Online Dynamic Capacity Provisioning in Data Centers

Minghong Lin and Adam Wierman Lachlan L. H. Andrew Eno Thereska
California Institute of Technology Swinburne University of Technology = Microsoft Research

~ Abstract—Power consumption imposes a significant cost for using two real traces (Section V). We show that significant
implementing cloud services, yet much of that power is used savings are possible under a wide range of settings.

to n;lgintainkexcess szrvi%e capacity .guringhperiods of low &dl. All the results described in this paper are proven and
In this work, we study how to avoid such waste via an on- i ccor o oot g [3] and [6].

line dynamic capacity provisioning. We overview recent reglts
showing that the optimal offline algorithm for dynamic capadty Il. MODEL

provisioning has a simple structure when viewed in reverseime, . . . .
and this structure can be exploited to develop a new ‘lazy’ oline Our focus is on understanding how to dynamically provision
algorithm which is 3-competitive. Additionally, we analyz the the (active) service capacity of a large, possibly hetemegas

performance of the more traditional approach of receding haizon pool of servers so as to minimize the “cost” of the system,

control and introduce a new variant with a significantly improved \yhich may include both energy and quality of service
worst-case performance guarantee. ’
A. Workload model

g INTROD_UC_T_ION . We considerS > 1 types of servers, each of which has a
Energy costs represent a significant fraction of a data cefjerent cost for serving different types of jobs, add> 1

ter's budget [1] and this fraction is expected to grow. Hencgnes of jobs. We take a discrete-time model where the tiohesl
there is a growing push to improve the energy efficiency Ringth matches the timescale at which servers can enter or
the data centers. A promising approach for making data tenf@ave power saving states. There is a (possibly long) time-
more energy efficient is using software to dynamically ‘tighinterval of interest € {1,...,T}. The mean request rate for
size’ the data center, i.e., adapt the dispatching so that@lu timesiot ¢ is denoted byA: = (Ar;)jes, Where),; is the
perllods of low load some servers are allowed to enter a powgfsan request rate (arrival rate) for typbs at timer. We set
saving mode (e.g., go to sleep or shut down). A+ =0 fort < 1 andt > T, and assume that jobs are short so
_However, entering and leaving sleep mode incurs a pengit work does not carry over between slots and provisioning
(“switching cost”), in terms of latency, energy consumptio can pe based on the average arrival rate during a timeslot. In
or wear-and-tear. This means that decisions to sleep c@@nofhe gata center setting; could be a year, a timeslot could be

made independently at different time instants. The problery minutes, and a job length could be on a second or less.
is challenging due to the lack of knowledge about future

workloads, which means that a server that is put to sleBp COSt model
may soon need to be woken again. There is a significant €ddr goal is to provide insight into the important decision:
growing literature on this topic [2]-[5]. determining the number of active servers, = (z;s)ses,
This paper provides an overview of recent results providimghere z; ; is the number of active servers of typeduring
online algorithms to decide the provisioning at each tintemeslotz.
instant without or with a little information of future workhd. ~ We decompose the cost incurred by the system into two
To this end, we discuss a simple but general model tltgtmponents: (i) theoperating costincurred by using active
captures the major issues of right-sizing. With this modelgrvers to serve requests in each timeslot. (iisthigching cost
we first analytically characterize the optimal offline saat incurred by changing provisioning between timeslots. Note
(Section 1II-A). We show that it exhibits a simple, ‘lazy’that both components may include costs of energy, delay, and
structure when viewed in reverse time. Second, we discusgven wear-and-tear.
novel, practical online algorithm motivated by this sturet  To model the operating costs, we use a (possibly time
(Section 11I-B). The algorithm, nametlazy Capacity Pro- varying) functionf;(x;, ;) for each timeslot, which represents
visioning (LCP), mimics the ‘lazy’ structure of the optimalthe cost of using:; = (¢ 1, ..., 7 s) Servers to serve arriving
algorithm, but proceeding forwards instead of backwards fi@quests\; = (A 1, ..., As,s) under the optimal dispatching of
time. Importantly, LCP is 3-competitive, i.e., its cost is a\: overz,. Note that the optimal dispatching can be computed
most 3 times that of the optimal offline solution. Third, weasily in many cases, such as when eg#clis convex inz;.
analyze the traditional approach Beceding Horizon Control Thus, we do not explicitly consider the dispatching dedisio
(RHC). We show that RHC performs well when servers at the following and simply assume it is performed optimally
homogeneous; specifically, it has performance that quicklyThe switching costs are modeled by a functitim; 1, z:),
tends toward optimality as the prediction window increaseghich represents the cost of changing the number of active
However, we also show that RHC can perform badly wh&ervers of each type from vectag_; to vectorz;. Let 5*
servers are heterogeneous, regardless of the length of &A@~ be vectors such that is the cost of turning a server
prediction window. To address this issue, we discuss amari@f type s on, andg; is the cost of turning it off. Then, it is
of RHC that is guaranteed to perform well in heterogeneoigtural to use
settings. Specifically, under both homogeneous and hetero _ ot + - +
neousgsetti%gs, thei)r/ competitive ratio mgatches that of RHC 9 d@ir,w) =B (@ = w4+ B (@ - a0
the homogeneous setting. Moreover, we validate our atyaoritwhere (z)™ = max(0, z) elementwise.
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C. Cost optimization problem

Given the workload and cost models above, the system g
is to choose the active number of serversso as to minimize
the total cost duringl, 7). We assume;; = 0 andzp41 = 0,
then the number of times a server is turned ofiif’] is equal

——LCP(0)
- - —bounds
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to the number of times it is turned off if2, T + 1]. Thus the P imetomsy © ° b ety P
optimization depends o™ and 3~ only through their sum (a) Offline optimal (b) LCP(0)
g = gt + . Therefore, the optimization is Fig. 1. lllustrations of (a) the offline optimal solution arfo) LCP(0) for

the first day of the MSR workload described in Section V.

T T .
Then, definer? = 2V _.
' : — + g T = Trr o .
e Z fe(we, Ae) + Z(xt z-1)" (1) Notice that in each case, the optimization problem includes
. =1 ; =1 only times1 <t < 7, and so ignores the arrival information
subjectto 0 <z € R",  x0=0. for t > 7. In the case of the lower boungd, cost is incurred

Note that this optimization makes two main simplificationd0" €ach server toggled on, while in the upper bousictost
First, it does not impose integer constraints on This is 'S incurred for each server toggled into _power—s_avmgbmode.
acceptable since the number of servers is assumed to bé/e now characterize the optimal solution. Define(x), =
large and so rounding does not create significant ineffigienB1ax(min(z, b), a) as the projection of: into [a, b]. Then, we
Second, the number of each type of server is not explicifk?Ve-

bounded above. An upper bound < M, can be imposed by Theorem 1. In homogeneous systerfl & 1) with f;(z, \+)
defining f;(z,-) = oo for x> M;. A constraint on the load convex inz,, the optimal solutionX* = (z;, ..., z%) of the

\ t St . )
per server can be imposed similarly. It is this formulatidn @jata center optimization problem (1) satisfies the follayin
the cost optimization that we focus on in the remainder of tiygckward recurrence relation

paper. 0 > T
Given this optimization problem, in many cases the solution o= ’ WU T4
can be found easilyffling i.e., given\; for all ¢. However, T (x741),0, T<T-1

our goal is to findonline algorithms for this optimization, i.e.,
algorithms that determinge; using only information up to time
t + w, wherew > 0 is called the “prediction window”.

In order to evaluate the performance of online algorithms

Theorem 1 is proven in [3]. An example of the optimal
x; can be seen in Figure 1(a). Theorem 1 and Figure 1(a)
Wighlight that the optimal algorithm can be interpreted as

use the standard notion ebmpetitive ratio The competitive MOVing backwards in time, starting with, =0 and keeping
ratio of an algorithmA is defined as the maximum, taken ovef~ = “r+1 unless the bounds prohibit this, in which case it
all possible inputs, ofost(A) /cost(OPT), wherecost(A) is  makes the smallest possible change.

the objective function of (1) under algoritht andOPT is B, Online Algorithms

the optimal offline algorithm. Let us first present an online algorithrhazy Capacity

I1l. HOMOGENEOUS SYSTEMS Provisioning (LCP(w)), which is motivated by the structure
of the optimal offline solution described in Section IlI-At A
time 7, LCP@) knows only A\; for ¢ < 7 + w, for some
prediction windoww. Like the optimal solution, it “lazily”
stays within upper and lower bounds. However, it does this
A. The optimal offline solution moving forwards in time instead of backwards in time.

To use the knowledge of the prediction window, Let us
efine refined bounds”* andz%* such thatrV:* = 2¥

T4+w,T

In this section, we consider the homogeneous systéms (
1) with f;(z¢, \;) convex inz;. We will first characterize the
optimal solution, and then study the online algorithms.

It turns out that there is a simple characterization of the o
timal offline solution to the data center optimization peybl ) o A )
The optimalz* can be viewed as ‘lazily’ staying within two N the solution of (3) and:>* = 27, - in that of (2). Note
bounds going backwards in time. More formally, let us firshatz?* = 2%’ andz2* = =7. Then we are ready to define
describe upper and lower bounds eh, denoted:? andz%, LCP() usingz?* andz".

. L L :
respectively. Let(xy,, ..., 27 ) be the solution vector to theAIgorithm 1. Lazy Capacity Provisioning, LCP(w).

following optimization problem Let XLCPw) _ (xgcp(w)’m’ L P(w)) denote the vector
of active servers under LCR). This vector can be calculated

minimize > fi(x, ) + 8> (2 —21)"  (2) using the following forward recurrence relation
t=1 t=1

subject to z; > 0, zo = 0. 1P _ { O,LCP( o T <0;
Then, definex? = 2L . Similarly, let (z¥,,...,2¥ ) be the (x7 21 )Ig,w, T>1.
solution vector to the following optimization problem Figure 1(b) illustrates the behavior of LCP(0). Note its

T T similarity with Figure 1(a), but with the laziness in forwiar
minimize Z fe(xe, M) + BZ(zt_l —x;)"  (3) time instead of reverse time.

t=1 t=1 The computational demands of LGB(may initially seem
subject to z; > 0, 29 = 0. prohibitive ast grows. However, it is possible to calculate
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2% and zL* without using the full history and hence
LCP(w), remains tractable even asgrows. Please see [3]
for the details. g% g6

Next, consider the cost incurred by LGR( Section V ~ °* < 04
discusses the cost in realistic settings, while in thisisaeate 02
focus on worst-case bounds. We have the following theore % 10 20 0 40 0 % 20 40 60 8 1200 120
time (hours) time (hours)
Theorem 2. In homogeneous systemS ( = 1) with (a) Hotmail (b) MSR
ft(xt7 )\t) convex in T, cost(XLCP(w)) < cost(X*) + Fig. 2. lllustration of the traces used for numerical expents.

2c0st switehing(X ™). Thus, LCPg) is 3-competitive for op- . )
timization (1). Further, for any finitev ande > 0 there exists ¢2S€. Moreover, RHC may not see any improvement in the
an instance such that LCR{ attains a cost greater thad— competitive ratio asw increases. The following theorem is
times the optimal cost. proven in [6]:

Theorem 2 is proven in [3]. Note that the competitivé€orem 4. When there are multiple types of servefsX 2),
ratio is independent of any parameters of the model, e.g., tAr @l w > 0 RHC is> (1 + max,(f;/ fo s))-competitive.

prediction window sizev, the switching cosp, and the form  Further, the worst case instance used to prove Theorem
of the operating cost functioffy (). Surprisingly, this means 4 yses convey/, so the hardness is truly coming from the
that even the “myopic” LCP(0) is 3-competitive. Moreovéet heterogeneity and not from other factors. To addresses the
fact thatcost(X“CP)) < cost(X*) + 2costswitching(X*)  limitations of RHC in the heterogeneous setting, we propose
highlights that the gap will tend to be much smaller in pr@ti the following novel variant.

However, it is a little disappointing that even for largethe  First consider a family of algorithms parameterizedioy

competitive ratio ofLC'P(w) is arbitrarily close to 3. [1,w + 1] that recompute their provisioning periodically. For
Next, let us study the tradition&eceding Horizon Control g|| = 1,... ,w+ 1, letQ, = {i : i = k mod (w + 1)} N

(RHC), which turns out to have the competitive ratio deoseeas[_w, o)
asw increases. RHC is commonly proposed for dynamic ca- ) ) . "
pacity provisioning [4], [5] and has a long history in the tmh Algorithm 3. Fixed Horizon Control, version k, FHC(),
theory literature [7]-[9]. Informally, RHC works by, at ten For all ¢ <0, set the number of active serversﬁ&}lc’t =0.
7, solving the cost optimization over the winddw, 7 + w) At each timeslot € Qy, for all t € {7,...,7 + w}, set

given the starting state._,. Formally, defineX™ (z,_1; \) as (k) )
the vector in(R7)“*+! indexed byt € {r,...,7 + w}, which Trpos = Xt (xFHc,T—ﬂ /\)
is the solution to (k)

using (4), and dispatch; overzjy ., optimally.

T4+w T4+w
min Z filxe, M) + 8- Z (x —2i1)" (4) The above algorithm can have very poor performance. How-
t—r t—r ever, it gives rise to the following useful algorithm, AFHC,
subjectto z; >0 which averages the decisions of thet 1 FHC algorithms to
ensure good performance.

Then, RHC works as follows. . ) . .
Algorithm 4. Averaging Fixed Horizon Control, AFHC.

Algorithm 2. Receding Horizon Control, RHC. At timeslotr € ,, use FHC" to determine the provisioning
For all ¢t < 0, set the number of active serversat@ ¢+ = 0. L) (k) w41

- ; and then settarppgc: = _ x(k)/(w +
k,7’ VR THw? . k ’ k=1 "kt
At each timeslot- > 1, set the number of active servers to 1). At timet, )\ is dispatched optimally over 4 psc..

vrHC: = X7(TRHC.-11 ) Intuitively, AFHC seem worse than RHC because RHC uses

and optimally dispatch\. acrosszgrc, . the latest information to make the current decision and AFHC

. . .make decisions in advance, thus ignoring some possibly valu
Note that (4) need not have a unique solution. We defigg|e information. This intuition is partially true, as shoun

RHC to select the solution with the greatest first entry. Beefipy, o following theorem (proven in [6]), which states that RHC

fo the minimum cost per timeslot for an active server, thQ not worse than AFHC for any workload in a homogeneous
we have the following theorem:

system.
Theorem 3. In homogeneous systerl & 1) with fi(2¢, A1)  Theorem 5. In homogeneous systerl € 1), cost(RHC) <
convex inz;, RHC is(1 + ﬁ)-competitive. cost(AFHC)

Theorem 3 is proven in [6]. It highlights that, with enough However, RHC can be worse than AFHC in heterogeneous
lookahead, RHC is guaranteed to perform quite well in tRgstems, even when there are only two types of servers. More-
homogeneous case. However, RHC can have bad performasi&g, the following theorem highlights that AFHC guaraistee
if w is small and3 is large. good performance in the homogeneous and the heterogeneous

IV. HETEROGENEOUS SYSTEMS setting.

Unfortunately, the story is different when servers amg- Theorem 6. If f; (axi, alt) = afi(x:, Ar) for all a >0, or
erogenougS > 2). In a heterogeneous system, is a vector f:(x¢, A) is convex inz;, then AFHC is(1+max; (wflﬁ)-
and it seems hard to extend”P(w) to the heterogeneouscompetitive. ’

3
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The above theorem is also proven in [6]. The contre ¢
between Theorem 4 and Theorems 6 highlights the impro'g ,
ment AFHC provides over RHC. In fact, AFHC has th® ° <

N
o

% cost reduction

F . ! = ——optimal |-+ A TS 20f| —— Optimal
same competitive ratio in the general (possibly heterogeske & 72 I RN g Ny
setting that RHC has in the homogeneous setting. F_jplemw=0 - R Ofl===w=0 Sty
min hour day min hour day
Ble, Ble,
V. CASE STUDIES (a) Hotmail (b) MSR

Fig. 3. Impact of switching cost, against time on a logarithstale.

In this section our goal is two-fold: First, we seek to
evaluate the cost incurred by online algorithms in the cdnte
of realistic workloads. Second, more generally, we seek g8 —— Optimal
illustrate the cost savings that come from dynamic righing 5 6 W
in data centers. To accomplish these goals, we experim € 4/
using two real-world traces. We have attempted to choc § 2 “
experimental settings so that the benefit of dynamic rigt¥ o~ ">~ = ==

—— Optimal
- - w=4

% cost reduction

sizing is conservatively estimated. For simplicity, wetjsisow 0 10 20 30 40 0 20 40 60 80
! K mean background load (% total) mean background load (% total)

some results for homogeneous system A6tP (w) algorithm. (a) Hotmail (b) MSR

More experiments can be found in [3] and [6]. Fig. 4. Impact of background processes. The improvementGi#(w) over

static provisioning as a function of the percentage of theklsad that is
. background tasks.
A. Experimental setup

Cost benchmarkCurrent data centers typically do not us€&- Impact of valley filling

dynamic right-sizing and so to provide a benchmark againsty common alternative to dynamic right-sizing that is
which LCP() is judged, we consider the cost incurred by 8yen syggested is to run very delay-insensitive mainte-

op'gimal ‘static’ right-sizing scheme for capacity pro_vzi_sir!g. ance/background processes during the periods of low load,
This chooses a constant number of servers that m|n|m|zesé a., ‘valley filling’. Some applications have a huge amtou

costs incurred based on full knowledge of the entire wortklog,¢ ¢ ,ch background work, e.g., search engines tuning their

This policy is cle_arly not possible in practice, but It prds_s_ ranking algorithms. If there is enough such background work
a very conservative estimate of the savings from righRgizi ¢ igeq is that the valleys can be entirely filled and thus dy-
Cost function: The operating costs are a weighted sumamic right-sizing is unnecessary. Thus, an importanttipres
of delay costs and energy costs with typical settings [3§: “How much background work is enough to eliminate the

The normalized switching cogt/ey measures the duration aggst savings from dynamic right-sizing?”

server must be powered down to outweigh the switching Cosrigyre 4 shows that, in fact, dynamic right-sizing provides

including power, wear-and-tear and so on. cost savings even when background work makes up a sig-
Workload information:The workloads for these experimentsificant fraction of the total load. For the Hotmail trace,

are drawn from two real-world data center I/O traces [3]. Thggnificant savings are still possible when background load

first set of traces is from Hotmail and the second set of trag@akes upwards of 10% of the total load, while for the MSR

is from MSR Cambridge. Thus, these activity traces reptes@ce this threshold becomes nearly 60%.

a service used by millions of users and a small service used

by hundreds of users. The traces are normalized to the peak

load, which are shown in Figure 2. VI. RELATED WORK

Interest in right-sizing has been growing since [10] and
B. Impact of switching costs [11] appeared at the start of the decade. Early systems work
such as [11] achieved substantial savings despite ignored
One of the main worries when considering right-sizing @witching costs in their design. Other designs have focused
the switching cost of toggling servefs Thus, an important on decentralized frameworks, e.g., [12] and [13]. A recent
question to address is: “How large must switching costs bervey is [14]. Related analytic work focusing on dynamic
before the cost savings from right-sizing disappears?” right-sizing includes [15], which reallocates resourcesaeen
Figure 3 shows that significant gains are possible providesks within a data center, and [16], which considers sldep o
(5 is smaller than the duration of the valleys. Given that thedividual components, among others. Typically, appresch
energy costs, delay costs, and wear-and-tear costs ahetlike have applied optimization using queueing theoretic mqdels
be on the order of an hour, this implies that unless the risksy., [17], [18], or control theoretic approaches, e.g9]{1
associated with toggling a server are perceived to be egtrefi2l]. A recent survey of analytic work focusing on energy
the benefits from dynamic right-sizing are large in the MS&ficiency in general is [22]. Our work is differentiated fino
trace. Though the gains are smaller in the Hotmail case fbrs literature by the generality of the model considerelictv
large 3, this is because the spike of background work splissbsumes most common energy and delay cost models used by
an 8 hour valley into two short 4 hour valleys. If these taslsalytic researchers, and the fact that we provide wois-ca
were shifted or balanced across the valley, the Hotmaiktraguarantees for the cost of the algorithm, which is typicaty
would show better cost reduction. possible for queueing or control theoretic based algorsthm



VIl. SUMMARY AND CONCLUDING REMARKS

resource allocation and power management in virtualized denters,

This paper has discussed recent work presenting new online in Proc. of IEEE NOMSApr. 2010.
algorithms for dynamic right-sizing in data centers. Thgoal

rithm LCP(w) is motivated by the structure of the optimal
offline solution and guarantees cost no larger than 3 times th

optimal cost, under very general settings. We also showthieat
classicReceding Horizon Contrdk 1 + O(1/w)-competitive

when the system is homogeneous, but when the system is
heterogeneous it can perform badly — the competitive ratio

does not improve as the size of the prediction windawy,

grows. Accordingly, we discussed a newly proposed variant o

RHC which is able to provide + O(1/w)-competitive ratio
even in the heterogeneous setting.

(1]

REFERENCES

J. Hamilton, “Cost of power in
http://perspectives.mvdirona.com/, Nov. 2009.

[2] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. Kozuch, g@mality

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]
(18]

[19]

[20]

analysis of energy-performance trade-off for server faranagement,”
Performance Evaluatignno. 11, pp. 1155-1171, Nov. 2010.

M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dyméc right-

sizing for power-proportional data centers,” fioc. IEEE INFOCOM

2011, pp. 1098-1106.

X. Wang and M. Chen, “Cluster-level feedback power cohtor perfor-

mance optimization,” inEEE Int. Symp. High Performance Computer

Architecture (HPCA) 2008, pp. 101-110.

D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, andliéng,
“Power and performance management of virtualized comguénvi-
ronments via lookahead controlCluster computingvol. 12, no. 1, pp.
1-15, Mar. 20009.

M. Lin, L. Andrew, and A. Wierman, “Dynamic capacity prisioning
of heterogeneous servers,” Under Submission.

W. Kwon and A. Pearson, “A modified quadratic cost problemd
feedback stabilization of a linear systemlEEE Trans. Automatic
Control, vol. AC-22, no. 5, pp. 838-842, 1977.

W. H. Kwon, A. M. Bruckstein, and T. Kailath, “Stabilizqn state
feedback design via the moving horizon methddt. J. Contr, vol. 37,
no. 3, pp. 631-643, 1983.

D. Q. Mayne and H. Michalska, “Receding horizon contrbhonlinear
systems,”|EEE Trans. Automat. Contrvol. 35, no. 7, pp. 814-824,
1990.

J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdatl Bn P.
Doyle, “Managing energy and server resources in hostindecgh in
Proc. ACM Symp. Operating System Principles (SQ3801, pp. 103—
116.

E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath, ddobalancing
and unbalancing for power and performacne in cluster-bagstems,”
in Proc. Compilers and Operating Systems for Low PQw2e&01.

B. Khargharia, S. Hariri, and M. Yousif, “Autonomic pewand perfor-
mance management for computing syster@ister computingvol. 11,
no. 2, pp. 167-181, Dec. 2007.

A. Kansal, J. Liu, A. Singh, , R. Nathuji, and T. Abdelesth“Semantic-
less coordination of power management and applicationopeence,”
in ACM SIGOPS2010, pp. 66-70.

A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A taany and
survey of energy-efficient data centers and cloud compuygiems,”
Univ. of Melbourne, Tech. Rep. CLOUDS-TR-2010-3, 2010.

C. G. Plaxton, Y. Sun, M. Tiwari, , and H. Vin, “Reconfigine resource
scheduling,” INnACM SPAA 2006.

S. Irani, R. Gupta, and S. Shukla, “Competitive analysf dynamic
power management strategies for systems with multiple peaeings
states,” inProc. Design, Automation, and Test in Eurp2002, p. 117.
A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy,ptinal power
allocation in server farms,” ifProc. of ACM Sigmetrigs2009.

A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozyci®ptimality
analysis of energy-performance trade-off for server faranagement,”
Performance Evaluatigrnvol. 67, no. 11, pp. 1155 — 1171, 2010.

T. Horvath and K. Skadron, “Multi-mode energy managetfer multi-
tier server clusters,” ifProc. ACM Int. Conf. Parallel Architectures and
Compilation Techniques (PACT2008, p. 1.

Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, Ahdsau-
tam, “Managing server energy and operational costs in mgpstenters,”
in Proc. Sigmetrics2005.

large-scale data centers,

[22] S. Albers, “Energy-efficient algorithmsComm. of the ACMvol. 53,

no. 5, pp. 86-96, 2010.

[21] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. NeelRyhamic



