. The transmitted symbols are
from a binary phase shift keying (BPSK) constellation. For
all schemes initial training is performed with 8 pilot symbols
followed by the superimposed training. The superimposed
pilots are chosen as random binary data. For all schemes
excluding EM with short symbol blocks, twenty percent of
the power is allocated for pilots.

The RLS algorithm uses a forgetting factor,λ = 0.996 and
the scaling factor is calculated using (9).

The simple averaging scheme is as follows. Treating trans-
mitted information symbols as noise, the channel model (13)
can be represented as

y = Hc + n, (30)

wheren has both the channel noise and information symbol
noise. Considering the specific structure of the channel matrix
given in (14), (30) can be rewritten as

y = Ch + n, (31)

where C ∈ RM×L is constructed fromc. The channel is
estimated aŝh = (1/M)

∑M
i=1 yiC

†
i , whereM is the number

of symbol blocks transmitted andi is the index of the theith
block.

Considering the system model given in (31), the LMS
algorithm estimates the channel recursively as

ĥi = λĥi−1 + (1− λ)yC†. (32)
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Fig. 1. BER performance comparison of RLS algorithm, LMS algorithm
and Simple averaging scheme

The value of thêh is set to the channel estimate from initial
training, andλ = 0.996.

Equalization is done using an MMSE equalizer with a
tap length of7. All the BER results are averaged over100
realizations of the channel and for300 transmitted symbols in
each realization. The BER comparison is presented in Figure
1. The results show that the RLS algorithm performs better
than the other schemes. It outperforms simple averaging due
to the forgetting factor,λ. Since the LMS algorithm uses the
same forgetting factor, it performs similarly to RLS at low
SNR. However, since it converges more slowly, its BER is
dominated by the high error rate before it converges; this
gives rise to its worse performance at high SNR. The simple
averaging scheme performs worst because it does not consider
the channel variation. Figure 2 presents the convergence of
the RLS algorithm with and without initial training. It can
be seen that the initial training reduces convergence time and
this helps the use of RLS algorithm from the beginning of
data transmission.

The EM algorithm with and without memory uses a block
length of 20 and fifty percent of the power is allocated to
the pilot symbols. The stanadard EM algorithm iterates over a
single block200 times, whereas EM with memory does only
1 iteration. Figure 3 presents the comparison of the standard
EM algorithm and the EM algorithm with memory. EM with
memory significantly outperforms the standard EM algorithm.
Figure 4 shows the BER performance comparison of the EM
algorithm (without incorporating the strategy in Section IV-D)
and the RLS algorithm for a block length of 400 symbols. The
channel is assumed to be time-invariant over the block. EM is
showing a better peformance towards higher SNR. This result
indicates that EM needs more information about the channel
for improved channel estimation.

All the schemes presented have a high error floor at high
SNR. This is because all these schemes treat the information
symbols as noise. Thus even if the channel SNR is infinite
there will be an error in estimating the channel, which causes
non-zero BER.
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Fig. 2. Convergence of RLS algorithm with and without initial training at
10dB SNR.
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Fig. 3. BER performance comparison of standard EM algorithm and EM
algorithm with memory.
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Fig. 4. BER performance comparison of standard EM with RLS for a block
lenth of 400.
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VI. CONCLUSION

The RLS algorithm has been shown to outperform a simple
(time-invariant) averaging scheme and at high SNR it also
outperforms LMS. The heuristic EM algorithm which incor-
porates memory from block to block greatly improves it’s
performance. EM shows a better performance than the RLS
algorithm for large block sizes.

APPENDIX I

The distribution P (y | h) is Gaussian with mean and
covariance calculated from (13) as

E[y | h] = Hc

cov[y | h] = E
[
(Hs+n)(Hs+n)T | h

]

= E
[
HssT HT + HsnT + nsT HT + nnT | h

]

= σ2
sHHT + σ2

nIM

sinceH and s are independent. Moreoverp(s | h) = p(s) is
Gaussian withE[s] = 0 and cov[s] = σ2

s IN . Moreover

cov(y, s | h) = E[(y− E(y | h))(s− E(s | h))T | h]
= E[(Hs + n)sT | h] = σ2

sH

Rxx = cov(x, x | h) =
[

cov(s, s | h) cov(s, y | h)
cov(y, s | h) cov(y, y | h)

]

=
[

σ2
s IN σ2

sHT

σ2
sH σ2

nIM + σ2
sHHT

]

APPENDIX II

The conditional distributionp
(

s | y, h[k]
)

can be obtained
from (13) as follows:

p(s, n | h[k], y) =
p(s)p(n)p(h[k] | n, s)p(y | n, s, h[k])

p(y, h[k])

=
p(s)p(n)p(h[k] | n, s)δ(y− H[k]s− H[k]c− n)

p(y, h[k])

∫
p(s, n | h[k], y)dn

=
∫

p(s)p(n)p(h[k] | n, s)δ(y− H[k]s− H[k]c− n)
p(y, h[k])

dn

p(s | h[k], y) = p(s)p(y− H[k]s− H[k]c)K, (33)

where K includes all the factors independent ofs. Denote
y− H[k]c by y′. Equation (33) is expanded as

p(s | h[k], y) =

K ′ exp
(

−1
2σ2

sσ2
n
[σ2

nsT s+ σ2
s(y′ − H[k]s)T (y′ − H[k]s)]

)
,

whereK ′ contains the terms independent ofs. Also

σ2
nsT s+ σ2

s(y′ − H[k]s)T (y′ − H[k]s)

= σ2
nsT s+ σ2

sy′T y′ − 2σ2
sy′T H[k]s+ σ2

ssT H[k]T H[k]s

= (s− σ2
sA−1H[k]T y′)T A(s− σ2

sA−1H[k]T y’)− k
′
,

whereA = [σ2
nI + σ2

sH[k]T H[k]] andk′ is terms independent
of s. Conditional distribution of transmitted symbolss given
h[k] andy is

p(s | h[k], y) =

K ′′ exp
(

−1
2σ2

sσ2
n
(s− σ2

sA−1H[k]T y′)T A(s− σ2
sA−1H[k]T y′)

)
,

whereK ′′ is terms independent ofs and from this equation
mean vector and covariance matrix are obtained as

u[k] = E(s | y, h[k]) =

σ2
s

(
σ2

nIN + σ2
sH[k]T H[k]

)−1

H[k]T (y− H[k]c)

B[k] = cov(s, s | y, h[k]) =
(

1
σ2

s
IN + 1

σ2
n

H[k]T H[k]
)−1

.
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