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Abstract

In this paper we study the stability of a recently proposed
flow control algorithm for fair bandwidth sharing of a bot-
tleneck access link. We present necessary conditions for
stability for an arbitrary set of propagation delays. The
analysis presented also facilitates proper configuration of
the algorithms parameters.

1 Introduction

Due to economies of scale, network backbones have grown
in speed and capacity much more rapidly than access net-
works. Access links will increasingly serve intranets. Each
client would expect a fair share of the link capacity. More-
over, it is often known a priori that an access link is likely
to be the bottleneck for most connections it carries.

Existing Internet congestion control mechanisms [1] do not
attempt to optimize the use of individual bottleneck links,
and are unfair to flows with disparate round trip times [2].

If there is a significant chance of brief but large increases
in the capacity of a bottleneck link, such as when good ra-
dio propagation conditions exist, then the throughput can
be significantly increased by maintaining sufficient buffer
occupancy. This motivated the algorithm presented in [3],
with the objectives of (a) maintaining a fixed buffer at the
bottleneck, and (b) allocating bandwidth fairly to each flow
independent of round trip time. In the present paper we
provide preliminary results on the characterisation of the
stability region of this algorithm.

The most common variant of the Transmission Control Pro-
tocol (TCP) used today, based on [1, 4], focuses on prevent-
ing congestion, with little attempt to optimize the perfor-
mance of the bottleneck link.

TCP Vegas [5, 6, 7] keeps constant the amount of data each
flow has in the network. This approach requires an esti-
mate of the propagation time devoid of queueing delays.
However, the queueing increases linearly with the number
of flows. This makes the estimation increasingly difficult
as the number of active flows increases, and causes a bias
against new flows.
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h subsequent work has focused on optimizing the per-
ance of the entire network [8, 9, 10]. Performance and
lity issues have been investigated in [11, 9], but with
ed attention to the effect of propagation delays.

need to maintain a target queue at the bottleneck link
st providing fair capacity allocation to each flow has
pendently been pointed out in [12]. That paper proposes
e based controller, centralised at a bottleneck in an ATM
ork. Unlike the algorithm of [3], that of [12] requires
ow information, making it less suitable for the Internet.

ough motivated by bottleneck links, the algorithm of [3]
ins in the end-to-end Internet framework. Specifically,
nodes require only aggregate (as opposed to flow by
) congestion information from the network, and do not
on estimates of propagation delays.

has a receiver window which may be used to improve
erformance of a low bandwidth access link. In [13,
5], feedback from the access router is used to set the
receiver window. This can increase utilization, improve
ess and provide the ability to prioritize between flows.
ever, [14] also suffers the weaknesses mentioned for
, 7].

algorithm of [3] achieves the objectives of [12] using a
similar to those of [14]: that of controlling the receiver
ow.

2 The Algorithm

sider k flows of data packets share a single bottleneck
with output rate µc. Each flow, i, has a sending node, Si,
a receiving node Ri (see Figure 1). Let di = dif + dir

te the total transmission delay, including propagation
all queueing delays, except that at the access router.
her assume each di is constant.

sending node has a sliding window of wi(t) packets in
etwork at time t. The algorithm of [3] calculates wi(t),
ll i, in a decentralized way, such that each flow receives
ual rate, µc/k, and the equilibrium buffer occupancy of
ccess router, q(t), can be controlled as discussed below.

algorithm is best implemented in the receiving node,
at is where congestion signals from the access router
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Figure 1: Model of k flows sharing a bottleneck access link

are received. However, [3] shows how it can be incorpo-
rated into TCP. In the present paper, we assume that it is
implemented at the receiver, and that there is no other flow
control.

2.1 Access Router Agent
A software agent in the access router samples the queue
length, q, at regular intervals. A convex, monotonic increas-
ing function of q, p(q), is evaluated, and the value passed to
each receiver. In this paper, we use the affine function

p(q) =
bq − a

µc
, (1)

where b determines how sensitive the bottleneck queue size
is to the number of flows. The parameters a and b control the
equilibrium mean queue size, q∗. As will be seen in Section
4, as b increases with a/b fixed, q∗ → a/b.

2.2 Window Update Algorithm
Each sender-receiver pair, i, operates sliding window flow
control. They attempt to maintain a total of wi packets and
acknowledgements in flight at any time.

For simplicity, we assume all packets are of equal length.
Each time receiver i receives a packet, compute a new value
for wi as follows.

Let ti(k) denote the time instant when the kth packet is
received by user i. At time ti(k) the window is updated as

wi(ti(k))← wi(ti(k − 1)) +[
τ − p(q(ti(k))) µ̃i(ti(k))

] (
ti(k)− ti(k − 1)

)
, (2)

where τ is a constant and µ̃i is an estimate of the received
rate. The term in τ tries to increase the window at a constant
rate, while the term in µ̃i reduces it at a rate which increases
with the occupancy of the queue and with the proportion of
traffic due to flow i. In this paper, the current received rate,
µ̃i, is estimated using a sliding window averaging function,

µ̃i(ti(k)) =
α

ti(k)− ti(k − α)
,

where the integer α is a smoothing factor.

The prime start algorithm of [3] is used to increase wi(t)
rapidly from wi(0) = 0 to a value which achieves full link
utilisation.
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3 Analytic model

der to determine the region of convergence of the pro-
d algorithm, consider the following fluid flow model.

i be the occupancy of the queue consisting of packets
source i, so that

q(t) =
k∑

i=1

Bi(t). (3)

ng as it does not become zero, Bi(t) changes with the
into and the flow out of the buffer, as affected by the
ge in the window size. With the change in window size
n by the fluid equivalent of (2), write

=

(
dwi

dt

∣∣∣∣
t−di

+ µi(t− di)

)
− µi(t)

= τ − p(q(t− di))µi(t− di) + µi(t− di)− µi(t).

dBi

dt
=
{

fi(t) if Bi > 0
max(0, fi(t)) if Bi = 0 . (4)

bining (3) and (4) gives the following expression for
otal rate of change of queue occupancy:

|κ(t)| τ+


 ∑

i∈κ(t)

(1− p(q(t− di)))µi(t− di)


−µc,

(5)
re κ(t) is the set of users for which Bi(t) > 0 or
dt > 0, and | � | is the number of elements in the set.

flow rate out of the buffer can be approximated by

µi(t) =
Bi(t)
q(t)

µc. (6)

rentiating (6) and substituting for Bi(t) gives

dµi

dt
=

1
q(t)

(
dBi

dt
µc − µi(t)

dq

dt

)
. (7)

ng

t) =
1

q(t)

[
(τ + (1− p(q(t− di)))µi(t− di))µc−

t)


|κ(t)| τ +

∑
j∈κ(t)

(1− p(q(t− dj))µj(t− dj)


] (8)

substituting for (4) and (5) in (7), and canceling the
s in µi(t)µc gives

dµi

dt
=
{

gi(t) if Bi > 0
max(0, gi(t)) if Bi = 0.

(9a)

tituting the affine cost function, (1), into (8) and (5)
s

t) =
1

q(t)


(τ +

(
1− bq(t − di) − a

µc

)
µi(t − di)

)
µc−

)


|κ(t)| τ +

∑
j∈κ(t)

(
1− bq(t − dj) − a

µc

)
µj(t − dj)




(9b)



and

dq

dt
= |κ(t)| τ +


 ∑

i∈κ(t)

(
1-

bq(t-di)-a
µc

)
µi(t-di)


− µc.

(9c)

4 Conditions for stability of linear systems

The coupled system of equations (9) has a fixed point at

q∗ = p−1

(
kτ

µc

)
=

kτ + a

b
, µ∗

i =
µc

k
. (10)

This is the unique equilibrium in which all users have ac-
cess to the network, µi > 0 for all i. We would like to
characterize conditions under which this point is stable.

Equations (9) may be stable for a given b, but not for a
smaller b′ < b. Thus we focus on conditions on b0 such
that (9) is stable for all b < b0. In the following, we fix k, τ
and a, but let b vary. Denote the solution of (10) by q∗(b).
When it is clear from context, we will continue to denote the
fixed point by q∗.

The nonlinearity of (9) makes it difficult to analyze. Instead,
let us analyze some simpler, but related linear equations,
which give considerable insight into the complete system.
First, consider the case that the queue size, q, has converged.

4.1 Constant queue size
When q(t) = q∗ is constant, and all flows have converged
to nonzero rates, the second term of (7) vanishes. Thus,
the equations for the µis, (9b), decouple to form the linear
constant coefficient delay differential equations

dµi

dt
=

τµc

q∗
+

(1− p(q∗))µc

q∗
µi(t− di))− µc

q∗
µi(t)

=
τµc

q∗
+

µc − kτ

q∗
µi(t− di))− µc

q∗
µi(t). (11)

Proposition 1 A necessary and sufficient condition for
equation (11) to converge for all b < b0, is that

kτ ≤ 2µc, (12)

or

di ≤ 1
b0

cos−1

(
µc

µc − kτ

)
kτ + a√

k2τ2 − 2µckτ
. (13)

Proof: The stability of equation (11) for any value of b, is
equivalent to the poles of the unilateral Laplace transform
of the unforced equation,

Mi(s) =
µi(0−)

s + (µc/q∗) + (µc − kτ/q∗)e−sdi
(14)

=
µi(0−)

A(s) + C(s)e−sdi
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eing in the left half plane. The stability analysis now fol-
that of [16]. For sufficiently small di this system is sta-

as it is a retarded system. Let di(b) be the smallest pos-
delay such that s = jω, ω ∈ R, is a pole. By the con-
ty of poles, the system will be stable for all di < di(b).
e poles occur in complex conjugate pairs, this is fur-
equivalent to A(jω)A(−jω) = C(jω)C(−jω) [16],
uivalently

ω2 =
k2τ2 − 2µckτ

(q∗)2
.

has no non-zero real solution for kτ ≤ 2µc, and there-
(11) is always stable. This establishes the sufficiency
ndition (12). It remains to show that, if kτ > 2µc then
is necessary and sufficient.

n kτ > 2µc, di(b) can be found by equating the real
of the denominator of (14) to zero:

µc

q∗
− µc − kτ

q∗
cos

(
di(b)

√
k2τ2 − 2µckτ

q∗

)
= 0

uivalently

cos

(
di(b)

√
k2τ2 − 2µckτ

q∗

)
=

µc

µc − kτ
.

ng the smallest positive argument argument of cos(·),

di(b) = cos−1

(
µc

µc − kτ

)
q∗(b)√

k2τ2 − 2µckτ
.

that di(b) increases to infinity as b decreases to zero.
ne

β ≡ cos−1

(
µc

µc − kτ

)
kτ + a√

k2τ2 − 2µckτ
.

ssity: if di > β/b0 then there exists a b < b0 such
di(b) = di, and hence (11) is not stable. Sufficiency: if
β/b0 then for all b < b0, di < β/b, and hence (11) is

e.

that the sufficient condition kτ < 2µc implies that the
m is always stable as long as the total rate at which
ets are introduced due to stations expanding their win-
s does not exceed twice the bottleneck packet rate.

that when kτ = 2µc, the second constraint, (13), is
ly b0 ≤ ∞. To see how it behaves as kτ increases
nd 2µc, let

F (x) ≡ 1
di

cos−1

(
µc

µc − x

)
x + a√

x2 − 2µcx
.

not difficult to verify that F (∞) = π/(2di) and
) < 0 for all x > 2µc. Thus, for kτ > 2µc: the larger
he tighter will be the second bound, and the tightest it
e is b0 < π/(2di).

aker sufficient condition for the stability of (11) is given
e following proposition:



Proposition 2 A sufficient condition for (11) to be stable is
that b < π/(2di).

Proof: If kτ ≤ µc then by Proposition 1 the system (11)
is stable. It remains to consider the case when kτ > µc. In
this case, by Proposition 1 it is sufficient that

dib < cos−1

(
µc

µc − kτ

)
kτ + a√

k2τ2 − 2µckτ
.

Since kτ > 2µc, it follows that

π

2
< cos−1

(
µc

µc − kτ

)
< π.

Also
kτ + a√

k2τ2 − 2µckτ
> 1.

Thus it is sufficient that di < π/(2b), as required.

4.2 Constant flow rates
Under the assumption that µi(t) have converged to µ∗

i =
µc/k for all i, the queue dynamics, (9c), become

dq

dt
= kτ − b

k

k∑
i=1

q(t− di) + aµc. (15)

Unlike the previous section, it is possible for the linear equa-
tion (15) to be unstable, yet the nonlinear, coupled system
(9) be stable. The reason is that the evolution of the k equa-
tions (8) are not independent of the evolution of q(t), and it
is impossible for q(t) to vary, whilst the µi(t) remain fixed.
In fact, µi(t) can act as stabilizing controllers, preventing
the coupled system from going unstable, even when (15) is
itself unstable. Thus we cannot derive necessary conditions
for the coupled system, under the above assumption. Nev-
ertheless, it will prove insightful to obtain necessary and
sufficient conditions on the stability of (15).

The convergence of q(t) under (15) to any value implies that
the poles of the unilateral Laplace transform,

Q(s) =
q(0−)

s + b
k

∑k
i=1 e−sdi

, (16)

all have negative real part.

In the two flow case, a simple necessary and sufficient con-
dition on b0 will be derived for arbitrary delays, d1, and d2.
After that, a procedure for obtaining a necessary and suf-
ficient condition on b0 in the general case of an arbitrary
number of flows will be outlined, under the innocuous con-
straint that the delays be commensurate. We emphasize that
these conditions on b0 are necessary and sufficient for the
stability of (15) for all values of b less than b0, but not for
the original system of nonlinear equations (9).

The proofs will again follow the approach described in [16].
In all cases, the first step of showing that the poles of (16)
are in the left half plane for small delays is a direct result of
the following lemma [17, p. 139], which applies to (16).
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m, which without any delays would be stable. Then
exists an ε > 0 such that if all delays, di, satisfy

di < ε, then all the poles of the delayed system have
tive real part.

, in each case, stability can be established by finding
itions under which the poles are not purely imaginary.

4.2.1 Two users: Consider the case of k = 2 users,
delays d1, d2. Denote sinc(x) = sin(πx)/(πx).

osition 3 In the two flow scenario:

. a necessary condition on b0 for (15) to converge for
all b < b0, is that

b0 <
1

d1 sinc(d1/(d1 + d2))
. (17)

. If τ < µc, the condition

b <
1

d1 sinc(d1/(d1 + d2))
(18)

is sufficient for (15) to be stable.

f: Part 1: if the first part of the proposition were false,
he system would converge for b = 1/(d1 sinc(d1/(d1+
). However, it is easily verified that in that case,
n(πd1/(d1 + d2)) is an unstable pole of (16).

2: For 0 < h < 1, define di(h) = dih, for i = 1, 2.
ose that there is a pole of (16) in the right half plane.
ontinuity of the poles with respect to h, there exists a
mum value of h, which we denote by h′, which gives
le on the imaginary axis, for the system with delays
ced by the di(h′) values. Note that h′ < 1. Then there
s an ω0 > 0, such that

jω0 +
b

2
e−jω0d1h′

+
b

2
e−jω0d2h′

= 0.

ting real parts (using cos(x) = cos(π − x)) and imag-
parts gives

ω0(d1 + d2)h′ = π,

ω0 = b sin
(

πd1

d1 + d2

)
.

bining these two equations, we obtain

h′ =
1

bd1 sinc(d1/(d1 + d2))
.

by assumption the right hand side is greater than unity,
h is a contradiction. The proposition follows.

that as d1/d2 → 0 the condition (17) becomes b0 <
, and the stability is dominated by the shortest delay,
r than the longest delay, which seems somewhat sur-
ng.

xpected, the bound in (17) lies between the bounds
ined for the systems d′1 = d′2 = min(d1, d2) and
d′′2 = max(d1, d2).



4.2.2 Commensurate delays: The special case of
commensurate delays, in which di = nih, ni ∈ N, is cov-
ered in [16]. In this case,

Q(s) =
q(0−)

s + b
k

∑k
i=1 e−snih

, (19)

Lemma 1 again shows that for sufficiently small h, all poles
have negative real part. The value of h, hθ, for which the
poles of (19) first touch the imaginary axis, s = jω0, can be
found by finding roots of a polynomial, whose coefficients
can be determined in k recursive steps, as described in [16].
This provides a necessary condition: b0 < b∗0 for the stability
of (15), for all b < b0, where b∗0 is computed by the k
recursive steps. In simple cases, b∗0 can be found explicitly.
This provides necessary and sufficient conditions for the
stability of (15) over all such values of b.

For sufficiency only, consider the following proposition:

Proposition 4 If b < π/(2di) for all i, then q(t) is stable
under (15).

This proposition is a simple corollary of the following
lemma, and the fact that the poles of (16) are continuous
functions of b.

Lemma 2 No poles of (16) can lie on the imaginary axis if
b < π/(2di) for all i.

Proof: Assume, with a view to obtaining a contradiction,
that there is a pole at jω. This pole must satisfy

jω +
b

k

k∑
i=1

e−jωdi = 0.

Writing ω′ = ω/b, and equating real and imaginary parts
gives

1
k

∑k

i=1
cos(dibω

′) = 0 (20a)

1
k

∑k

i=1
sin(dibω

′) = ω′. (20b)

By (20b), ω′ is the average of samples of the sine function,
and hence −1 ≤ ω′ ≤ 1. However, by hypothesis 0 ≤
dib < π/2. Thus

−π

2
< dibω

′ <
π

2

whence cos(dibω
′) > 0 for all i. This contradicts (20a), and

the lemma is proved.

5 Characterization of stability

In this section, we give numerical results from the direct
computation of the solutions of the coupled, nonlinear sys-
tem of equations (4) in the case of k = 2. We attempt to
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acterize the region of stability, and relate the region to
heoretical results presented in the preceding section. Fi-
, we present numerical results from the simulation of
lgorithm itself, and compare with those obtained from
heoretical models.

re 2 shows in grey the stability region of the coupled
inear system (4) for four cases: τ/µc = 0.005, 1, 10
100. These were obtained via numerical solution of (4),
a test for convergence. All graphs show the lines bdi =
i = 1, 2. Note that in (a) and (b) condition (12) holds,

(c), (d) show the line satisfying (13) with equality.

ll cases, the conditions bdi < π/2, i = 1, 2 ensure
lity. We have tested this for k > 2, up to k = 8, and
n hundreds of thousands of trials, and always obtain
lity when bdi < π/2.

jecture 1 The condition b < π/(2di) for all i, is a suffi-
t condition for stability of the entire coupled system (9).

also that (13) appears to be necessary for stability when
2µc. Finally, note that the broken line, depicting (18),

ars to characterise the stability region when τ = µc,
g k = 2. When τ > µc, they appear to give a rea-
bly good approximation, when coupled with the con-
n (13). Finally, Figure 3 presents preliminary evidence
the theoretical model (4) closely approximates the per-
ance of the algorithm. This is the subject of continuing

stigation.

6 Conclusion

ave shown that our algorithm performs well. It main-
a constant queue at the access router, insensitive to the

ber of flows, and does not bias against flows with large
agation delays. We have provided preliminary results
h suggest strongly that, provided b is chosen judiciously
function of the worst case propagation delay, then the
rithm is stable.
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