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Abstract—This paper considers the estimation of blocking but could be made more cheaply from quasi-nonblocking
probabilities of circuit-switched WDM networks with no wave-  networks, with blocking probabilities of sal < 10~°.
length converters and with fixed routing. It presents an impor- Estimating the probability of rare blocking events can be

tance sampling simulation technique for determining whether or de sianif 1l ficient by th fi "
not such a network meets a specific grade of service requirement, maae signimcantly more €efiicient by the use of importance

in the sense of all routes having blocking below a given threshold. Sampling (IS) [3], [9]-{15]. This has been applied to many
It is especially efficient for networks with high grades of service, areas of communications [12], but there has been little work

which take a long time to simulate using conventional methods. on applying it to calculating blocking probabilities [13]-[15].

Index Terms— Quasi-regeneration, M/M/k/k, variance reduc- The principles of IS are outlined in Section Il. This paper
tion. describes an enhancement to the IS scheme of [14], which

improves the performance in both of the application scenarios
|. INTRODUCTION described above. The scheme of [14] was originally proposed
{or estimating blocking probability in mobile cellular networks

N order to dimension networks efficiently, it is importan ith d ic ch | allocation- th valent to circuit
to be able to predict the performance of a given topolog\é/\/.I it hyndamlc CI anrlﬁ g. ocation, It.esle are e\?\ygl\a/ll en to C'rlfu'
This paper will focus on the blocking probability as theWiiched waveleng vision muitip e>f|ng_( )n_e WOrKS

'115' fixed routing and wavelength continuity constraints. This

erformance measure. Much research has been carried outY}? . N . ) .
P .algorithm, which is outlined in Section Ill, was shown to have

evaluating this in the case of product-form networks [1]-[4], i ] i . . o
which state probabilities are known in closed form. Howeve?symptOt'C"’IIIy optimal behaviour as blocking probabilities go

in many cases, there are no closed form expressions ﬁ%rtzeLO.WHoxve\éerr,] f]fi’tr r?/o?eri?ntelb:OCkAn?npro\?v?]blgtlf?:aig d![f]
this probability. an important example is wavelength divisioff Ot SNOW any benetit over simpler schemes whe g the

; . average blocking probability over the entire network.
multiplex (WDM) networks without wavelength converters, The key contribution of this paper is to show, in Sections IV

i.e., th in which th I h :
€., those in which the same wavelength must be used on everd V, that the algorithm of [14] actually performs very well,

link in a path. In this case, blocking occurs when a connecti . S
b 9 fen for moderate blocking probabilities, when not all routes

is requested between two nodes, but there is no Wavelenﬁ d to be simulated with | orecision. This is tvoicall
free on every link of the chosen path between those nodes eed to be simuate equal precision. s 1S typically

: e I - the case in practice, where only the routes with the highest
When the blocking probability is not known explicitly, sim blocking probability or the strictest quality of service (QoS)

ulation is the standard method of evaluation. However, the . . -
are two common cases in which direct simulation becomg%quwements need to be evaluated. The blocking probability
of individual routes is of greater interest than the average

very inefficient. . 2
The first case is when the designer is only interested in tﬂgtw.ork' ?loﬁkmg pmbab";%l a kr?etworkl of 50 Ongg/es czuldt
performance of a small subset of the routes, such as the ro feRriNCip'e have an overall blocking as fow as ©.27, and ye

with the highest blocking probability. Because of interaction ave 100% blocking on one route. Thus, this algonithm is a

within the network. the whole network must be simulate&)raCtical tool for investigating the impact of link capacities,

despite the fact that most of the performance information %avelength aIIoca_uon str.ateg|e.s and routing configurations in
DM networks with static routing.

unwanted. . . .
In the networks considered in this paper, nodes are con-

The second case is when the blocking probability is ver ; ) ' )
low, leading to what is known as the rare event estimaticﬁ/?(:ted by optical links capable of carrying wavelengths;
K r clarity of exposition,A will be assumed equal for all

problem [5]. This case occurs when it is necessary to de.

termine the blocking rates for a wide range of loads, sué'lqks.’ aIthough the algorithm does not require this. When a
ﬁ{l is established between two nodes, it will select and use

as when evaluating a new routing or wavelength assignméi o . .
9 g 9 9 avelength which is free on all links on the (static) route

strategy. It also occurs in applications such as inter-proces ot h des. If all lenath d t least
connections for distributed computation [6], [7], where ver etween the nodes. 1T all wavelengtns are used on at feast one

low blocking is desired, since delays due to blocking can wa k in the route, the call is blocked. It will be further assumed

significant amounts of expensive CPU time. Such interconné at calls arrive to routes (that is, to origin/destination pairs)

tions frequently use expensive non-blocking architectures [ﬁcordmg. to a Pc_)lsson process, and that holding times are
ponentially distributed.
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1. IMPORTANCE SAMPLING

Importance sampling [11] is a technique to improve the ac-
curacy of estimates of stochastic events. Rather than simulating@
the real stochastic system, a system is simulated in which &
the “important” events occur more frequently. This must be
done in a controlled way, so that the bias introduced can be
exactly calculated, and then removed. Consider the simple one
dimensional case of estimating the probabiyX < 6) for
a random variableX with probability density function (pdf)
f(-). This can be done by repeatedly generating samples of
X and counting the number belogy that is, by calculating
E[1{x<e], Wherelyy, is 1 if A is true, and O otherwise. rig. 1. “Backbone and ribs’ simulation framework.

However, if P(X < ) is very small, many samples will be

required. It is more efficient to generate samples with a pdf

f*(-) with P*(X < ) > P(X < 6). (HereP* andE" denote The event is declared an arrival to routewith probability
probability and expectation with respect to the distributiomj /A, or a call departure from routg with probability
f*.) How canP(X < 0) be estimated from these distorted,;;,/A,,, wheren; is the number of calls at routg so that
simulations? If, instead of incrementing a count by 1 eagh — Zj n;. If the event is a departure, then a randomly
time z < ¢, the count is incremented by(z)/f*(x), it is chosen wavelength on roujds released. If it is an arrival then

rated

processing

A
Resme backbone
from same state

AN

estimating blocking may occur. If a wavelength can be found which is
O ) .. 0 free on every link of routg, then the call is accepted, and one
/ (@) [ (@) de = / f(z)dz =P(X <90). such wavelength is marked as busy. The choice of wavelength

. . ) reflects wavelength allocation strategy of the actual network.
The function L(z) = f(x)/f"(z) is called the Radon- ¢, gch wavelength exists, the call is blocked.

Nikodym derivative, or likelihood ratio. Importance sampling or the description of the IS scheme, 4dte a route whose

is unbiased, as long as the likelihood function can be evaluaﬁ cking probability is to be determined, amd; denote the
exactly. By choosingL(x) appropriately, the variance of AN umber of current connections in thieh ,cluster. Leth =

estimate ofE[X] can be reduced significantly. Although Isg:. ¢. A; be the sum of the arrival rates of all routes in cluster

H . H H LI H je i -
is often called “fast simulation”, it is important to note tha ~"Finally, let 6, be an occupancy threshold that specifies

e number of connections in clustewhich should trigger
importance sampling. The “backbone” simulation described
ve is paused after every arrival which causgso increase
Ssé)i. At these instants, an importance-sampled “rib” is started
by creating a copy of the current network state, as illustrated

1. ALGORITHM in Figure 1. (Note that a single arrival in the backbone can
The fast simulation algorithm of [14] will now be brieﬂytrig_g(_ar ribs for multiple routes.) The simulation of the rib is
described. For a justification of the algorithm, and its theGPlit Into two phases: an IS phase, and a recovery phase.
retical properties, see [14]. The algorithm focuses on routesPUrng the IS phase, arrivals and departures to routes not
and collections of routes, rather than on individual links. THE clusterC; occur as normal. However, the probability of an
state information maintained about the network is the set dfival to route;j € C; is increased by a factor of* (m;)/A,
wavelengths currently used on each route, and the topology?*Rd the probability of a departure from roytes C; is scaled

rather than allowing that estimate to be evaluated in less ti
Reducing the variance reduces the number of samples wh
must be averaged to obtain a reliable estimate, which provi
the speed improvement.

represented as sets of routes which share links. by a factor ofu*(m;)/p, whereA*(-) and () satisfy
Let n(t) be a vector of the number of connections on each . A
route at timet, andn be the total number of connections. Let pr(m) = m (1a)

the set of routes which use linkbe called theth clique,¢;, X . Tk
and let thejth cluster(C;, be the union of all cliques containing AT(m) = Adm{p =t (m)), (1b)

r.outej, i.e., those rqutes int_ersecting rog‘teArri_vaIs _to route starting fromp*(6;) = 0. This increases the probability of

Jj are assumed Poisson with rakg, and holding times are the cluster occupancy increasing, increasing the probability of
assumed independent with a negative-exponential distributigiycking.

of meanl/u. . § ~ To overcome the bias introduced by the importance sam-
_The simulation is based on a "backbone” Markov chaifjing, the Radon-Nikodym derivativel,, must be evaluated.
simulation, known in the simulation literature as the standayg the start of the rib,L is initialised to 1. For every arrival,
clock technique [16]. When the total occupancy of the curreptis multiplied by A/\*(m;), and for every departure it is
state isn, the time until the next event is an exponentighyitipled by /" (

m;).
random variable with parameter .

Once the system enters a “blocking” state for rou{@ne
A, = Z Aj + np. in which an extra arrival to routé would be blocked), the IS
J phase is terminated and the recovery phase begins. During the



recovery phase, the true arrival and departure ratgs),, and need only be applied to a subset of the routes. The first, which
n;u/A,, are used for all routes in the network. The recoverig discussed in detail in the following section, is when the goal
phase ends once the cluster occupancy,drops belowd;. At is to identify the routes with the highest blocking probabilty
the end of the recovery phase, the simulation of the backbamd find the blocking probability of those routes. The second
continues where it left off at the start of the rib. case is when some routes require a particularly high grade
Throughout the simulation of the rib, the total amount aéf service, while others have more lenient requirements. For
time, X;, spent in blocking states for routels recorded. By example, this may occur if some routes are used to carry
construction, the mean vall&'[LX;] is then equal t&E[X;], alarm signals while others are not. In this case, IS can be
the expected amount of time that would have been spentapplied to the routes with very low blocking probabilities,
blocking states had no importance sampling been applied. Thédtile the higher blocking probabilities of the other routes can

is to say thatE[X;] can be estimated by be obtained from the backbone using traditional simulation
s technigues. Such techniques include simply counting the pro-
5 Z L)Xy, @) portlon_ of bloc!<ed arrivals, or recording the proportion of time
= spent in blocking states.

where X;; denotes the time spent in blocking states for route
i while simulating thejth rib for routei, L(j) denotes the
corresponding Radon-Nikodym derivative, afids the total A network designer is usually primarily interested in those
number of ribs for route. routes which experience the highest blocking, since those are
The times (along the backbone) between the starts of riﬂ}@ ones which may need upgrading, or may infringe grade-of-
for route i are quasi-regeneration cyclefl7], [10], or “A-  service contracts. However, trying to simulate only the routes
cycles”. Like the more familiar true regeneration cycles, thgith high blocking leads to the infinite regress of needing
behaviour of the process within quasi-regeneration cyclesyigow the result of the simulation to determine its input.
identically distributed. In particular, iff; is the duration of  Routes with high blocking can be identified during the
a quasi-regeneration cycle for routethen the proportion of \yarmup phase, necessary for the backbone to reach equilib-

IV. ROUTES WITH HIGH BLOCKING

time spent in blocking states is equal to [18] rium. The key is that, even if blocking states are not reached,
E[X,] routes with high blocking probability will on average have
P = E[T)]° ) fewer wavelengths available when they establish a connection.

] ) ) ] ] _ Thus the routes with the highest blocking will also have large
Since Poisson arrivals see time averagésis the blocking ygjues of

probability for routes. B — Z2w(i,k)
The time required to simulate a rib can be reduced by ’ k ’

artificially reducing both the arrival and departure rates of

routes not in the cluster of interest. This induces a slighthere w(i, k) is the number of wavelengths unavailable on

bias [19], but for simulations of short duration, this may beoute i the kth time it attempts to establish a call, and the

more than offset by the reduction of variance resulting frogmmation is over all call attempts on route

the increased number of iterations that are made possible. Because of the imperfect correlation betwegnand block-

As an aside, note that the final value bffor the rib is ing, it is prudent to estimate the blocking for several routes
v in addition to the one with the larged&;. In this study, ribs
i 1+b(k) . . ~
I — H A 4) were simulated for the four routes with the largéss after
A+ E(u— px(k)) ’ the warmup. In additionp3; was continually estimated along

k?:el . . . .
the simulation backbone, and checked intermittently. Routes

where M; is the occupancy of the cluster at the end of the I@hich were in the top four at any inspection point were also
phasep(k) > 0 is the number of calls blocked in cells withingimylated for the full quota ofi-cycles.

clusterC; when its occupancy wak. Most of the variance
of L, and hence ofX;, comes from the variation o#/;, the
cluster occupancy when blocking first occurs. In particular,
by accelerating all cells in the cluster, rather than only thoge performance criterion
in the clique which eventually causes blocking, the algorithm

generally causes/; to be higher than the true average cIustetr Fast sw_nuijattlon ultllmetltely almst_tto ml_?rl]mls?f_ the ts,lmulanon
occupancy at blocking, leading to over-acceleration. Ime réquired to evaluate a guantity with suflicient accuracy.

To achieve this, both the time taken to generate an individual
A single backbone simulation can be shared by all routesstimate and the error of that estimate must be considered.

but separate ribs are required by each route. Combined withparticular, the statistical variance can be reduéefbld

the fact that ribs often contain many more events than thg averagingt estimates from independent simulations. This

corresponding cycle in the backbone, this can lead to excesdraaleoff is quantified by thefficiencyof an unbiased estimator,

simulation time if the blocking probability of every route inX, defined as

a large network is to be determined by importance sampling. £ = 1

There are two common cases in which importance sampling Var[X]cpuX]’

V. PERFORMANCE EVALUATION
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wherecpu[X] is the time taken to generate the estimate i ]
When the percentage error is of more interest than the absolute 0.1 : ' e

error, the appropriate measure is the relative efficiency: 1e-06 1e-05 0'0901 0.001 __O'Ol 0.1
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X2
P Sr—— Fig. 3. Effective time vs blocking probability for ARPA2 topology, with 8
Var[X]cPU[X] to 32 wavelengths per link.

This study will use an equivalent but more intuative measure:
the effective time7,., defined as the time that it takes to run
enough iterations to achieve 10% relative errgar(X] =
(0.1X)2). This is related to efficiency by

The effective time,Z,. of both the importance sampling

algorithm and the benchmark is shown in Figure 3,£of 8,

16, 24 and 32 wavelengths per link, and a range of loads. The

T 100 speed-up factor for a given blocking probability is measured by
g the vertical distance between the corresponding curves. These

results confirm the finding of [14] that the effective time of the

troposed approach increases much less rapidly as the blocking

robability decreases than that of the benchmark, due to the

In order to evaluate the importance sampling algorithm,
will be compared with a simple benchmark algorithm whic

do:as nkot u;eA—cygIe?h atr)d mstea::il sg’?pl)':. S'm?l?tes th symptotic optimality of the underlying importance sampling.
neTv;]/or 'ﬁ"?‘”_ recorf Sh eb |mehspeE ml' oc m% st es'bl As expected, the effective time of the benchmark algorithm
e efficiency of the benchmark relies on being able t(ﬁ’epends only on the blocking probability, and not the number
determine qglckly wheth(_ar or m.)t the network is in a blockmgf wavelengths. However, the effective time of the proposed
state for a given route, since this must be done for each oW ¢hod increases as the number of wavelengths on each link

in the network at each call arrival or departure (not just tr] creases. This is because of the “over-acceleration” effect
route of the call in question). The simulator keeps track ascribed in Section il

which wavelengths are known to be free on a given FOULe, - \rther tests were carried out on random topologies of

and only when_ none are known to be free does it perform tUSrying size and sparsity, generated using the Georgia Tech
costly task of finding which wavelengths are currently free Mternet Topology Modeling software [21]. Figure 4 shows the
each link in the route. Each time a connection is set up, it :iﬁfective times for networks of 20, 30, 40 and 50 nodes, each
marked as “not known to be free” on all routes intersectir\gith an average degree of three,link,s per node, wlith- 8

that connection, i.e., for the cluster. When a deeartu[e OCCL\RfaveIengths. As the size of the networks increases, both the
the wavelength.cann-ot simply be marked as ”?e for t. roposed algorithm and the benchmark become slower. For
whole cluster, since it may be blocked by other intersecti He increase by a factor of 2.5 in the number of nodes, the
routes, and so departures are ignored. This heuristic is Veldmber of routes increases by a factor of 6.25. More(,)ver
efficient for first-fit wavelength assignment, because the Iaﬁtfe expected length of the routes also increases. Thus th,e
choice wavelength is usually known to be free for all route$sy served increase by a factor of arourid is to be expected.

Importantly, both algorithms scale by a similar factor, and the
B. Numerical results proposed algorithm retains its advantage.

Figure 5 shows the effective times for 30 node networks

The algorithm described above was tested on the standw'iﬂﬁI mean degrees of 4.4, 55, 6.8, 7.6 and 8.1 links per
ARPAZ topology, shown in Figufe 2. This is a sparse irreg.ullz?’r de. The degree of conr{ectivity dé)es not appear to have
network with 21 nodes and 26 links. The load on each or'g'afsignificant impact on the performance. In each case, the

destination pair was equgl, and the capac!ty of each link w posed importance sampling algorithm is substantially faster
equal. Shortest path routing was used, which took no acco&wi :

. . n the benchmark algorithm.
of the load placed on each link. This led to very unequal
blocking probabilities on different links.

The method of batch means [20] was used to determine the
variance of the blocking estimates, with 1000 batches of 1000A simulation should be run long enough that the statistical
ribs per route. As in [14], ribs were only simulated for everyariance of the result is sufficiently small. In general, it is
10th A-cycle on the backbone, to reduce correlation in thdifficult to know the true variance of the simulation result. In
results. the same way that the sample variance of Bernoulli trials is

VI. STOPPING CRITERION



180 samples 9,000,000 samples
le+06 R LU L mean std. dev. mean std.dev
b proposed  + 1.309e-07  2.873e-0{ 1.0826-06  4.904e-04
IR benchmark x5 : : R :
100000 b 1.461e-07 2.293e-07 1.118e-06 5.350e-08
% 10000 nodes 1.171e-08  4.367e-08 1.130e-06 5.833e-04
Py E OO, e T 2.636e-06 1.055e-05 1.082e-06 5.001e-08
£ 1000 L 2.069e-07  7.574e-07 1.090e-06 5.123e-09
= i 2.214e-06  4.594e-06 1.073e-06 4.397e-08
2 100 E
8 i TABLE |
E 10 n ESTIMATED MEAN AND ERROR IN BLOCKING ESTIMATES
1t
0.1'. P BT PRI SRR PR B
1le-06 1e-05 0.0001 0.001 0.01 0.1 .
Blocki babilit for each path (180 samples in total), and the other took
0cKing probabiity 1,000,000 (9,000,000 samples in total). Table | shows the
Fig. 4. Effective time vs blocking probability for networks with — 8, €stimated blocking probabilities and the estimated error (stan-

three links per node, and between 20 and 50 nodes. dard deviation) for six different random seeds. Neglecting
correlations between the samples, the true standard deviation

of the estimators will differ by a factor of/50000 = 200,

le+06 F——1 17—
[ proposed  + ] however the estimated standard deviation only drops by around
100000 **&)& B%%?Q?ZTZ X3 one order of magnitude. This indicates that the small sample
“ 10000 F ", . often produces an under estimate of the variance and cannot
g 1000 E be relied upon as a stopping criterion. Moreover, in three of
s the six cases, the estimated confidence interval for the 180
-% 100 sample case does not include the true blocking probability.
2 10 T This effect occurs primarily when the number of samples is
w i less than the ratio of the maximum value bfto the true
1 blocking probability.
0T T Y IR Y R To aid the explanation for this, let the possible values of
le-06 1e-05 0.0001 0.001 0.01 0.1 L be divided into buckets whose widths form a geometric
Blocking probability sequence, with thgth bucket centred around;. Let (LY);
‘ o _ B _denote the sum of those terms in (2) for whiEty) is in the
Fig. 5. Effective time vs blocking probability for 30 node networks, with

jth bucket, and let; = (LY);/L;.
A short simulation only estimates the probabilities of events
which are most likely under the changed measure. This is seen
0 when no “successes” have occurred, so the sample variaimc€igure 6, which plots’; againstL; for the two simulations
of IS can be wildly different from the true variance when todescribed above. Clearly the short simulation only estimates
few samples are taken. However, this is much harder to deteht peak of the curve. (In this case, the different values of
because the sample variance is not exactly zero. Radon-Nikodym derivative L, correspond primarily to the
A suitable heuristic criterion to determine when IS resultsccupancy of the cluster at the time acceleration stops, i.e.,
are sufficiently accurate is: when the route of interest is first blocked. The “grass” at
1) The sample standard deviation is sufficiently low  the bottom of this graph corresponds #scycles in which
and either blocking occurs on one of the routes in the cluster but not
2) The largest theoretically possible Radon-Nikodyran the route of interest, yielding non-zebgk) in (4), and a
derivative, L, has been observeat smaller value ofL. However, this case contributes little to the
3) The impact on the estimated blocking caused by ttidocking.)
largest observed value(s) bfis smaller than that caused The results look very different when the “correction factor”
by smaller values. for importance sampling, is included. Figure 7 shows a
Note that using the sample variance as the stopping criteridwicket plot of the individual terms,LY’);, of the sum (2).
introduces a slight negative bias in the estimated width of tAdis is similar to the plots used in [4], and the blocking
confidence interval (although not of the estimated blockirgstimate is the sum of the buckets. This clearly shows that,
probability). However, this effect is negligible if sufficientalthough the mostommoncases are well represented, those
samples are taken. which contribute most to blocking are not well represented.
The remainder of this section will present a heuristic judn this case, the estimated blocking probability will be well
tification of this criterion. To illustrate the problem, considebelow the true value. More importantly, the sample variance
the simulation of a 9-node ring with = 25 wavelengths Will also be much lower than the ensemble variance, resulting
per link and\ = 0.7 Erlangs per route. Simulations wergh an inaccurate confidence interval.
performed to estimate the blocking probability of the nine In order to determine how long the simulation must be run,
four-hop paths. One set of simulations took 20 sample poirdsnsider the following heuristic argument. Simulation must be

A = 8, and average numbers of links per node between 4.4 and 8.1.
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to the A-cycle, L, on a logarithmic scale. Points represent the totals for aib the A-cycle, L, on a logarithmic scale. Points represent the totals for all

L values in a range. These buckets have equal size on the logarithmic sdalealues in a range. These buckets have equal size on the logarithmic scale
shown here. For clarity, the points corresponding to the short simulation afeown here.

connected by lines.
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A, b(s) = 0 in equation 4). In this case, the maximum is

L =~ 0.00138062, corresponding to the peak of the graph. This
means that there can be no events which are still rare under the
changed measure but which halievalues larger than those
observed, which contribute to the ensemble variance but not to
the sample variance. The estimated standard deviation is thus
reliable. This corresponds to condition (3) of the proposed
stopping criterion.

VIlI. CONCLUSION

Importance sampling can improve the speed of estimating
blocking probabilities in circuit switched networks with fixed
routing by several orders of magnitude, with the greatest ben-

Fig. 7. Total contribution(LY"), made byA-cycles against the acceleration efits at low blocking probabilities. If the blocking probability
applied to theA-cycle, L, on a logarithmic scale. Points represent the totalgf only a small subset of the routes needs to be found, then IS

for all L values in a range. These buckets have equal size on the logarith

scale shown here.

rPécquires less time (for a given accuracy) than direct simulation,
even for moderate to high blocking probabilities. The IS ap-
proach here is applicable to any wavelength assignment tech-

long enough to sample from all “important” events, those withique, and is well suited to evaluating different static routing
large values of’;. Events which are not accelerated much wilfrangements, or different wavelength assignment strategies.

probably not occur at all in short simulations. If such events

have a small impact, they can be ignored. Assume that under-
accelerated events (those with very laigg are generally of
little importance, and the importance of each under-accelerat
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