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Fast simulation of wavelength continuous WDM
networks

Lachlan L. H. Andrew

Abstract— This paper considers the estimation of blocking
probabilities of circuit-switched WDM networks with no wave-
length converters and with fixed routing. It presents an impor-
tance sampling simulation technique for determining whether or
not such a network meets a specific grade of service requirement,
in the sense of all routes having blocking below a given threshold.
It is especially efficient for networks with high grades of service,
which take a long time to simulate using conventional methods.

Index Terms— Quasi-regeneration, M/M/k/k, variance reduc-
tion.

I. I NTRODUCTION

I N order to dimension networks efficiently, it is important
to be able to predict the performance of a given topology.

This paper will focus on the blocking probability as the
performance measure. Much research has been carried out into
evaluating this in the case of product-form networks [1]–[4], in
which state probabilities are known in closed form. However,
in many cases, there are no closed form expressions for
this probability. an important example is wavelength division
multiplex (WDM) networks without wavelength converters,
i.e., those in which the same wavelength must be used on every
link in a path. In this case, blocking occurs when a connection
is requested between two nodes, but there is no wavelength
free on every link of the chosen path between those nodes.

When the blocking probability is not known explicitly, sim-
ulation is the standard method of evaluation. However, there
are two common cases in which direct simulation becomes
very inefficient.

The first case is when the designer is only interested in the
performance of a small subset of the routes, such as the routes
with the highest blocking probability. Because of interactions
within the network, the whole network must be simulated,
despite the fact that most of the performance information is
unwanted.

The second case is when the blocking probability is very
low, leading to what is known as the rare event estimation
problem [5]. This case occurs when it is necessary to de-
termine the blocking rates for a wide range of loads, such
as when evaluating a new routing or wavelength assignment
strategy. It also occurs in applications such as inter-processor
connections for distributed computation [6], [7], where very
low blocking is desired, since delays due to blocking can waste
significant amounts of expensive CPU time. Such interconnec-
tions frequently use expensive non-blocking architectures [8],
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but could be made more cheaply from quasi-nonblocking
networks, with blocking probabilities of sayB < 10−5.

Estimating the probability of rare blocking events can be
made significantly more efficient by the use of importance
sampling (IS) [3], [9]–[15]. This has been applied to many
areas of communications [12], but there has been little work
on applying it to calculating blocking probabilities [13]–[15].
The principles of IS are outlined in Section II. This paper
describes an enhancement to the IS scheme of [14], which
improves the performance in both of the application scenarios
described above. The scheme of [14] was originally proposed
for estimating blocking probability in mobile cellular networks
with dynamic channel allocation; these are equivalent to circuit
switched wavelength division multiplexing (WDM) networks
with fixed routing and wavelength continuity constraints. This
algorithm, which is outlined in Section III, was shown to have
asymptotically optimal behaviour as blocking probabilities go
to zero. However, for moderate blocking probabilities, it did
not show any benefit over simpler schemes when finding the
average blocking probability over the entire network.

The key contribution of this paper is to show, in Sections IV
and V, that the algorithm of [14] actually performs very well,
even for moderate blocking probabilities, when not all routes
need to be simulated with equal precision. This is typically
the case in practice, where only the routes with the highest
blocking probability or the strictest quality of service (QoS)
requirements need to be evaluated. The blocking probability
of individual routes is of greater interest than the average
network blocking probability; a network of 50 nodes could
in principle have an overall blocking as low as 0.1%, and yet
have 100% blocking on one route. Thus, this algorithm is a
practical tool for investigating the impact of link capacities,
wavelength allocation strategies and routing configurations in
WDM networks with static routing.

In the networks considered in this paper, nodes are con-
nected by optical links capable of carryingΛ wavelengths;
for clarity of exposition,Λ will be assumed equal for all
links, although the algorithm does not require this. When a
call is established between two nodes, it will select and use
a wavelength which is free on all links on the (static) route
between the nodes. If all wavelengths are used on at least one
link in the route, the call is blocked. It will be further assumed
that calls arrive to routes (that is, to origin/destination pairs)
according to a Poisson process, and that holding times are
exponentially distributed.

After demonstrating the effectiveness of the proposed simu-
lation algorithm on these networks, the important issue of de-
termining when to terminate the simulation will be addressed
in Section VI.
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II. I MPORTANCESAMPLING

Importance sampling [11] is a technique to improve the ac-
curacy of estimates of stochastic events. Rather than simulating
the real stochastic system, a system is simulated in which
the “important” events occur more frequently. This must be
done in a controlled way, so that the bias introduced can be
exactly calculated, and then removed. Consider the simple one
dimensional case of estimating the probabilityP(X < θ) for
a random variableX with probability density function (pdf)
f(·). This can be done by repeatedly generating samples of
X and counting the number belowθ, that is, by calculating
E[1{X<θ}], where1{A} is 1 if A is true, and 0 otherwise.
However, if P(X < θ) is very small, many samples will be
required. It is more efficient to generate samples with a pdf
f∗(·) with P∗(X < θ) > P(X < θ). (HereP∗ andE∗ denote
probability and expectation with respect to the distribution
f∗.) How canP(X < θ) be estimated from these distorted
simulations? If, instead of incrementing a count by 1 each
time x < θ, the count is incremented byf(x)/f∗(x), it is
estimating∫ θ

−∞

f(x)
f∗(x)

f∗(x) dx =
∫ θ

−∞
f(x) dx = P(X < θ).

The function L(x) = f(x)/f∗(x) is called the Radon-
Nikodym derivative, or likelihood ratio. Importance sampling
is unbiased, as long as the likelihood function can be evaluated
exactly. By choosingL(x) appropriately, the variance of an
estimate ofE[X] can be reduced significantly. Although IS
is often called “fast simulation”, it is important to note that
it works by reducing the variance of a stochastic estimate,
rather than allowing that estimate to be evaluated in less time.
Reducing the variance reduces the number of samples which
must be averaged to obtain a reliable estimate, which provides
the speed improvement.

III. A LGORITHM

The fast simulation algorithm of [14] will now be briefly
described. For a justification of the algorithm, and its theo-
retical properties, see [14]. The algorithm focuses on routes
and collections of routes, rather than on individual links. The
state information maintained about the network is the set of
wavelengths currently used on each route, and the topology is
represented as sets of routes which share links.

Let n(t) be a vector of the number of connections on each
route at timet, andn be the total number of connections. Let
the set of routes which use linki be called theith clique,ci,
and let thejth cluster,Cj , be the union of all cliques containing
routej, i.e., those routes intersecting routej. Arrivals to route
j are assumed Poisson with rateλj , and holding times are
assumed independent with a negative-exponential distribution
of mean1/µ.

The simulation is based on a “backbone” Markov chain
simulation, known in the simulation literature as the standard
clock technique [16]. When the total occupancy of the current
state isn, the time until the next event is an exponential
random variable with parameter

Λn =
∑

j

λj + nµ.
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Fig. 1. “Backbone and ribs” simulation framework.

The event is declared an arrival to routej with probability
λj/Λn, or a call departure from routej with probability
njµ/Λn, wherenj is the number of calls at routej, so that
n =

∑
j nj . If the event is a departure, then a randomly

chosen wavelength on routej is released. If it is an arrival then
blocking may occur. If a wavelength can be found which is
free on every link of routej, then the call is accepted, and one
such wavelength is marked as busy. The choice of wavelength
reflects wavelength allocation strategy of the actual network.
If no such wavelength exists, the call is blocked.

For the description of the IS scheme, leti be a route whose
blocking probability is to be determined, andmi denote the
number of current connections in theith cluster. Letλ =∑

j∈Ci
λj be the sum of the arrival rates of all routes in cluster

Ci. Finally, let θi be an occupancy threshold that specifies
the number of connections in clusteri which should trigger
importance sampling. The “backbone” simulation described
above is paused after every arrival which causesmi to increase
to θi. At these instants, an importance-sampled “rib” is started
by creating a copy of the current network state, as illustrated
in Figure 1. (Note that a single arrival in the backbone can
trigger ribs for multiple routes.) The simulation of the rib is
split into two phases: an IS phase, and a recovery phase.

During the IS phase, arrivals and departures to routes not
in clusterCi occur as normal. However, the probability of an
arrival to routej ∈ Ci is increased by a factor ofλ∗(mi)/λ,
and the probability of a departure from routej ∈ Ci is scaled
by a factor ofµ∗(mi)/µ, whereλ∗(·) andµ∗(·) satisfy

µ∗(m) =
λµ

λ∗(m− 1)
(1a)

λ∗(m) = λ + m(µ− µ∗(m)), (1b)

starting fromµ∗(θi) = 0. This increases the probability of
the cluster occupancy increasing, increasing the probability of
blocking.

To overcome the bias introduced by the importance sam-
pling, the Radon-Nikodym derivative,L, must be evaluated.
At the start of the rib,L is initialised to 1. For every arrival,
it is multiplied by λ/λ∗(mi), and for every departure it is
multipled byµ/µ∗(mi).

Once the system enters a “blocking” state for routei (one
in which an extra arrival to routei would be blocked), the IS
phase is terminated and the recovery phase begins. During the
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recovery phase, the true arrival and departure rates,λj/Λn and
njµ/Λn, are used for all routes in the network. The recovery
phase ends once the cluster occupancy,mi, drops belowθi. At
the end of the recovery phase, the simulation of the backbone
continues where it left off at the start of the rib.

Throughout the simulation of the rib, the total amount of
time, Xi, spent in blocking states for routei is recorded. By
construction, the mean valueE∗[LXi] is then equal toE[Xi],
the expected amount of time that would have been spent in
blocking states had no importance sampling been applied. That
is to say thatE[Xi] can be estimated by

1
S

S∑
j=1

L(j)Xij , (2)

whereXij denotes the time spent in blocking states for route
i while simulating thejth rib for route i, L(j) denotes the
corresponding Radon-Nikodym derivative, andS is the total
number of ribs for routei.

The times (along the backbone) between the starts of ribs
for route i are quasi-regeneration cycles[17], [10], or “A-
cycles”. Like the more familiar true regeneration cycles, the
behaviour of the process within quasi-regeneration cycles is
identically distributed. In particular, ifTi is the duration of
a quasi-regeneration cycle for routei, then the proportion of
time spent in blocking states is equal to [18]

Bi =
E[Xi]
E[Ti]

. (3)

Since Poisson arrivals see time averages,Bi is the blocking
probability for routei.

The time required to simulate a rib can be reduced by
artificially reducing both the arrival and departure rates of
routes not in the cluster of interest. This induces a slight
bias [19], but for simulations of short duration, this may be
more than offset by the reduction of variance resulting from
the increased number of iterations that are made possible.

As an aside, note that the final value ofL for the rib is

L =
Mi∏

k=θi

(
λ

λ + k(µ− µ∗(k))

)1+b(k)

, (4)

whereMi is the occupancy of the cluster at the end of the IS
phase,b(k) ≥ 0 is the number of calls blocked in cells within
cluster Ci when its occupancy wask. Most of the variance
of L, and hence ofXi, comes from the variation ofMi, the
cluster occupancy when blocking first occurs. In particular,
by accelerating all cells in the cluster, rather than only those
in the clique which eventually causes blocking, the algorithm
generally causesMi to be higher than the true average cluster
occupancy at blocking, leading to over-acceleration.

A single backbone simulation can be shared by all routes,
but separate ribs are required by each route. Combined with
the fact that ribs often contain many more events than the
corresponding cycle in the backbone, this can lead to excessive
simulation time if the blocking probability of every route in
a large network is to be determined by importance sampling.
There are two common cases in which importance sampling

need only be applied to a subset of the routes. The first, which
is discussed in detail in the following section, is when the goal
is to identify the routes with the highest blocking probabilty
and find the blocking probability of those routes. The second
case is when some routes require a particularly high grade
of service, while others have more lenient requirements. For
example, this may occur if some routes are used to carry
alarm signals while others are not. In this case, IS can be
applied to the routes with very low blocking probabilities,
while the higher blocking probabilities of the other routes can
be obtained from the backbone using traditional simulation
techniques. Such techniques include simply counting the pro-
portion of blocked arrivals, or recording the proportion of time
spent in blocking states.

IV. ROUTES WITH HIGH BLOCKING

A network designer is usually primarily interested in those
routes which experience the highest blocking, since those are
the ones which may need upgrading, or may infringe grade-of-
service contracts. However, trying to simulate only the routes
with high blocking leads to the infinite regress of needing
know the result of the simulation to determine its input.

Routes with high blocking can be identified during the
warmup phase, necessary for the backbone to reach equilib-
rium. The key is that, even if blocking states are not reached,
routes with high blocking probability will on average have
fewer wavelengths available when they establish a connection.
Thus the routes with the highest blocking will also have large
values of

B̃i =
∑

k

2w(i,k),

where w(i, k) is the number of wavelengths unavailable on
route i the kth time it attempts to establish a call, and the
summation is over all call attempts on routei.

Because of the imperfect correlation betweenB̃i and block-
ing, it is prudent to estimate the blocking for several routes
in addition to the one with the largest̃Bi. In this study, ribs
were simulated for the four routes with the largestB̃is after
the warmup. In addition,̃Bi was continually estimated along
the simulation backbone, and checked intermittently. Routes
which were in the top four at any inspection point were also
simulated for the full quota ofA-cycles.

V. PERFORMANCE EVALUATION

A. Performance criterion

Fast simulation ultimately aims to minimise the simulation
time required to evaluate a quantity with sufficient accuracy.
To achieve this, both the time taken to generate an individual
estimate and the error of that estimate must be considered.
In particular, the statistical variance can be reducedk-fold
by averagingk estimates from independent simulations. This
tradeoff is quantified by theefficiencyof an unbiased estimator,
X̂, defined as

E =
1

Var[X̂]CPU[X̂]
,
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Fig. 2. ARPA2 network topology.

where CPU[X̂] is the time taken to generate the estimateX̂.
When the percentage error is of more interest than the absolute
error, the appropriate measure is the relative efficiency:

Er =
X̂2

Var[X̂]CPU[X̂]
.

This study will use an equivalent but more intuative measure:
the effective time,Tr, defined as the time that it takes to run
enough iterations to achieve 10% relative error (Var[X̂] =
(0.1X̂)2). This is related to efficiency by

Tr =
100
Er

.

In order to evaluate the importance sampling algorithm, it
will be compared with a simple benchmark algorithm which
does not useA-cycles, and instead simply simulates the
network, and records the time spent in blocking states.

The efficiency of the benchmark relies on being able to
determine quickly whether or not the network is in a blocking
state for a given route, since this must be done for each route
in the network at each call arrival or departure (not just the
route of the call in question). The simulator keeps track of
which wavelengths are known to be free on a given route,
and only when none are known to be free does it perform the
costly task of finding which wavelengths are currently free on
each link in the route. Each time a connection is set up, it is
marked as “not known to be free” on all routes intersecting
that connection, i.e., for the cluster. When a departure occurs,
the wavelength cannot simply be marked as “free” for the
whole cluster, since it may be blocked by other intersecting
routes, and so departures are ignored. This heuristic is very
efficient for first-fit wavelength assignment, because the last-
choice wavelength is usually known to be free for all routes.

B. Numerical results

The algorithm described above was tested on the standard
ARPA2 topology, shown in Figure 2. This is a sparse irregular
network with 21 nodes and 26 links. The load on each origin/
destination pair was equal, and the capacity of each link was
equal. Shortest path routing was used, which took no account
of the load placed on each link. This led to very unequal
blocking probabilities on different links.

The method of batch means [20] was used to determine the
variance of the blocking estimates, with 1000 batches of 1000
ribs per route. As in [14], ribs were only simulated for every
10th A-cycle on the backbone, to reduce correlation in the
results.
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Fig. 3. Effective time vs blocking probability for ARPA2 topology, with 8
to 32 wavelengths per link.

The effective time,Tr of both the importance sampling
algorithm and the benchmark is shown in Figure 3, forΛ = 8,
16, 24 and 32 wavelengths per link, and a range of loads. The
speed-up factor for a given blocking probability is measured by
the vertical distance between the corresponding curves. These
results confirm the finding of [14] that the effective time of the
proposed approach increases much less rapidly as the blocking
probability decreases than that of the benchmark, due to the
asymptotic optimality of the underlying importance sampling.

As expected, the effective time of the benchmark algorithm
depends only on the blocking probability, and not the number
of wavelengths. However, the effective time of the proposed
method increases as the number of wavelengths on each link
increases. This is because of the “over-acceleration” effect
described in Section III.

Further tests were carried out on random topologies of
varying size and sparsity, generated using the Georgia Tech
Internet Topology Modeling software [21]. Figure 4 shows the
effective times for networks of 20, 30, 40 and 50 nodes, each
with an average degree of three links per node, withΛ = 8
wavelengths. As the size of the networks increases, both the
proposed algorithm and the benchmark become slower. For
the increase by a factor of 2.5 in the number of nodes, the
number of routes increases by a factor of 6.25. Moreover,
the expected length of the routes also increases. Thus the
observed increase by a factor of around101 is to be expected.
Importantly, both algorithms scale by a similar factor, and the
proposed algorithm retains its advantage.

Figure 5 shows the effective times for 30 node networks
with mean degrees of 4.4, 5.5, 6.8, 7.6 and 8.1 links per
node. The degree of connectivity does not appear to have
a significant impact on the performance. In each case, the
proposed importance sampling algorithm is substantially faster
than the benchmark algorithm.

VI. STOPPING CRITERION

A simulation should be run long enough that the statistical
variance of the result is sufficiently small. In general, it is
difficult to know the true variance of the simulation result. In
the same way that the sample variance of Bernoulli trials is
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0 when no “successes” have occurred, so the sample variance
of IS can be wildly different from the true variance when too
few samples are taken. However, this is much harder to detect,
because the sample variance is not exactly zero.

A suitable heuristic criterion to determine when IS results
are sufficiently accurate is:

1) The sample standard deviation is sufficiently low
and either

2) The largest theoretically possible Radon-Nikodym
derivative,L, has been observedor

3) The impact on the estimated blocking caused by the
largest observed value(s) ofL is smaller than that caused
by smaller values.

Note that using the sample variance as the stopping criterion
introduces a slight negative bias in the estimated width of the
confidence interval (although not of the estimated blocking
probability). However, this effect is negligible if sufficient
samples are taken.

The remainder of this section will present a heuristic jus-
tification of this criterion. To illustrate the problem, consider
the simulation of a 9-node ring withΛ = 25 wavelengths
per link andλ = 0.7 Erlangs per route. Simulations were
performed to estimate the blocking probability of the nine
four-hop paths. One set of simulations took 20 sample points

180 samples 9,000,000 samples
mean std. dev. mean std.dev

1.309e-07 2.873e-07 1.082e-06 4.904e-08
1.461e-07 2.293e-07 1.118e-06 5.350e-08
1.171e-08 4.367e-08 1.130e-06 5.833e-08
2.636e-06 1.055e-05 1.082e-06 5.001e-08
2.069e-07 7.574e-07 1.090e-06 5.123e-08
2.214e-06 4.594e-06 1.073e-06 4.397e-08

TABLE I

ESTIMATED MEAN AND ERROR IN BLOCKING ESTIMATES

for each path (180 samples in total), and the other took
1,000,000 (9,000,000 samples in total). Table I shows the
estimated blocking probabilities and the estimated error (stan-
dard deviation) for six different random seeds. Neglecting
correlations between the samples, the true standard deviation
of the estimators will differ by a factor of

√
50000 ≈ 200,

however the estimated standard deviation only drops by around
one order of magnitude. This indicates that the small sample
often produces an under estimate of the variance and cannot
be relied upon as a stopping criterion. Moreover, in three of
the six cases, the estimated2σ confidence interval for the 180
sample case does not include the true blocking probability.
This effect occurs primarily when the number of samples is
less than the ratio of the maximum value ofL to the true
blocking probability.

To aid the explanation for this, let the possible values of
L be divided into buckets whose widths form a geometric
sequence, with thejth bucket centred aroundLj . Let (LY )j

denote the sum of those terms in (2) for whichL(j) is in the
jth bucket, and letYj = (LY )j/Lj .

A short simulation only estimates the probabilities of events
which are most likely under the changed measure. This is seen
in Figure 6, which plotsYj againstLj for the two simulations
described above. Clearly the short simulation only estimates
the peak of the curve. (In this case, the different values of
Radon-Nikodym derivative,L, correspond primarily to the
occupancy of the cluster at the time acceleration stops, i.e.,
when the route of interest is first blocked. The “grass” at
the bottom of this graph corresponds toA-cycles in which
blocking occurs on one of the routes in the cluster but not
on the route of interest, yielding non-zerob(k) in (4), and a
smaller value ofL. However, this case contributes little to the
blocking.)

The results look very different when the “correction factor”
for importance sampling,L, is included. Figure 7 shows a
bucket plot of the individual terms,(LY )j , of the sum (2).
This is similar to the plots used in [4], and the blocking
estimate is the sum of the buckets. This clearly shows that,
although the mostcommoncases are well represented, those
which contribute most to blocking are not well represented.
In this case, the estimated blocking probability will be well
below the true value. More importantly, the sample variance
will also be much lower than the ensemble variance, resulting
in an inaccurate confidence interval.

In order to determine how long the simulation must be run,
consider the following heuristic argument. Simulation must be
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long enough to sample from all “important” events, those with
large values ofYj . Events which are not accelerated much will
probably not occur at all in short simulations. If such events
have a small impact, they can be ignored. Assume that under-
accelerated events (those with very largeLj) are generally of
little importance, and the importance of each under-accelerated
event decreases as the acceleration given to it decreases. If this
importance,Yj , decreases fast enough for the product(LY )j

also to decrease, then the rarest events can be ignored. This
corresponds to condition (2) of the proposed stopping criterion.

Under ideal IS, most samples will be accelerated by the
same amount, and there will be no samples with significantly
higher values ofL. An example of this is shown in Figure 8,
for Λ = 5 wavelengths andλ = 0.02 Erlangs per route. Here
(LY )j does not decrease for largeLj , even when very many
samples are taken. How can this be distinguished from the
case of insufficient samples described above? The key is that
the maximum possible value ofL is known: it occurs when
all events in the accelerated portion of theA-cycle reduce the
number of channels available to the route of interest (Mi =
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shown here.

Λ, b(s) = 0 in equation 4). In this case, the maximum is
L ≈ 0.00138062, corresponding to the peak of the graph. This
means that there can be no events which are still rare under the
changed measure but which haveL values larger than those
observed, which contribute to the ensemble variance but not to
the sample variance. The estimated standard deviation is thus
reliable. This corresponds to condition (3) of the proposed
stopping criterion.

VII. C ONCLUSION

Importance sampling can improve the speed of estimating
blocking probabilities in circuit switched networks with fixed
routing by several orders of magnitude, with the greatest ben-
efits at low blocking probabilities. If the blocking probability
of only a small subset of the routes needs to be found, then IS
requires less time (for a given accuracy) than direct simulation,
even for moderate to high blocking probabilities. The IS ap-
proach here is applicable to any wavelength assignment tech-
nique, and is well suited to evaluating different static routing
arrangements, or different wavelength assignment strategies.
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