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Abstract

Introducing a new concept of (α, β)-fairness, which allows for a bounded fairness

compromise, so that a source is allocated a rate neither less than 0 ≤ α ≤ 1, nor

more than β ≥ 1, times its fair share, this paper provides a framework to opti-

mize efficiency (utilization, throughput or revenue) subject to fairness constraints

in a general telecommunications network for an arbitrary fairness criterion and cost

functions. We formulate a non-linear program (NLP) that finds the optimal band-

width allocation by maximizing efficiency subject to (α, β)-fairness constraints. This

leads to what we call an efficiency-fairness function, which shows the benefit in ef-

ficiency as a function of the extent to which fairness is compromised. To solve the

NLP we use two algorithms. The first is a well known branch-and-bound-based algo-

rithm called Lipschitz Global Optimization and the second is a recently developed

algorithm called Algorithm for Global Optimization Problems (AGOP).

We demonstrate the applicability of the framework to a range of example from

sharing a single link to efficiency fairness issues associated with serving customers

in remote communities.
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1 Introduction

Efficiency-fairness tradeoffs have been of interest to people from many walks of life [3–

5,11,12,14,21,25,37,38]. Different societies and countries make their choices on these

tradeoffs. This paper focuses on such tradeoffs in the context of telecommunications

networks and provides a framework for evaluation and presentation of such tradeoffs.

It applies to any network, topology and any fairness criterion. It can be applied to

networks such as Resilient Packet Rings (RPR) [8,13] (the IEEE 802.17 standard for

metropolitan area networks), local area networks (wireline and wireless) and wide

area networks and decisions on what resources to provide to customers being cross-

subsidised, such as those in remote communities. Fairness criteria compatible with

the framework include RIAS fairness [9,10], max-min fairness [2,6,32], proportional

fairness [15,16,25], general weighted (GW) fairness [35,36], and minimum potential

delay fairness [18].

We introduce the concept of (α, β)-fairness. In particular, we define capacity assign-

ment to be (α, β)-fair if the rate allocated to a flow is neither less than α times its

fair allocation for 0 ≤ α ≤ 1, nor it is higher than β times its fair allocation for

1 ≤ β. In this paper we provide a framework for maximizing the efficiency, under a
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constraint of, say, (90%, 150%)-fairness. By efficiency we mean the value of a gen-

eral utility function of the flow rate allocation. Examples of such utility functions are

profit, revenue, utilization and throughput. In contrast to the approach used in [26]

and [34], we do not seek to choose a particular utility function as a trade off between

efficiency and fairness. In our framework, the utility function that defines efficiency is

unrelated to the fairness criterion. Our framework addresses the question: How much

can the efficiency be improved by compromising on fairness to a certain extent? Be-

cause decreasing α and increasing β increases the feasible set, the efficiency-fairness

function is monotonically non-increasing with α for a fixed β and non-decreasing with

β for a fixed α.

In the real world markets are not efficient. This is also the case in the telecommu-

nications industry. There are many effects that distort market efficiency and lead to

revenue functions that are non-smooth, non-continuous, non-concave and even non-

monotonic. Clearly if a service provider has two customers one of which pays for

the services and the other does not, the service provider will try to allocate more

resources to serve the paying customer. However, if other considerations (social, regu-

lations etc.) force the service provider to serve the non-paying customer, it will try to

do it in a way that will maximize its revenues subject to certain “fairness” constraints.

We provide here a framework that achieves this. In particular, we employ recently

developed non linear programming (NLP) methods that can accurately solve the par-

ticular global optimization problems associated with maximizing efficiency subject to

fairness constraints.

In this paper, we generalize our earlier work reported in [38] in two ways. First, we

consider here a large class of non-linear (including non-concave, non-smooth, non-

continuous and non-monotonic) utility functions, while [38] considered only linear

utility functions. The use of non-concave, non-smooth and non-continuous utility
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functions is motivated by the fact that markets are often inefficient. Another difference

of [38] is that there we only considered the lower bound fairness parameter α, and here

we also consider the upper bound parameter β. Such an upper bound is motivated

as it avoids situations whereby a user is allocated significantly less bandwidth than

his/her neighbor. In such a case, it will not be much consolation that the bandwidth

the user allocated is not significantly lower than a certain overall “fair” value (the α

constraint).

There have been many publications on fairness and other resource allocation prob-

lems in telecommunications networks (see for example [7,15,16,19,21,25,26,33,34] and

references therein). Mathematically, the general approach is to maximize aggregate

utility subject to linear capacity constraints. For tractability and to allow distributed

flow control algorithms, the utility functions considered have usually been concave.

Some formulations, such as [19], impose the additional constraint that each flow have

a minimum and maximum transmission rate. The parameters α and β in our formu-

lation provide a specific interpretation for these minimum and maximum rates.

The focus here is the problem of a network operator allocating virtual private links to

users, rather than flow control. Instead of seeking to maximize the aggregate benefit

to the users, this paper seeks to maximize the benefit to the service provider. More sig-

nificantly, this problem allows centralized algorithms to be used, which allows a wider

class of problems to be studied. By using global optimization algorithms, flows with

non-concave, non-smooth and non-continuous utility functions can be considered.

Network designers must also choose the degree of unfairness allowed, by setting α and

β. This can be done in terms of an efficiency-fairness function, which quantifies the

tradeoff as follows. First, the “fair” rates are chosen, in terms of a fairness criterion

such as max-min fairness or proportional fairness. Then, for a range of α and β values,
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the operator’s utility is numerically optimized given the (α, β)-fairness constraint,

namely that each flow obtains between α and β times its fair allocation.

In this paper we will consider two global optimization algorithms. The first algorithm

is the so-called Lipschitz Global Optimization (LGO). It is a well known algorithm

that uses the Branch-and-bound global search method [28]. This algorithm is one of

the best algorithms in solving optimization problems with constraints [27].

The second algorithm is the so-called Algorithm for Global Optimization Problems

(AGOP) – a recently developed algorithm presented in [23]. This algorithm is de-

signed for solving continuous optimization problems with box constraints, that is,

problems where the feasible region is the Cartesian product of intervals. It is there-

fore relevant to the type of problems we consider in this paper to maximize efficiency

subject to capacity and fairness constraints. The efficiency of the algorithm has been

demonstrated in solving many difficult practical and test problems (see for example,

[22], [23], [24]).

Throughout the paper we use the notation 〈u, v〉 for the link that connects nodes u

and v and [u, v] for the data flow from node u to node v.

As an illustration of the (α, β)-fairness concept, consider the two-node single-link

network presented in Figure 1 with the link capacity equal to one. There are two

flows from node u to node v, designated as Flow 1 and Flow 2. Both flows aim to

transmit at unlimited rate. Assume that Flow 1 pays 1 [$/unit capcacity] and Flow 2

pays 1.5 [$/unit capacity]. Assume that we choose max-min as our fairness criterion,

and total revenue [$] as our utility. Accordingly, if each of the flows is assigned a rate

of 1/2, this will yield a utility of 1.25. However, if we relax the fairness constraint

to (α, β)-fairness, say for all {α, β} pairs that obey the relation β = 1 − ln α for

1 ≥ α > 0 (with β = ∞ for α = 0), in which case the lower bound (set by α) is the
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tighter constraint, then Flow 1 will be assigned the rate of α/2 and Flow 2 will be

assigned the rate of 1 − α/2. This will give utility of 1.5 − α/4 plotted in Figure 2.

Maximum utility is achieved if fairness is completely ignored (α = 0 and β = ∞) and

Flow 2 is assigned the full bus capacity. Clearly, the slope of the efficiency-fairness

vu

Flow 1

Flow 2

Fig. 1. Topology and flows of the two-node single-link example.
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Fig. 2. The efficiency-fairness function for the two-node single-link example.

function, for the previous example, can be made significantly steeper if we further

increase the charge of Flow 2 (and/or decrease the charge of Flow 1).

Figure 3 illustrates our framework. The inputs are network topology, a set of α, β

values, efficiency utility function and fairness criterion, and the output is the effi-

ciency fairness function for the set of the (α, β) values. Given the general setting

of our framework, we can also answer questions of fairness associated with serv-

ing individuals or communities in remote locations. It is an important political and

socio-economical problem in many countries how much society and telecommunica-

tions providers should spend in serving remote communities. One extreme view is

that people in remote communities should have “equal access”. That is, they have

the same access to telecommunications services, and at the same cost, people in major
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Fig. 3. The framework.

cities have. This corresponds in our framework to α = β = 1. Another extreme view

is that services to remote communities should be left to market forces α = 0 and

β = ∞. Of course there are many views in between these two extreme views. We will

now use a three-node example to demonstrate how our framework can apply to the

efficiency fairness tradeoff related to the question of servicing remote communities.

Consider the three-node network presented in Figure 4. Nodes A and B represent

major cities. Node C is a remote community. Flow [A,B] represents the flow from

A to B on the directed link 〈A,B〉, and Flow [B,A] represents the flow from B to

A on a different directed link 〈B,A〉. The two links between nodes A and B have

capacity 1. The link 〈C,B〉 does not yet exist in practice. There is a need to make a

major investment in infrastructure to make this link a reality. To apply our framework

to this problem, we include the link 〈C,B〉 with capacity bounded above by 1. The

actual capacity of this link is to be determined, and this infrastructure investment will

be included in the utility function associated with flow[C,B]; the cost of installing

capacity is assumed to be twice the revenue raised over the life of the infrastructure.

In other words, we assume for simplicity that allocating rate xCB to flow [C,B]

will contribute to the aggregate utility −2xCB + xCB = −xCB. This assumption of

linear relationship between the rate provided and its infrastructure cost is made here
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for simplicity. Normally, a more appropriate model for this relationship is a step

function which we consider in Section 3. The fairness criterion we consider is equal

rate fairness; that is, each flow is allocated rate 1. The aggregate utility of all three

flows include the actual values of the flows [A,B] and [B,A] each of which obtains

its maximum values at 1 and the utility of flow [C,B] which is minus the flow on

[C,B]. Altogether the utility is equal to 1 + 1 − xCB = 2 − xCB. Notice that the fair

allocation is 1 to each of the three flows, and that the capacity of each link is also

equal to 1, the efficiency fairness curve does not change with β (no flow can exceed

its fair allocation), so the allocation is independent of β. The rate obtained by flow

[C,B] will be α, and the efficiency-fairness function is 2 − α, shown in Figure 5. Of
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Fig. 4. Topology and flows of the remote node example.

Fig. 5. The efficiency-fairness function for the remote node example.

course, the utility functions we considered above are simplistic. For example, serving

customers at remote locations involves a much more complex cost function than the

one we have considered. Nevertheless, the utility functions we consider in this paper

have characteristics of very wide generality that can be applicable to realistic cases.
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Having introduced the concepts of (α, β)-fairness, the efficiency-fairness function and

having demonstrated their applicability, we are ready to formalize these notions. In

Section 2 we formulate a nonlinear program (NLP) that leads to the efficiency-fairness

function, and in Section 3 we further discuss this NLP and the methods used to solve

it. In Section 4, we provide several network examples to demonstrate how to formulate

an NLP that finds the optimal bandwidth allocation for a general network under the

fairness and capacity constraints and how to obtain the efficiency-fairness function.

2 NLP Formulation

We consider an M node network. The nodes are designated 1, 2, 3, · · · ,M . All sources

are assumed to be greedy. Each source may transmit one or more flows. Let Rij be

the rate assigned to flow [i, j]. The aim is to set the Rij values to maximize the utility

subject to fairness and capacity constraints.

Let F be the set of all flows. Consider the case that there is a utility function Uij(Rij)

for flow [i, j], and the total utility is the sum of the utility per flow,

U =
∑

[i,j]∈F

Uij(Rij). (1)

This form applies in many applications when users are charged according to their

usage.

Let f(i, j) be the fair allocation for flow [i, j] according to our chosen fairness criterion.

Let us assume that we require that the allocation is (α, β)-fair. Then, Rij will be

bounded below by αf(i, j) and above by βf(i, j). This leads to the following non-

linear programming problem.

Maximize U =
∑

[i,j]∈F

Uij(Rij) (2)
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subject to: αf(i, j) ≤ Rij ≤ βf(i, j), ∀ [i, j]; (3)

∑

[i,j]∈F 〈m,n〉

Rij ≤ C〈m,n〉, ∀ 〈m,n〉; (4)

where C〈m,n〉 denotes the capacity of link 〈m,n〉 (this may be the current capacity,

or the maximum allowed value after a capacity upgrade) and F 〈m,n〉 is the set of all

flows that use link 〈m,n〉.

3 Analysis and Solution Methods

For the sake of simplicity we will use the following notations. We denote the number

of flows in the set F = {[i, j]} by n. Let the variables xk, k = 1, 2, ..., n, stand for

the rates Rij assigned to flows [i, j] ∈ F . We also denote by m the number of all links

in the network, and let Cl, l ∈ {1, 2, ...,m}, be the capacity of link l. Let the usage of

link l be specified as rl = [rl1, rl2, · · · , rln] where

rlk =































1 if flow k uses link l,

0 otherwise.

Then, given fairness parameters α and β, the problem (2)–(4) can be formulated as

follows:

maximize U(x), (5)

s.t. x ∈ X ⊂ R
n
+; (6)

where

X = {x ≥ 0 : x ∈ B(α, β) and rl x ≤ Cl, l = 1, ...,m}, (7)

and R
n
+ is the set of points in R

n with non-negative coordinates. Throughout this

paper, inequalities between vectors are taken component-wise.

The notation rl x stands for the scalar product of vectors rl and x. The set B(α, β) ⊂
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R
n
+ is a box defined by

B(α, β) = {x = (x1, ..., xn) : αfk ≤ xk ≤ βfk, k = 1, ..., n},

where fk is the fair allocation for flow k.

As mentioned above we consider α ∈ [0, 1] and β ≥ 1. It is clear that, the feasible

set X is a convex set (polytope). In this model, the fairness parameters α and β, are

taken into account in box constraints.

In (5), U(x) is a utility function of x representing what we call the efficiency.

In this paper, we will consider the class of efficiency (utility) functions defined by

U(x) =
n

∑

k=1

(

max
q=1,...,Q

aq
k ln(dkxk + bq

k) − ckS(xk)
)

, (8)

where aq
k > 0, bq

k > 0, ck > 0 and dk > 0, for all q = 1, ..., Q and k = 1, . . . , n. The

terms ckS(xk) in (8) represent the costs of infrastructure upgrades. The function S(xk)

may be discontinuous, such as a non-decreasing step function. Typically S(0) = 0.

The framework does not require that these costs have the form of a sum over k, but

that suffices for the network examples studied here.

Therefore, we consider the following Problem (P1):

maximize U(x) =
n

∑

k=1

(

max
q=1,...,Q

aq
k ln(dkxk + bq

k) − ckS(xk)
)

,

s.t. x ∈ X ⊂ R
n
+;

where X is defined by (7).

We say that x∗ is a locally optimal solution (maximum) in Problem P1 if there is a
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neighborhood x ∈ V such that U(y) ≤ U(x∗) for all y ∈ V ∩ X.

Let us consider certain special cases with ck = 0, k = 1, . . . , n. If Q = 1 and a1
k =

b1
k = 1 for all k, then we have the following objective function:

U1(x) =
n

∑

k=1

ln(dkxk + 1). (9)

This is the simplest version of (8). In the calculation below we also consider the case

when Q > 1. For example, if Q = 2 and a1
k = 1, a2

k = 4, b1
k = 1, b2

k = 0.9, and dk = 1,

then we have the following objective function

U2(x) =
n

∑

k=1

max{ln(xk + 1), 4 ln(xk + 0.9)}. (10)

Note that in the latter, ln(xk + 1) dominates for 0 ≤ x ≤ 0.124 and 4 ln(xk + 0.9)

dominates for 0.124 < x.

A few comments about the utility function (8) are in order.

Unlike the purely logarithmic utility function of [15,16,19,20], the utility function is

well-behaved for all non-negative x because bk > 0. In [15,16,19,20], the utility tends

to −∞ as a user’s rate tends to zero, to ensure fairness. In our approach, a degree of

fairness is imposed explicitly by requiring (α, β)-fairness, and so there is no need for

an unbounded utility function. Bounded utility functions will generally better reflect

the operator’s true profit from allocating given rates.

The particular form of (8) is used here as an example of a utility function that is non-

smooth and non-concave. In an inefficient market which is what we have in the real

world, an operator may be able to charge users a higher price when the bandwidth

becomes sufficient to provide a new service.
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Now we note the following properties of Problem P1.

Proposition 1: If Q = 1 and ck = 0 for all k, then Problem P1 has a unique locally

optimal solution.

The uniqueness of local maxima follows from the fact that the feasible set X is convex

and the objective function is strictly concave because a1
k > 0 and d1

k > 0. Moreover,

the condition b1
k > 0 guarantees that the objective function is well defined on the

feasible set.

Proposition 2: If ck = 0, then all locally optimal solutions to Problem P1 belong

to the boundary of the feasible set X.

This proposition follows from the fact that the feasible set X is convex and the

objective function is monotonic because ck = 0; that is, U(x) ≤ U(y) if x ≤ y.

From Proposition 1 it follows that Problem P1 with (9) has a unique locally optimal

solution. However the situation is completely changes when Q > 1. In this case

objective function U(x) may be non-concave and non-smooth. Therefore it may have

many local maxima, which are on the boundary of the feasible set. As an example,

consider a simple case of two variables (n = 2) for objective function (10) with

constraints X = {(x1, x2) ≥ 0 : x1 + x2 ≤ 1}. In this case we have 3 locally optimal

solutions: (0, 1), (0.5, 0.5) and (1, 0).

The number of locally optimal solutions may drastically increase as the number vari-

ables n increases. In this case the reasonable goal could be to find solutions that are

close to the global solution.

The existence of many locally optimal solutions belonging to the boundary of the

feasible set is the main difficulty that complicates the finding of a global solution to
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Problem P1. This difficulty is similar to those in the concave minimization problem

which is NP hard and is one of the challenging optimization problems (see for example

[29]). Another difficulty is that the objective function (8) is non-smooth.

Finally, if ck 6= 0, the objective function may be discontinuous. In most applications,

S (and hence U) will be piecewise continuous. If S has a continuous pieces, then the

box B(α, β) can be broken into an continuous sub-boxes. However, each sub-box may

still contain multiple local minima.

These issues require the use of efficient (global) optimization techniques for solving

Problem P1. However existing algorithms cannot in general guarantee to find a global

solution. In many examples we know only “the best known solution”. The efficiency

of an algorithm can be determined by comparison with other algorithms.

As mentioned above, we consider here the two global optimization algorithms LGO

and AGOP. While LGO is well known, AGOP has only recently been developed.

AGOP [23] is especially designed for continuous optimization problems with box

constraints. It uses a line search mechanism where the descent direction is obtained

via a dynamical systems approach. It is applicable to a wide range of optimization

problems requiring only function evaluations to work. In particular it does not require

gradient information and can be used to find minima of non-smooth functions. The

efficiency of the algorithm has been demonstrated in solving many difficult practical

and test problems (see for example, [22], [23], [24]).

The AGOP algorithm will now be described in terms of minimizing a cost function

g : R
n → R. AGOP must first be given a set of initial points, say Ω = {x1, ..., xq} ⊂

R
n, q ≥ 2. Generally, a suitable choice for an initial set of points is the set of some

vertices of a given box. Let x? ∈ Ω be the point in Ω with the smallest cost, that is,

g(x?) ≤ g(x) for all x ∈ Ω. The set Ω and the values of g at each of the points in Ω
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allow us to determine a vector v to be used as a possible descent direction from point

x?, as outlined below. An inexact line search along the direction of v provides a new

point x̂q+1 6= x?. A local search about x̂q+1 is then carried out using a method called

local variation. This is an efficient local optimization technique that does not explicitly

use derivatives and can be applied to non-smooth functions. A good survey of direct

search methods can be found in [17]. Letting xq+1 denote the optimal solution of this

local search, the set Ω is augmented to include xq+1. Starting with this updated Ω, the

whole process can be repeated. The process is terminated when v is approximately 0

(or a prescribed bound on the number of iterations is reached). The solution returned

is the current x?, that is, the point in Ω with the smallest cost.

The success of global optimization algorithms mainly depends on their ability to

escape the best local minimum found so far in order to find “deeper” local minima.

In our case this is the determination of a possible descent direction v from currently

found local minimum x∗. We present here the formula used in the calculations below.

For more details and motivations behind it see [20].

Let I = {1, . . . , q} and let Ω = {xm : m ∈ I} be a set of initial points, and gm = g(xm).

Let g∗ = g(x∗), with x∗ = (x∗
1, ..., x

∗
n), be the smallest cost of the points in Ω. For

each coordinate i ∈ {1, ..., n}, define the following sets: X+
i = {m ∈ I : xm

i > x∗
i },

X−
i = {m ∈ I : xm

i < x∗
i }, G+ = {m ∈ I : gm > g∗}, G++

i = G+ ∩ X+
i ,

G+−
i = G+ ∩ X−

i . Let |A| denote the cardinality of a set A.

Define v = (v1, ..., vn) as follows:

vi =
∑

m∈G+−

i

1

|G+|
−∆xm

i

∆gm
αm

i ·
∑

m∈G+−

i

1

|X−
i |

∆gm

‖∆xm‖ αm
i (11)

−
∑

m∈G++
i

1

|G+|
∆xm

i

∆gm
αm

i ·
∑

m∈G++
i

1

|X+
i |

∆gm

‖∆xm‖ αm
i .
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Here ∆xm
i = xm

i − x∗
i , ∆gm = gm − g∗, αm

i = |∆xm
i |/‖∆xm‖ and ‖∆xm‖ is the

Euclidean norm.

Formula (11) represents a deterministic approach to calculate v, in contrast to ran-

domized global search algorithms. It tries to take into account the contribution of

each coordinate i on the increase in function values. The final value vi is, in some

sense, the average value over the all set Ω.

We consider v as a possible “global” descent direction because it uses information

obtained from points that may be quite far from each other. If this direction fails to

provide a better point xq+1, that is g(xq+1) > g(x∗), then we add this point to set Ω,

which supplies a new direction v calculated by formula (11) with this updated set.

We note that, the role of a direction v is to find a basin of a new local minimum; that

is to find x̂q+1 rather than xq+1. In other words, a search over direction v is successful

if it finds a basin of a deeper local minima.

In global optimization, usually, we can not guarantee that we will find a successful de-

scent direction even if x∗ is not a global minima. This is the main difficulty that global

optimization algorithms encounter. The success of an algorithm can be checked only

on numerical experiments. The results obtained in this paper once more emphasize

the efficacy of the proposed approach.

If we have just one initial point x1, to run this algorithm starting from this particular

point, first we apply a local search about this point to get a new point (local minimum)

x2. Then, the above procedure is performed using the set Ω = {x1, x2}.

To solve optimization problems with constraints, AGOP uses the following scheme,

that is demonstrated on Problem P1.

First, we transform this problem to a minimization problem with box constraints,
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applying penalty functions to the linear constraints (see [30] and references therein).

Given a penalty coefficient γ > 0, set

gγ(x) = − U(x) + γ
m

∑

l=1

(max{rlx − Cl, 0})2. (12)

Consider the Problem (P2):

Minimize gγ(x), s.t. x ∈ B(α, β).

Then we perform the following steps to solve Problem P1.

Step 1. Take any penalty coefficient γ > 0 and any number λ > 1.

Step 2. Apply AGOP to Problem P2, which has only box constraints and denote the

solution by x0.

Step 3. Set p = 1 and xp = x0.

Step 4. Set γ = γλ. Apply AGOP to P2 starting from initial point xp. Let the solution

found be xp+1.

Step 5. If |gγ(x
p+1)− gγ(x

p)| < ε then stop. Otherwise set p = p+1 and go to Step 4.

The convergence of the algorithm to a local minimum can be proved for smooth

functions, in particular, for Problem P1 with (9). AGOP, like any other algorithms

using direct search methods [17], does not guarantee to get a local minimum for

non-smooth objective functions. However, in practice, these methods (having global

search character) often perform well when dealing with non-smooth functions, (see

for example [22]), and also even non-continuous functions. The results obtained for

Examples 2 and 3 in Section 4 also confirm this fact (see Tables 2, 4 for a comparison

of LGO and AGOP on non-smooth objective function U2).
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4 Numerical Results

The flexibility of the form of the objective function U in P1 means that powerful

global optimization techniques are required to perform the design. This section uses

two such techniques, LGO and AGOP, to determine the efficiency-fairness curve for

a range of topologies, with objective functions of the form (8).

The (α, β)-fairness concept specifies how far a rate allocation can deviate from the

“fair” rate, but does not specify what rate is to be used as the reference. For these

results, we take the max-min fair rates [2] to be “fair”. Given α and β, this yields

box constraints on the rates, of the form

B(α, β) = {x = (x1, ..., xn) : αfk ≤ xk ≤ βfk, k = 1, ..., n},

where fk is the fair allocation for flow k. Given box B(α, β), we will denote by ξ(α, β)

the optimal (maximal) value of objective function in Problem P1:

ξ(α, β) = max
x∈X

U(x).

In each of the examples below, the set X represents the set of feasible points for the

example under consideration.

The efficiency-fairness tradeoff is governed by the values of α and β. In order to make

the efficiency-fairness function easier to plot, we express both α and β in terms of a

single parameter, s. In particular, we set

αs = (10 − s)/10, βs = (
√

2)s, s = 0, 1, . . . , 10.
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It is clear that

B(α0, β0) ⊂ B(α1, β1) ⊂ · · · ⊂ B(α10, β10);

and therefore

ξ(α0, β0) ≤ ξ(α1, β1) ≤ · · · ≤ ξ(α10, β10).

In all examples below, we will consider objective functions given by (8) with Q = 1

or Q = 2.

4.1 Example 1: Linear Network with uniform capacity.

Consider the network shown in Fig. 1 of [34]. There are n flows and (n− 1) concate-

nated links in the network. We consider the case that each link has bandwidth of

1 unit. Flow xn travels through all the links; flow x1 travels through link 1; flow x2

travels through link 2; and so on, and flow xn−1 travels through link n− 1, as shown

in Figure 6.

The Max-Min fair allocation for this network is to assign the same rate to all the

flows:

x1 = x2 = x3 = · · ·xn =
1

2

where xi is the rate allocation to flow i. We describe the optimizing problem of

efficiency-fairness tradeoff as follows:

Maximize U(x)

subject to:
1

2
β ≥ xi ≥

1

2
α for i = 1, 2, · · · , n

xi + xn ≤ 1 for i = 1, 2, · · · , n − 1

xi ≥ 0 for i = 1, 2, · · · , n

For this example, we consider the following two objective functions:
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Fig. 6. The classical network model used in Example 1.

U11(x) =
n

∑

i=1

ln(xi + 1),

and

U12(x) =
n

∑

i=1

max{ln(xi + 1), 4 ln(xi + 0.9)}.

Given α and β, the maximal values of objective functions will be denoted as:

ξ11(α, β) = max U11(x),

and

ξ12(α, β) = max U12(x),

respectively.

It is not difficult to show that objective functions U11 and U12 have a unique optimal

solution for this simple example. Both algorithms, LGO and AGOP could easily

find the optimal solution for all boxes Bs = B(αs, βs), s = 0, ..., 10. The results are

presented in Table 1. The efficiency-fairness functions for Example 1 for the objective

functions U11(x) and U12(x) are presented in Figure 7.

4.2 Example 2: Linear Network with two long flows.

Consider now a somewhat more complicated network — the linear network with

two long flows [34], as shown in Figure 8. In this model, we choose the capacity

20



Table 1
The results obtained by algorithms LGO and AGOP for objective functions U11, U12 with
n = 20. Here Bs = B(αs, βs) (s = 0, 1, ..., 10) and ξ11, ξ12 are the optimal values of objective
functions. Note that the results are the same for both algorithms.

Box ξ11 ξ12

B0 8.1093 26.9178

B1 8.6984 29.4393

B2 9.2665 31.8648

B3 9.8148 34.1999

B4 10.3443 36.4496

B5 10.8558 38.6180

B6 11.3503 40.7090

B7 11.8283 42.7260

B8 12.2905 44.7671

B9 12.7376 46.8029

B10 13.1698 48.7809
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U12
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Fig. 7. Efficiency-fairness functions for Example 1.

C = (500, 400, 300, 200, 500)T , and calculate the max-min fairness rate allocation. It

is given by: x1 = 400, x2 = 300, x3 = 100, x4 = 100, x5 = 400, x6 = 100, x7 = 100.
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The optimization problem is as follows:
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X
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X
5

X
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X
3

X
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Fig. 8. The Linear network with two long flows used in Example 2.

Maximize U(x)

subject to:

400β ≥ x1 ≥ 400α, 300β ≥ x2 ≥ 300α,

100β ≥ x3 ≥ 100α, 100β ≥ x4 ≥ 100α,

400β ≥ x5 ≥ 400α, 100β ≥ x6 ≥ 100α,

100β ≥ x7 ≥ 100α, x1 + x7 ≤ 500,

x2 + x7 ≤ 400, x3 + x6 + x7 ≤ 300,

x4 + x6 ≤ 200, x5 + x6 ≤ 500,

xi ≥ 0 for i = 1, 2, · · · , 7.

For this example, we consider the following two utility functions:

U21(x) =
7

∑

i=1

ln(xi/500 + 1)

and

U22(x) =
5

∑

i=1

ln(xi/500 + 1) +
7

∑

i=6

max{ln(xi/500 + 1), 4 ln(xi/500 + 0.9)}.
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These two utility functions will lead to the efficiency-fairness functions:

ξ21(α, β) = max
x∈X

U21(x)

and

ξ22(α, β) = max
x∈X

U22(x),

respectively.

The results are presented in Table 2 and Figure 9. As mentioned above, objective

function U21 has a unique optimal solution. Both algorithms, LGO and AGOP could

easily find this solution for all boxes B(αs, βs), s = 0, ..., 10. However, objective func-

tion U22 has many locally optimal solutions. As can be seen from Figure 9, the LGO

algorithm has a difficulty in finding deep locally optimal solutions when the box

B(αs, βs) becomes larger (for larger s values). The estimate from LGO can be im-

proved slightly by enforcing the monotonicity constraint, increasing the estimates for

certain (α, β) pairs as necessary; this is not necessary using AGOP.

To study the effect of the α and β parameters of the efficiency-fairness function we

used only AGOP to produce the results presented in Figures 10 and 11.

The results show that an appreciable gain in utility can be achieved by relaxing the

fairness constraints.

Note that in Figures 10 and 11, the curves are flat for a wide range of α and β

values. The operating point, and hence utility, becomes independent of β when the β

constraint ceases to be tight; that is, when all rates are constrained from decreasing by

the α constraints, or constrained from increasing by the capacity constraints. Clearly,

the further α is from 1, the larger the utility is at the point where this happens.
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Table 2
The results obtained by algorithms LGO and AGOP for objective functions U21 and U22.
Here Bs = B(αs, βs) (s = 0, 1, ..., 10) and ξ21, ξ22 are the optimal values of objective
functions. Note that the results for U21 are the same for both algorithms.

Box ξ21 ξ22

LGO and AGOP LGO AGOP

B0 2.3749 2.7727 2.7727

B1 2.4251 2.8052 2.8052

B2 2.4730 2.8340 2.8340

B3 2.5188 2.8618 2.8617

B4 2.5623 2.8886 2.8883

B5 2.6038 2.8053 2.9508

B6 2.6432 2.8451 3.0067

B7 2.6805 2.6805 3.0566

B8 2.7158 2.7158 3.1004

B9 2.7492 2.7492 3.1383

B10 2.7806 2.7806 3.1703

An analogous effect is observed in Figure 11. Note however that the curves for different

β values are not entirely coincident until they reach the β-dependent ceiling as α

decreases. Rather there is a gradual divergence before the limit is reached. That

occurs when some of the flows’ rates are constrained by α and some by β.

4.3 Example 3: A 12-node Network

The topology of this network is presented in the Figure 12. Assume that the capacity

of each link is set at C = 2, and that there are 35 flows in this model. The flows’

route information and the max-min rate allocations are given in Table 3. Considering

max-min fairness and a general utility function, the relevant NLP is thus formulated

as follows:
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Fig. 9. Efficiency-fairness functions for Example 2 with objective functions U21(x) and
U22(x).
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Fig. 10. Efficiency-fairness functions for Example 2, where α is fixed and β changes.

Maximize U(x);

subject to:

(0 ≤)αx
†
i ≤ xi ≤ βx

†
i i = 1, . . . , 35

x1 + x2 + x4 + x5 + x9 + x13 + x33 + x35 ≤ C,

x3 + x6 + x7 + x9 + x13 + x34 ≤ C,

x2 + x8 + x12 + x13 + x14 + x17 + x35 ≤ C,

x4 + x5 + x10 + x11 + x14 + x17 + x33 ≤ C,

x12 + x15 + x16 + x35 ≤ C, x6 + x7 + x34 ≤ C,

x11 + x18 + x19 + x24 + x26 + x27 + x30 ≤ C,

x5 + x17 + x20 + x21 + x22 + x23 + x26 + x27 + x30 + x33 ≤ C,

x7 + x15 + x19 + x24 + x25 + x28 + x29 + x30 + x34 ≤ C,

x24 + x28 + x29 + x31 + x32 + x34 + x35 ≤ C, x23 ≤ C,

x21 + x22 + x23 + x27 + x33 ≤ C, x22 + x33 ≤ C,

x28 ≤ C, x31 + x35 ≤ C.
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Fig. 11. Efficiency-fairness functions for Example 2, where β is fixed and α changes.
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Fig. 12. The 12 node network used in Example 3.

For this example, we consider the following two utility functions:

U31(x) =
35
∑

i=1

ln(xi + 1);

and

U32(x) =
∑

i/∈I

ln(xi + 1) +
∑

i∈I

max{ln(xi + 1), 4 ln(xi + 0.9)},

where the set

I = {5, 13, 17, 24, 26, 27, 30, 33, 34, 35}

represents routes on which there is demand for a “premium” service, if the rate is

sufficient.
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Table 3
Routes and calculated max-min rate allocation of the 12 node network.

Flows Route Max-min Rate

(O-D) Allocation (c)

1 − 2 1 − 2 x
†

1
= 2/15

1 − 3 1 − 2 − 3 x
†

2
= 2/15

1 − 4 1 − 4 x
†

3
= 61/240

1 − 5 1 − 2 − 5 x
†

4
= 2/15

1 − 8 1 − 2 − 5 − 8 x
†

5
= 1/10

1 − 6 1 − 4 − 6 x
†

6
= 61/240

1 − 7 1 − 4 − 6 − 7 x
†

7
= 9/80

2 − 3 2 − 3 x
†

8
= 1/6

2 − 4 2 − 1 − 4 x
†

9
= 2/15

2 − 5 2 − 5 x
†

10
= 1/5

2 − 6 2 − 5 − 6 x
†

11
= 1/5

2 − 7 2 − 3 − 7 x
†

12
= 1/6

3 − 4 3 − 2 − 1 − 4 x
†

13
= 2/15

3 − 5 3 − 2 − 5 x
†

14
= 1/6

3 − 6 3 − 7 − 6 x
†

15
= 9/80

3 − 7 3 − 7 x
†

16
= 2/15

3 − 8 3 − 2 − 5 − 8 x
†

17
= 1/10

5 − 6 5 − 6 x
†

18
= 11/40

5 − 7 5 − 6 − 7 x
†

19
= 9/80

5 − 8 5 − 8 x
†

20
= 1/10

5 − 9 5 − 8 − 9 x
†

21
= 1/10

5 − 10 5 − 8 − 9 − 10 x
†

22
= 1/10

5 − 11 5 − 8 − 9 − 11 x
†

23
= 1/10

5 − 12 5 − 6 − 7 − 12 x
†

24
= 9/80

6 − 7 6 − 7 x
†

25
= 9/80

6 − 8 6 − 5 − 8 x
†

26
= 1/10

6 − 9 6 − 5 − 8 − 9 x
†

27
= 1/10

6 − 10 6 − 7 − 12 − 10 x
†

28
= 9/80

6 − 12 6 − 7 − 12 x
†

29
= 9/80

7 − 8 7 − 6 − 5 − 8 x
†

30
= 1/10

7 − 11 7 − 12 − 11 x
†

31
= 5/24

7 − 12 5 − 12 x
†

32
= 5/24

1 − 10 1 − 2 − 5 − 8 − 9 − 10 x
†

33
= 1/10

1 − 12 1 − 4 − 6 − 7 − 12 x
†

34
= 9/80

1 − 11 1 − 2 − 3 − 7 − 12 − 11 x
†

35
= 1/10

These two utility functions will lead to the efficiency-fairness functions:

ξ31(α, β) = max
x∈X

U31(x)

and

ξ32(α, β) = max
x∈X

U32(x),

respectively.

The results are presented in Table 4. The performance of algorithms LGO and AGOP
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Table 4
The results obtained by algorithms LGO and AGOP for objective functions U31 and U32.
Here Bs = B(αs, βs) (s = 0, 1, ..., 10) and ξ31, ξ32 are the optimal values of objective
functions. Note that the results for U31 are the same for both algorithms.

Box ξ31 ξ32

LGO and AGOP LGO AGOP

B0 4.5537 4.5597 4.5597

B1 6.2648 6.8061 6.8061

B2 8.5403 10.8493 10.8493

B3 9.5563 13.0041 13.0041

B4 10.2515 14.2254 14.1813

B5 10.6974 14.9410 14.8482

B6 10.9704 15.0653 15.0728

B7 11.1267 15.0614 15.2953

B8 11.1747 14.4944 15.5612

B9 11.2196 13.8754 15.7534

B10 11.2624 13.8102 15.8245

are similar to those in Example 2. The objective function U31 has a unique optimal

solution and both algorithms finds this solution for all boxes Bs = B(αs, βs), s =

0, ..., 10. However, objective function U32 has many locally optimal solutions. LGO

provides slightly better solutions for boxes B4 and B5, however, AGOP performs

better on larger boxes, and provides a monotonic estimate of the efficiency-fairness

curve.

LGO was run in the General Algebraic Modeling System (GAMS) and AGOP in

Lahey Fortran. The aggregate elapsed times for all 11 cases (s = 0, ..., 10) was around

30% more for AGOP than LGO.

4.4 Example 4: A case with a remote node

We now consider an example with the four nodes network shown in Figure 14, where

cl = 1 for all links. In this example, nodes 2, 3 and 4 are three cities with existing
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Fig. 13. Efficiency-fairness functions for the 12-node network of Example 3.

telecommunications infrastructure and node 1 represents a remote location. The link

from node 1 to node 2 does not exist and a major cost is required to connect node 1

to the rest. We consider the following four flows: x1 = [1, 4], x2 = [2, 3], x3 = [3, 4] and

x4 = [4, 2]. Each of these flows is an aggregate of many individual flows. Let us assume

that the three flows x2, x3, x4 are equal in size, that is, each of them has the same

number of individual flows. However, flow x1 that is associated with traffic from the

remote node 1, is much smaller than the other three. In this example, we consider the

case that the number of individual flows that it carries is 19 times smaller than that of

each of the other three flows. In this case, we will use the weighted Max-Min fairness

criterion to reflect the difference in the number of individual flows carried by x2, x3, x4

versus x1 in a way that individual users will obtain “equal access”. Accordingly, the

weighted Max-Min rates are:

x1 =
1

20
, x2 = x3 =

19

20
, x4 = 1.

Considering this fairness criterion, relevant NLP is formulated as follows:
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Fig. 14. Topology and routes for the case with a remote node used in Example 4.

Maximize U(x)

subject to:
1

20
β ≥ x1 ≥

1

20
α,

β ≥ x4 ≥ α
19

20
β ≥ xi ≥

19

20
α for i = 2, 3,

x1 + x2 ≤ 1

x1 + x3 ≤ 1

x4 ≤ 1

xi ≥ 0 for i = 1, 2, 3, 4.

For this example, we consider the objection functions U40, U41 and U42, where

U4k(x) = −S(x1) + 2k ln(x1 + 1) +
4

∑

k=2

ln(xk + 1),

S(x) = 0 if x = 0, S(x) = 1 if x ∈ (0, 1/3], S(x) = 1.5 if x ∈ (1/3, 2/3], and S(x) = 2

if x > 2/3. These utility functions lead to the efficiency-fairness functions:

ξ40(α, β) = max
x∈X(α,β)

U40(x), ξ41(α, β) = max
x∈X(α,β)

U41(x),

and

ξ42(α, β) = max
x∈X(α,β)

U42(x),

respectively.

We used AGOP to solve this problem. The results are presented in Table 5. The
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Table 5
The results obtained by algorithm AGOP for objective functions U40, U41, U42. Here Bs =
B(αs, βs) (s = 0, 1, ..., 10) and ξ40, ξ41, ξ42 are the optimal values of objective functions.

Box ξ40 ξ41 ξ42

B0 1.0776 1.1264 1.2240

B1 1.0779 1.1441 1.2807

B2 1.0783 1.1675 1.3581

B3 1.0785 1.1973 1.4619

B4 1.0788 1.2334 1.5980

B5 1.0790 1.2726 1.7708

B6 1.0791 1.2902 1.8655

B7 1.0793 1.2902 1.8655

B8 1.0794 1.2902 1.8655

B9 1.0794 1.2902 1.8655

B10 2.0794 2.0794 2.0794

efficiency-fairness functions ξ4i(α, β), i = 0, 1, 2, are presented in Figure 15. Note
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Fig. 15. Efficiency-fairness functions for Example 4.

that when α = 0, it is permissible to set x1 = 0 and not to build the new link at all.

For the three objective functions considered, this is the optimal strategy in that case,

31



giving x∗ = (0, 1, 1, 1). When x1 = 0 is not allowed, there is little to be gained by

relaxing the fairness requirements if the utility function is U40 or U41, but significantly

higher revenue can be obtained by sacrificing fairness if the utility has the form of

U42.

5 Conclusions

This paper has presented the (α, β)-fairness concept, which specifies how far a re-

source allocation is allowed to be from an “ideally fair” allocation, according to any

fairness criterion. This decouples the efficiency criterion from the fairness criterion

and quantifies the familiar concept of the tradeoff between efficiency-fairness.

We have described a framework to produce “efficiency-fairness functions” that allow

network operators to first set fairness constraints and then to optimize their efficiency.

We have formulated an NLP problem which finds the optimal rate allocation for a

general network and any ideally fair rate allocation, under the (α, β)-fairness con-

straints. This leads to what we call the efficiency-fairness function, which shows the

increase in efficiency as a function of the extent to which fairness is compromised.

This framework applies both when the network is fixed and only the rates can be

chosen, and also when new capacity is to be added to the network. In the latter case,

the “efficiency” reflects both the revenue and the infrastructure cost associated with

the rate allocation.

We have applied two global optimization algorithms, LGO and AGOP, to solving

the NLP for a variety of networks. For the examples tested, AGOP seems to be a

particularly promising algorithm.

Acknowledgement

The authors thank Alex Rubinov for reviewing the manuscript and helpful comments.

32



References

[1] Bazaraa MS, Jarvis JJ. Linear programming and network flows. John Wiley & Sons,
ISBN: 0-471-06015-1; 1976.

[2] Bertsekas D, Gallager R. Data networks. Prentice Hall; 1992.

[3] Bolton GE, Ockenfels A. How do efficiency and equity trade-off when a majority rules?
Working paper, University of Cologne 2003, online; available: http://ockenfels.uni-
koeln.de/download/papers/fair-vs-eff.pdf

[4] Bonald T, Massoulie L. Impact of fairness on Internet performance. In: Proceedings of
ACM Sigmetrics’01, June 2001.p. 82-91.

[5] Butler M, Williams HP. Fairness versus efficiency in charging for the use of common
facilities. Journal of Operational Research Society 2002;53(12): 1324-329.

[6] Charny A, Clark DD, Jain R. Congestion control with explicit rate indication. In:
Proceedings of IEEE International Conference on Communications(ICC95), Seattle;
June 1995.p. 18-22.

[7] Cui T, Andrew LLH, Zukerman M, Tan L. Improving the Fairness of FAST TCP to
New Flows. IEEE Communications Letters 2006;10(5): 414-416.

[8] Davik F, Yilmaz M, Gjessing S, Uzun N. IEEE 802.17 resilient packet ring tutorial.
IEEE Communications Magazine 2004;42(3): 112-118.

[9] Gambiroza V, Liu Y, Yuan P, Knightly E. High performance fair bandwidth allocation
for resilient packet rings. In: Proceedings of the 15th ITC Specialist Seminar on Traffic
Engineering and Traffic Management,Wurzburg, Germany; July 2002.p. 22-24.

[10] Gambiroza V, Yuan P, Balzano L, Liu Y, Sheafor S, Knightly E. Design, analysis,
and implementation of DVSR: A fair high-performance protocol for packet rings.
IEEE/ACM Transactions on Networking 2004;12(1): 85-102.
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