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Abstract—Voltage regulation has been one of the major
challenges for distribution network operators (DNOs) due to
the integration of distributed energy resources in the recent
years. Control approaches mitigating over-voltage (OV) generally
require full network model, which for low-voltage distribution
networks (LVDNs), can be inaccessible to DNOs. This paper
presents a novel data-driven model-free control framework for
improving voltage regulation in 4-wire 3-phase LVDNs. In the
proposed approach, first, using smart meter data, the aggregated
resistance and reactance matrices of the network is estimated.
Then, these matrices serve as an input for the proposed optimal
power flow (OPF) method to control the DERs’ active and
reactive power outputs. This method also lets the DNO adjust the
fairness in prosumers’ generation curtailment. The performance
of the proposed approach is evaluated in various case studies
conducted on a real-world low-voltage test feeder. The simulation
results exhibit significant effectiveness in solving the OV problem
associated with DERs.

Index Terms—Over-voltage, voltage regulation, prosumers,
data-driven OPF, smart meters.

I. INTRODUCTION

RECENTLY, the adoption of distributed energy resources
(DERs), such as photovoltaic systems (PVSs), has in-

creased dramatically in many countries such as Australia [1].
Despite their environmental and economic benefits, DERs
can result in several operational issues at the distribution
level. Conventional distribution networks are designed for
unidirectional power flow, from the upstream network to the
customers. However, injection of power by DERs of customers
(henceforth referred to as “prosumers”) can result in bidi-
rectional power flows and undesired voltage rise, i.e., over-
voltage (OV). To mitigate this problem, distribution network
operators (DNOs) can employ various techniques, such as D-
STATCOMs (e.g., [2]), distribution transformers with on-load
tap changers (e.g., [3]), and grid reinforcement [4]. However,
these solutions require additional investments and may have
limited effectiveness in DER-rich networks.

A. Background and Literature Review

The Volt-Watt and Volt-VAr control in DERs can be con-
sidered as one of the most straightforward local voltage
control solutions [5], [6]. In the Volt-VAr response mode,
a DER adjusts its output reactive power according to the
voltage measured at its point of connection. While in the Volt-
Watt control, its output active power will be curtailed if the
measured voltage is above a certain value. These approaches
do not require any communication infrastructure and are

utilized as low-cost solutions. However, due to the utilization
of local control input (i.e., terminal voltage), they may result in
some undesired outcomes. Particularly, the Volt-Watt response
mode can result in unequal active power curtailment of DERs
across a feeder. This matter is aggravated in long feeders,
as DERs far from the distribution transformers experience
higher voltage rise and consequently, higher curtailment [7].
Moreover, due to the lack of coordination, DERs may not
be optimally controlled in different demand scenarios and
network conditions.

Coordinated control of DERs has been a topic of various
research studies, and different control objectives have been
considered. Studies such as [8], [9], focus on the management
of voltage using DERs’ reactive power control capability.
However, due to the high R/X ratio in distribution networks,
the effectiveness of these methods may be limited. On the
other hand, studies such as [10]–[12] consider the active
power control of DER. However, solely relying on active
power control can result in unnecessary curtailment imposed
onto prosumers. Hence, in order to utilize the full capability
of DERs, the methods presented in [13]–[15], allow the DNO
to adjust both the active and reactive power outputs of DERs.

Incorporation of fairness in active power curtailment has
also been pursued in recent studies. Various definitions of
fairness have been proposed, in which prosumers curtail with
respect to (i) their DERs planning generation power [10], [15],
[16]; (ii) their planning export power [17], i.e., the DERs
planning generation power minus their demand; (iii) their
maximum generation in network’s minimum hosting capacity
(NMHC) [18], i.e., the maximum generation of each prosumer
when all demands are zero and DERs not providing reactive
power compensation. Among these, the third definition consid-
ers prosumers’ local demand as well as network characteristic,
in which as long as any prosumers’ planned export power is
within the NMHC, they do not need to curtail. In addition,
having an adjustable fairness is an important aspect specifically
from the DNO’s point of view, since in general, there is a trade
off between the total generation in a network and fairness in
the generation curtailment. This has been discussed in [17]
where the second definition (i.e., curtailing with respect to
prosumers’ planning export power) of fairness has been used.
In this work, fairness is adjusted by a coefficient in its objective
function. However, the introduction of this heuristic coefficient
comes with the downside of determining its optimal value
(with respect to fairness) for different networks. In summary,
the main drawback of the aforementioned coordinated control
strategies is that they require the complete network model,
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which may not be fully accessible in low-voltage distribution
networks (LVDNs). Hence, data-driven approaches have been
proposed to estimate the network model and its parameters
from measurements.

The first class of approaches seeks to identify the net-
work impedance model using measurements from additional
metering devices. In [19], data obtained from line sensors
is used while in [20], [21] measurements of voltage phase
angles and current phase angles, obtained from phasor mea-
surement units (PMUs), are processed to estimate the network
impedance model. The cost and complexity of observing
distribution networks using these extra measurement devices
have motivated studies to identify the network model from the
existing measurement infrastructure. The advent and extensive
deployment of smart meters, used for billing and operational
purposes, has opened up data-driven approaches that can
estimate the network model from measurements sampled every
few minutes.

Smart meter measurements have been employed in various
applications, notably voltage control, state estimation, fault
detection, among others. In the context of network model
estimation, the authors in [22] present a regression technique
based on the linearized equations of power flow that estimates
the voltage sensitivity coefficients of a distribution network.
Voltage sensitivity coefficients inherently describe the network
model by relating the consumption data to the measured
voltages and are widely used for various applications includ-
ing DER control [23] and topology or network parameter
estimation [24]–[26]. In [23], these coefficients are estimated
through a regression process and are used to control PV
inverters. Other means of estimating those coefficients include
maximum likelihood approaches detailed in [24], [25] and the
Newton Raphson based approach presented in [26], with all
the aforementioned papers seeking to recover the distribution
network topology. The main drawback of these papers is the
negligence of the coupling between phases (including the
neutral voltage) in 3-phase low-voltage distribution networks.

B. Contributions

In this paper, a novel framework to control the active and
reactive power outputs of DERs that does not require the
network model is proposed. This framework includes two
parts for which their main contribution can be summarized
as follows:

• An approach to estimate the network impedance model
of 4-wire 3-phase LVDNs utilizing the smart-meter data,
where the phases mutual coupling are represented by a
resistance and reactance matrix;

• On-line control of the active and reactive power of DERs
that incorporates an adjustable fairness objective with
respect to the network’s minimum hosting capacity;

• a data-driven control method that is robust against mea-
surement noise.

C. Paper Organization

The rest of this paper is organized as follows; in Section II,
the detail of the proposed optimal power flow (OPF) based on

the network impedance matrices is presented. The proposed
method for estimating the network impedance matrices is pre-
sented in Section III. Section IV demonstrates the performance
of the proposed approach on a real low-voltage test feeder.
Finally, the concluding remarks are outlined in Section V.

II. ONLINE CONTROL OF DERS

This section describes the proposed 3-phase unbalanced
OPF problem for the online control of DERs and the voltage
management in the network. The proposed OPF formulation
utilizes both active and reactive power control to minimize the
curtailment. At the same time, it allows adjustable fairness in
the curtailment of prosumers.

A. Objective Function

A common goal of the online control of DERs is to
maximize the total harvested power of the DERs at each time
step, t. However, this may cause unnecessary reactive power
compensation by DERs. Thus,a small positive regularizing
term λ|Q| with λ ≪ 1 is introduced, giving

max
PDER

h,t ,Q
DER
h,t

∑
h∈H

PDER
h,t − λ|QDER

h,t |,

subject to. (8) − (13) ,
(1)

where PDER
h,t and QDER

h,t are the active and reactive power
outputs of the installed DER at prosumer h, respectively. The
rest of this section explains the approach to calculate the
constraints of the optimization.

B. LVDN Formulation

The exported active and reactive powers of prosumers are

Ph,t = PDER
h,t − P ld

h,t, (2)

Qh,t = QDER
h,t −Qld

h,t, (3)

where P ld
h,t and Qld

h,t are the active and reactive power demand
of prosumer h, respectively. The real and imaginary parts of
prosumers’ current are given by

Ireh,t =
Ph,t cos(φ̃h,t)

Ṽh,t

+
Qh,t sin(φ̃h,t)

Ṽh,t

, (4)

Iimh,t = −Ph,t sin(φ̃h,t)

Ṽh,t

+
Qh,t cos(φ̃h,t)

Ṽh,t

, (5)

where Ṽh,t, and φ̃h,t are the predefined voltage magnitude
(e.g., 1 pu), and predefined voltage phase angle, respectively.
Using (4) and (5), the real and imaginary parts of each
prosumer voltage can be calculated as

[V re
h,t] = [V nl,re

t ] + [R][Ireh,t] + [X][Iimh,t ], (6)

[V im
h,t ] = [V nl,im

t ] + [R][Iimh,t ]− [X][Ireh,t], (7)

where [R] and [X] are the aggregated impedance matrices of
the network. The approach to estimate them without requiring
the network topology and lines’ impedance value is explained
in Section III. Furthermore, [V nl,re

t ] and [V nl,im
t ] are the real

and imaginary parts of the no-load voltage of the distribution
transformer’s secondary, respectively.
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C. Constraints

1) Network Constraints: The main focus of this paper is
to prevent the OV problem due to power injection by DERs.
Hence, the constraint for the voltage magnitude is

V re
h,t

2 + V im
h,t

2 ≤ V
2
, ∀h ∈ H , (8)

where V is the statutory voltage limit.
2) DER Constraints: The active power output of the DER

is always between 0 and the maximum available active power
generation (P

DER
h,t ),

0 ≤ PDER
h,t ≤ P

DER
h,t . (9)

Moreover, according to standards such as AS477.2 [5], to
prevent excessive transmission losses, DERs should operate
above a certain power factor. This constraint is formulated as

|QDER
h,t | ≤ tan

(
cos−1(PFmin)

)
PDER
h,t , (10)

where PFmin is the defined minimum DERs’ operating power
factor by the DNO. Finally, the total power of a DER should
be less than its rated power√

PDER
h,t

2
+QDER

h,t
2 ≤ SDER,Nom

h , (11)

where SDER,Nom
h is the rated power of prosumer h’s DER.

3) Fairness Constraints: There are multiple ways to im-
prove fairness in power curtailment. Unfairness can be a
penalty in the objective function [16], or a hard constraint can
be imposed on unfairness. As described in the literature review,
several definitions of fairness have been used in recent studies,
where prosumers curtail fairly with respect to their maximum
available generation, export power or NMHC. In this paper,
similar to [18], a hard fairness constraint is considered. In
this model, each prosumer h is allocated a threshold Ph,0

that determines the maximum allowed export power without
requiring to curtail. This threshold can incorporate factors such
as the location of the prosumer in the network and the capacity
of the DER. The process of calculating Ph,0 is explained in
Section II-D. If a prosumer’s planned export power at time t

is P
DER
h,t − P ld

h,t < Ph,0, then this is within the NMHC and no
curtailment is needed, i.e.,

PDER
h,t = P

DER
h,t , ∀h ∈ H, with P

DER
h,t − P ld

h,t ≤ Ph,0, (12)

otherwise the prosumer should curtail. To achieve fairness, a
new index, FI , is introduced. For all prosumers h, k ∈ H

connected to the same phase and with planned export power
to the grid greater than Ph,0, it is required that∣∣∣∣ P

DER
h,t − PDER

h,t

P
DER
h,t − P ld

h,t − Ph,0

−
P

DER
k,t − PDER

k,t

P
DER
k,t − P ld

k,t − Pk,0

∣∣∣∣ ≤ FI, (13)

to ensure that the difference in prosumers’ curtailment is
always below the defined limit, DNOs can set the fairness
index between 0 ≤ FI ≤ 1. Lower values of FI result in more
even power quality responses by prosumers, but possibly less
efficient use of DERs.
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Fig. 1. A 4-wire 3-phase radial LVDN.

D. Calculation of Ph,0

In this section, the maximum generation of prosumers in
the NMHC condition, Ph,0, is calculated. Note that Ph,0 is
calculated once, provided that the network topology remains
unchanged. The minimum hosting capacity of a network
occurs when all loads are 0, i.e., P ld

h = 0 and Qld
h = 0, and

DERs’ reactive power capability is disabled, i.e., QDER
h = 0.

Therefore, the maximum generation of prosumers can be
calculated where the objective function is

max
Ph,0

∑
h∈H

Ph,0,

subject to (8) − (11) and (15).
(14)

In this case, the network formulation (Section II-B) and the
constraints on the network (Section II-C1) and DERs (Section
II-C2) are the same. However, since Ph,0 is not calculated,
instead of applying (12) and (13), the constraint∣∣∣∣ Ph,0

SDER,Nom
h

− Pk,0

SDER,Nom
k

∣∣∣∣ ≤ FI , (15)

is used.

III. NETWORK [R] AND [X] MATRICES ESTIMATION

With the full network model not readily accessible to DNOs,
a method that estimates the network impedance model, which
includes the resistance [R] and reactance [X] matrices, from
smart meter measurements is proposed. These matrices are di-
rectly linked to the voltage sensitivity coefficients. First, a brief
representation of a distribution network is provided, following
which the voltage sensitivity coefficients are presented. Then,
the proposed linear programming used to solve for the [R] and
[X] matrices of the network is described. The formulation also
includes linear constraints derived from the physical properties
of distribution networks.

A. Background

In a typical 4-wire 3-phase radial low-voltage distribution
network with h ∈ H prosumers (see Fig. 1), the voltage
change of prosumer h at time t is given by

∆Vh,t = ∆V phase
h,t +∆V mutual

h,t =∑
k∈H

(
Rphase

hk + jXphase
hk

)
Ik,t +

∑
k∈H

(
Rmutual

hk + jXmutual
hk

)
Ik,t ,

(16)
where ∆V phase

h,t is the voltage change caused by the pro-
sumers connected to the same phase. Moreover, ∆V mutual

h,t
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is the voltage change caused by all prosumers via coupling
between phases (including the impact of neutral voltage). Ik,t
is the current of the kth prosumer. Rphase

hk and Xphase
hk are

the resistance and reactance of the common path between
prosumers h and k to the distribution transformer if they are
connected to the same phase, otherwise, both are 0. Rmutual

hk

and Xmutual
hk are the mutual resistance and reactance between

h and k, respectively [7]. Accordingly, (16) can be rewritten
as

∆Vh,t =
∑
k∈H

(Rhk + jXhk)Ik,t , (17)

where Rhk = Rphase
hk + Rmutual

hk and Xhk = Xphase
hk + Xmutual

hk .
In another word, Rhk and Xhk are the aggregated impedance
matrices of the network, which relate the voltage change of a
prosumer to its own current and the others. The rest of this
section is dedicated to the details of estimating Rhk and Xhk

which will be used in the active and reactive power control of
prosumers.

B. Voltage Sensitivity Coefficients

Voltage sensitivity coefficients relate the change in power
consumption of prosumers to the change in the measured
voltage levels. Traditionally, DNOs have been using voltage
sensitivity coefficients in various applications including volt-
age control, planning, maintenance, and improving visibility
of distribution networks [23]–[26]. It is not cost-efficient and
practical for DNOs to install smart meters at all buses in the
distribution network. As such, in this paper, reduced sensitivity
matrices are considered where smart meter measurements
obtained solely from prosumers (installed on the edges of
the network) are processed. From [22], the voltage sensitivity
matrices [Sp] and [Sq] can be expressed by

[∆V ] = [Sp][P ] + [Sq][Q] , (18)

where [∆V ], [P ] and [Q] are the Nh × T matrices of volt-
age magnitude changes, active and reactive power exports,
respectively. The total number of prosumers and sampled
measurements are denoted by Nh and T , respectively. For 4-
wire 3-phase phase systems, (18) is extended to

[∆Va] = [Sp
aa][Pa] + [Sq

aa][Qa] + [Sp
ab][Pb]

[Sq
ab][Qb] + [Sp

ac][Pc] + [Sq
ac][Qc] ,

(19)

with the formulations for [∆Vb] and [∆Vc] defined analo-
gously. The matrices [Pϕ] and [Qϕ], where ϕ ∈ {a, b, c}, are
the active and reactive power exports of prosumers on phase
ϕ. Following (17) and the ∓120o degrees phase shift between
the measurements on different phases, for any two prosumers
h and k, the sensitivity coefficients can be expressed by

Sp
hk =

1

Ṽ

∑
k∈H

αp
ϕhϕk

Rhk + βp
ϕhϕk

Xhk , ϕ ∈ {a, b, c} ,

(20)

Sq
hk =

1

Ṽ

∑
k∈H

αq
ϕhϕk

Rhk + βq
ϕhϕk

Xhk , ϕ ∈ {a, b, c} ,

(21)
where Ṽ is 1 pu and the coefficients α and β depend on
the phase connections of prosumers h and k. For instance, if

both prosumers are on similar phases, αp and βq are equal to
one while βp and αq are zero. The expressions (20) and (21)
also account for the impedance values, notably the neutral
impedance, arising from the coupling of phase conductors of
different feeders.

Following (20) and (21), (19) can be re-written with [R] and
[X] being the decision variables. After deriving the coefficients
α and β from [8], the [R] and [X] equations for all three phases
A, B and C are

[∆Va] = [Raa][Pa] + [Xaa][Qa]+

[Rab](−
1

2
[Pb]−

√
3

2
[Qb]) + [Xab](

√
3

2
[Pb]−

1

2
[Qb])+

[Rac](−
1

2
[Pc] +

√
3

2
[Qc]) + [Xac](−

√
3

2
[Pc]−

1

2
[Qc]) ,

(22)

[∆Vb] = [Rbb][Pb] + [Xbb][Qb]+

[Rba](−
1

2
[Pa] +

√
3

2
[Qa]) + [Xba](−

√
3

2
[Pa]−

1

2
[Qa])

+ [Rbc](−
1

2
[Pc]−

√
3

2
[Qc]) + [Xbc](

√
3

2
[Pc]−

1

2
[Qc]) ,

(23)

[∆Vc] = [Rcc][Pc] + [Xcc][Qc]+

[Rca](−
1

2
[Pa]−

√
3

2
[Qa]) + [Xca](

√
3

2
[Pa]−

1

2
[Qa])+

[Rcb](−
1

2
[Pb] +

√
3

2
[Qb]) + [Xcb](−

√
3

2
[Pb]−

1

2
[Qb]) .

(24)
The problem of phase identification using smart meter

data has been extensively researched and is not the main
focus of this paper. For this paper, the approach presented
in [27] is implemented. The variations in voltage magnitudes
of prosumers on similar phases is highly correlated. This
feature is captured by a similarity matrix that measures the
pairwise difference between voltage magnitudes of prosumers.
The high dimensional data is reduced to a lower dimension
using Singular Vector Decomposition (SVD) onto which K-
means clustering is applied, returning three clusters for the 3
phases. The smart meter measurements are grouped according
to the returned clusters.

The active and reactive power exports together with their
respective coefficients can be pre-calculated from the smart
meter measurements and the knowledge of the phases allo-
cated to prosumers. Let [Pϕ] and [Qϕ] represent the pre-
calculated and vertically concatenated measurements to the
horizontally concatenated [Rϕ] and [Xϕ] matrices, respectively
(e.g., [Ra] =

[
Raa Rab Rac

]
). This simplifies (22), (23)

and (24) to

[∆Va] = [Ra][Pa] + [Xa][Qa] , (25)

[∆Vb] = [Rb][Pb] + [Xb][Qb] , (26)

[∆Vc] = [Rc][Pc] + [Xa][Qc] , (27)

respectively.
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The overall objective of estimating [Rϕ] and [Xϕ] can be
solved as a single linear problem. First, the measurement
matrices (25),(26),(27) are diagonally concatenated into block
diagonal matrices. With

⊕
denoting block diagonal concate-

nation, if the voltages are given as

y = [∆Va]
⊕

[∆Vb]
⊕

[∆Vc] , (28)

and pre-calculated active and reactive power exports as

A =

[
Pa

Qa

]⊕[
Pb

Qb

]⊕[
Pc

Qc

]
, (29)

the [R] and [X] matrices can be solved for, in polynomial
time, by minimizing the following least squares error function

min
R,X

∥∥y − [
R X

]
A
∥∥
2
,

subject to. (31) − (32) .
(30)

The [R] and [X] matrices are the reduced set of three phase
sensitivity matrices and are each of size Nh by Nh. The
constraints (31)-(32) imposed on the [R] and [X] matrices are
described in the following section.

C. R and X Constraints

The constraints, imposed onto (30), are derived from the
physical properties of the network [25]. As written in (17), the
estimated Rhk and Xhk correspond to the impedance found in
the common path linking the two prosumers, h and k, to the
distribution transformer. With the distribution network being
radial, for prosumers found on similar phase ϕ, the common
path between the prosumers h and k to the transformer is
similar to the common path between the prosumers k and h
to the transformer. This leads to the symmetric constraint

Rhk = Rkh , Xhk = Xkh , (31)

which is also convex. The symmetric constraint cannot be
imposed for prosumers located on different phases due to the
asymmetry in the geometry of the three phase wires.

Finally, the impedance found in the common path between
any two prosumers h and k (off-diagonal elements), must be
less than or equal to the self impedance of the prosumers h
and k (main diagonal elements). This translates to

Rhk ≤ Rhh , Xhk ≤ Xhh. (32)

IV. PERFORMANCE EVALUATION

In this section, the performance of the proposed framework
has been evaluated on six simulation studies: (i) effectiveness
in a PV-rich residential real-scale LVDN; (ii) Sensitivity anal-
ysis on the impact of errors in smart meter measurements; (iii)
Impact of the fairness index on the active power curtailment
of the prosumers; (iv) Impact of utilizing DERs’ reactive
power control capability on their active power curtailment; (v)
analysis of the computation time for the [R] and [X] estimation
process.

To this end, the 3-phase 4-wire network shown in Fig. 2 has
been used. This network is adopted from ‘ENWL’ networks
[28] (Network 5, Feeder 1) and scaled up to include an explicit
neutral with the impedance data developed by Urquhart and

Thomson [29] and investigated as part of a larger study in [30].
It consists of 49 prosumers among which 17 are connected to
phase A, 17 to phase B and 15 to phase C. These prosumers are
equipped with PVSs with the capacities of 4, 6, and 8 kW, as
shown in Fig. 2. Moreover, the adopted solar irradiance profile
is for a clear-sky day in Melbourne, Australia, to consider the
worst-case scenario in terms of voltage management. The rest
of specifications of this network such as prosumers demand
data and network parameters are provided in [28] and are
not reported here. For the simulation studies, the control
framework has been implemented in Python, and Mosek has
been utilized to solve the optimization problems. The time
series (Quasi-Dynamic) 3-phase 4-wire power flow analysis is
performed using OpenDSS. In these studies, λ = 1e−6 and the
limit for the OV is considered as 1.1 pu, based on AS4777.1
[31]. Furthermore, FI = 0.25 for all studies except Section
IV-C.

A. PV-Rich Residential LVDN

1) Voltage management using accurate network model: Let
us first consider the situation in which PVSs are not controlled.
Fig. 3 shows that the maximum voltage magnitude across all
three phases exceeds the permissible limit of 1.1 pu. Although,
since phase C has less installed PVS capacity than the other
two phases, prosumers on this phase experience moderate OV.
Then, the DERs are controlled using the proposed control
approach presented in Section II, where the input [R] and
[X] matrices are derived from the accurate network data. The
result is shown in Fig. 4 (blue box plots), in which OV is
fully resolved, and in all three phases the maximum voltage
is limited to 1.1 pu.

2) Voltage management using estimated network model:
In order to estimate the [R] and [X] matrices of the network,
the sampled measurements of V , P , and Q by smart meters
are utilized. In these measurements, the recording interval is
5 minutes, and approximately a month’s worth of sampled
data is used. Using this number of measurements leads to an
over-determined system of linear equations (T > 2Nh) that
can be approximately solved using the proposed minimization
approach in Section III. Before solving (30), first, the phase
classification of prosumers is identified using the phase iden-
tification algorithm in [27].

The optimization problem in 30 is formulated and solved
using MOSEK. The resulting [R] and [X] matrices are then
given as inputs to the DERs control algorithm. The impact of
using the estimated [R] and [X] matrices can be seen in Fig.
4 (red box plots), where the voltage management performance
does not change significantly. The maximum voltage in each
phase is capped to 1.1 pu, similar to using the actual network
model. In Fig. 5 and 6 the element-wise error of [R] and [X]
are shown. In both of them, when prosumers are connected to
the same phase, the error between the actual values and the
estimated ones is much less compared to cases where their
phase connection is different. The maximum percentage errors
for prosumers on the same phase are 0.54% and 1.08% for
[R] and [X], respectively, in contrast to 0.93% and 2.97% for
prosumers on different phases. This is due to the fact that in the
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Fig. 2. Studied low-voltage test feeder; red, yellow, and blue prosumers are connected to phase A, B, and C, respectively.
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Fig. 3. Minimum and maximum voltage of the prosumers in each phase
without any voltage management approach.
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estimated network model.

estimation process, the angle difference between the phases is
considered exactly as 120 degrees. Nonetheless, as the impact
of prosumers connected to other phases is small compared to

Fig. 5. Relative error in estimated [R]. Prosumers have been ordered
according to their allocated phases.

Fig. 6. Relative error in estimated [X].

those connected to the same phase, this error does not result
in a noticeable inaccuracy.

B. Impact of the Error in Measurements

The previous section evaluated the performance of the pro-
posed method when the smart meter data had no measurement
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errors. In this section, to assess the impact of measurement er-
rors on the performance of the proposed framework, two error
values, 0.5% and 1%, are added to the measurements of volt-
ages, active and reactive powers [32] across the whole sampled
period. The errors are sampled from independent truncated
gaussian distributions with zero mean and standard deviation
as one-third of the aforementioned maximum error values, in
which values above the maximum error are truncated. In Fig.
7, the mismatch in the estimated [R] and [X] matrices for the
errors of 0.5% and 1% are shown. Each box plot in this figure
represents the variation in the maximum recorded error, for the
particular sub-matrix, across all instances. The maximum error
values for the main diagonals and the off-diagonal elements
of [R] and [X] are separated into distinct boxplots since the
impact of the main diagonal elements is more pronounced
on the voltages. Similar to the previous study, the error in
off-diagonal elements is more significant. This error has an
impact on the voltage control method, as shown in Fig. 8.
The error is higher during the high generation period when
voltage management is required. However, the performance is
not significantly impacted, and it is in an acceptable range.
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Fig. 9. The normalized prosumers export power with FI = 0, FI = 0.25,
and FI = 1(no limit).

C. Impact of the Fairness Index

The proposed framework allows DNOs to manage voltage
with an adjustable fairness index using the control variable FI
in (13). If FI = 0, DERs curtailment is equal and operation
is completely fair according to this metric, while if FI = 1
(unlimited), the fairness is not a constraint. Generally, higher
fairness, i.e., smaller FI, results in lower total generation in the
grid [16], [17]. To study the impact of FI on the performance
of the proposed method, three values of 0, 0.25, and 1
are considered. Fig. 9 shows the normalized total generated
power by prosumers in these cases. Higher values of FI
results in more uneven generation by prosumers. In particular,
prosumers far from the distribution transformer experience
higher curtailment. When there is no limit on FI, the total
generation in the network increases to 1.749 MWh, while this
is 1.672 and 1.613 MWh for FI = 0.25 and FI = 0.

D. Impact of the DERs Reactive Power Control Capability

The proposed voltage management approach utilizes both
reactive and active power control. This leads to a reduction
in the amount of active power that prosumers have to curtail
and increases the energy available in the grid relative to the
case where only the DERs’ active power is controlled. To
study this, two cases are considered: (i) DERs are equipped
with reactive power control capability and (ii) DERs do not
have this capability. In Fig. 10, the export active and reactive
power of prosumer 48B is shown as an example. In both
cases, this prosumer needs to curtail; however, reactive power
compensation reduces the curtailed amount. This is shown
by the green graph in which this prosumer exports 5.82%
more, from 34.88 to 36.91 kWh in total for the day. From the
network’s point of view, prosumers collectively inject 5.66%
more, 1.582 to 1.672 MWh using the reactive power support.
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E. Computational Complexity

While the DERs’ voltage management is performed in real-
time, the estimation of the [R] and [X] matrices is performed
offline. The least squares formulation has computational com-
plexity of O(N3

h +N2
hT ) [33]. The number of prosumers has

a significant contribution to the overall computation time. To
study the impact of Nh, the network impedance estimation
process (Section III) is applied on networks with various num-
ber of prosumers. The number of prosumers is varied from 10
to 49 in increments of 5, and the corresponding measurement
matrices are given as input to the algorithm. A 6-core 3.2
GHz Intel Core i7 CPU with 32 GB memory is used for
conducting the simulations. The processing time is recorded,
and the experiment is repeated over multiple instances. The
time cost of the algorithm is shown in Fig. 11. While there
is an increase in the computation time going from Nh = 10
to Nh = 49 prosumers, it does not grow quadratically. The
estimation of [R] and [X] matrices can be accomplished in
near real-time with the worst time cost being 1 minute. If a
cubic polynomial of the form a3x

3+a2x
2+a1x

1+a0 is fitted
to the mean computation times, the coefficient a3 is 400 times
smaller than a2 while the latter is 6 times smaller than a1. This
shows that exponents corresponding to polynomial degrees
above 3 are not significant, and the growth in computation
time will not drastically worsen as Nh increases.

V. CONCLUSION

This paper proposed a novel over-voltage mitigation algo-
rithm. To this end, two new algorithms were devised. The first

estimates the distribution network impedance model in terms
of the resistance and reactance matrices. The impedance model
also includes the impedance due to the mutual coupling of
phase conductors of different feeders. This is shown to produce
more accurate estimates of resistance and reactance values.
The second algorithm incorporates the estimated network
impedance model into a quadratically constrained quadratic
problem that solves for the optimum operating points of DERs,
whilst accounting for fairness. The proposed OV mitigation
algorithm has been shown to efficiently manage DER in a
real LVDN, with the simulation case studies exhibiting the
superior performance of the proposed algorithms.
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