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Abstract— In the present paper, we consider the problem
of joint bandwidth (subcarriers) and power allocation for the
downlink of a multi-user multi-cell OFDM cellular network.
This resource allocation problem is formulated as a power
minimization problem, subject to meeting the target rates of all
users in the network. We develop a distributed solution to find
the globally optimal allocation which determines the subcarrier
and power allocation dynamically. In addition, we investigate the
impact of reducing the complexity by reducing the number of
degrees of freedom available in the optimization. In particular,
we consider a static bandwidth allocation scheme, and a static
power allocation scheme. The numerical results show that the
penalty on network performance due to the reduction in the
available degrees of freedom is not significant.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
an important technique for communicating over frequency
selective, slowly varying channels. The frequency spectrum is
divided into orthogonal, non-interfering subcarriers, and differ-
ent data streams are multiplexed on the different subcarriers.
OFDM is well suited to use on frequency selective channels, as
it admits very simple equalization. It is both widely applicable,
and widely deployed in commerical systems, including in
xDSL modems [1], [2], digital video broadcasting [3], and in
various wireless systems, including indoor wireless LANs [4].
It is also a strong candidate for 4G outdoor cellular systems.

Although OFDM typically multiplexes low rate data sub-
streams from a single user onto all the subcarriers, in the
downlink of an OFDM cellular network it can also be used to
multiplex the data streams from different users onto subsets
of the subcarriers. This is the approach taken in the downlink
of Flarion’s FLASH-OFDM cellular system [5].

This paper considers the resource allocation problem in such
a multiple user, multiple cell, OFDM system, and we focus
on the downlink, in which the base station is transmitting
to mobiles. The users in the same cell do not interfere
with each other, but there is “cross-talk” between users in
different cells. The resource allocation problem is to decide
the number of subcarriers allocated to each users within a
cell, and power allocation across the subcarriers. We assume
that there are several mobiles in each cell. This may model
a wideband cellular OFDM system with full frequency reuse,
such as Flarion’s system, or a cellular system with aggressive
frequency re-use so that co-channel interference is significant.

We consider the case that the average interference experi-
enced by each subcarrier is equal. This may be a result of

explicit averaging, such as Flarion’s frequency hopping [5], or
by constraining the transmit power on each subcarrier to be
equal. Although both result in an equal average interference,
the instantaneous interference varies in the first case, but
remains constant in the second.

As a result of this interference averaging assumption, we
only need to model the proportion of subcarriers (“band-
width”) allocated to each mobile and the power spectral
density (PSD) for that mobile, but not the exact choice of
subcarriers. The total power allocated to a mobile is the
product of its PSD and its bandwidth.

In section IV, we seek to minimize the aggregate transmit
power of the base stations, subject to meeting all the target data
rate requirements of the mobiles. The degrees of freedom per
base station are bandwidth and PSD. If there are L mobiles
in the cell there are 2L − 1 degrees of freedom: L − 1
degrees of freedom in the bandwidth allocation, and L degrees
of freedom in the allocation of power spectral densities.
We provide a distributed solution to the global optimization
problem, which provides an algorithm that each base station
can use to find bandwidth and power allocations. Note that by
minimizing power, we also maximize the spectral efficiency
of the network, as it is an interference limited system.

In Section V, we investigate the impact of reducing the
complexity by adding additional constraints. Section V-A con-
siders a “static-subcarriers” scheme, which statically allocates
subcarriers in proportion to the rate requirement of each
mobile, and then dynamically allocates power to the mobiles.
This reduces the 2L−1 degrees of freedom to L. The resulting
algorithm follows Yates’ monotonicity framework [6].

Section V-B considers a “uniform PSD” scheme, which
constrains the transmit PSD to be the same for all mobiles
served by a base station, but optimises over the proportions
of subcarriers allocated to each mobile. This again yields L
degrees of freedom. This problem is solved by a new dynamic
joint bandwidth allocation and power control algorithm.

We then compare the three approaches numerically for a
cellular network, with lognormal shadowing and distance loss.
Since the free parameters of the approach in section IV are
a superset of those in the other approaches, it must have
the best performance of the three, and indeed it does. What
is interesting, however, is how well the other two schemes
perform, despite having half as many degrees of freedom. The
extra L− 1 degrees of freedom in section IV buys very little
extra capacity.
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Of the two simpler schemes, the static-subcarriers scheme
has around twice the capacity penalty of uniform PSD scheme.
Moreover, the static-subcarriers scheme requires explicit aver-
aging of the interference, whereas this occurs automatically
with the uniform PSD scheme.

The static-subcarriers scheme is the traditional approach,
taken in the Flarion system [5]. For a given modulation
scheme, power control tries to achieve the required signal
to interference and noise ratio (SIR) of each mobile. This
leads to a near-far problem, and a large dynamic range in the
interference levels, requiring explicit interference averaging.

In contrast, in the constant PSD scheme a mobile with
a poor SIR can receive more subcarriers. This implicitly
allocates the mobile more received power. The downside is
the increased requirement for flexible and complex coding and
modulation.

II. RELATED WORK

Resource allocation in OFDM systems typically uses water
pouring [7]. In a multiple user context (such as xDSL links
suffering crosstalk) this leads to iterative water-pouring power
control methods [8], with the interference between users
decreasing as they adapt their signals in the frequency domain
to avoid mutual interference. Our formulation avoids this
possibility by explicitly whitening the interference as seen by
any given mobile, by assuming that each user experiences an
average level of interference determined by all the signals for
all the mobiles in the nearby cells, not just other-cell mobiles
using particular subcarriers allocated to the mobile of interest.

The practical motivation for our approach is provided by
the Flarion system [5]. The Flarion system is a wideband
OFDM system with frequency hopping to provide frequency
diversity, and to average the inter-cell interference, for both
the uplink and downlink. The frequency re-use factor is
1, so low rate codes are used to combat relatively strong
levels of intercell interference. Within each cell are orthogonal
channels, each consisting of a fast frequency hopping pattern
across the subcarriers so as to provide frequency diversity.
Mobiles within a cell are allocated one or more channels
(depending on their data rate requirement) and thus users are
orthogonal within a cell. Each base station is synchronized at
the OFDM symbol level, and a design based on Latin squares
ensures that during each hopping cycle, any two channels in
adjacent cells only use the same subcarrier in the same symbol
period exactly once. This provides the interference averaging
that we exploit in our analysis.

The Flarion system is itself based on earlier work by Wyner
[9] which proposed an OFDM wireless system, with full
frequency reuse, and frequency hopping to provide interfer-
ence averaging. Hanly and Whiting [10], and Wyner [11]
showed that a cellular system with full frequency reuse in
each cell, and orthogonality within a cell, is optimal from an
information-theoretic point of view.

III. MODEL

We consider the resource allocation problem in a multi-cell,
multi-user OFDM cellular system focusing on the downlink.

Fig. 1. The power allocation pn,m to user m ∈ Cn depends on power
density ρn,m and the proportion wn,m of bandwidth (subcarriers) allocated
to that user, pn,m = wn,mρn,m. Pictorially, it is the area of the rectangle
corresponding to user m. The total power qn at base station n is the total
area under the curve. With a flat power spectrum, qn = ρn,m, ∀m ∈ Cn

since
P

m∈Cn
wn,m = 1.

The resources are the bandwidth (subcarriers) and power
levels, which we consider as providing degrees of freedom
for optimization. The main focus of the present paper is to
investigate the implication of varying the number of degrees
of freedom available to the base stations as it effects network
performance.

A cellular network is modeled as a set of N base stations,
denoted by N = {1, 2, . . . , N}, with each base station n ∈ N
having a set Cn of users. We assume that the number of
subcarriers is large compared to the number of users per
cell, allowing a continuous allocation of these resources. The
apportionment of subcarriers in cell n is modelled by a positive
weight vector wn ∈ RLn

+ where Ln = |Cn| is the number
of users in cell n. Each base station is assumed to have the
same total number of subcarriers available. A base station
n allocates a proportion wn,m of subcarriers to its user m.
Thus,

∑
m∈Cn

wn,m ≤ 1. We let w denote the N-tuple of
such weight vectors for the network. We note that the optimal
weight vector in terms of power minimization will be achieved
with an equality,

∑
m∈Cn

wn,m = 1.
We denote the power density a base station n allocates to

user m ∈ Cn by ρn,m. Let ρn = (ρn,m)m∈Cn
be the vector

of power densities in cell n. We denote by ρ the N-tuple
of such vectors for the network. The power allocated to user
m by its base station n is given by pn,m = wn,mρn,m. Let
pn = (pn,m)m∈Cn

be the vector of power allocation in cell
n and p = (pn)n∈N be the N-tuple of such vectors for the
network. The total transmit power at base station n is qn =∑

m∈Cn
pn,m. Let q = (qn)n∈N be a vector of total powers for

the network. If base stations use flat power spectrum across all
subcarriers, then, qn = ρn,m,∀m ∈ Cn since

∑
m∈Cn

wn,m =
1. See Fig. 1 for an illustration.

We assume that the mobiles experience the average level of
interference determined by all mobiles in the interfering cells.
Without interference averaging, a user allocated a particular
subset of carriers will experience interference from just the
signals in these subcarriers from the nearby cells. When
the interference on these particular subcarriers is strong, the
mobile may require more resources (power and bandwidth) or
may not even be able to meet its target rate at all. One way of
achieving the effect of interference averaging is to implement
some form of signal hopping over subcarriers as in FLASH-
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OFDM. A simpler way is to use a flat transmit power spectrum
at the base stations across all subcarriers.

We denote the receiver noise at mobile m ∈ Cn by σ2
m > 0.

The path gain from a base station k (not necessarily the serving
base station of m) to a user m is Γk,m. Then, the signal to
interference and noise ratio (SIR) at node m ∈ Cn is given by

γn,m(ρn,m, q) =
Γn,mρn,m

σ2
m +

∑
k∈N ,k 6=n Γk,mqk

. (1)

Note that since the bandwidth is taken to be 1, σ2
m and qn are

both powers and average spectral densities.
The capacity of a link is determined by both the SIR and the

number of subcarriers available. In the present paper, we use
the Shannon formula for the bit rate: given the total spectrum
allocated to the system is W Hz, and the SIR is γ, the
maximum bit rate achieved is W log2(1+γ) bits/sec. Since we
are using normalized bandwidth, we will use the corresponding
notion of spectral efficiency. Thus, if the user is allocated
all subcarriers, it has a spectral efficiency of log2(1 + γ)
bits/sec/Hz. We will assume that mobile m ∈ Cn has a spectral
efficiency requirement of cn,m. However, the mobile will be
allocated a subset of the subcarriers, so the spectral efficiency
constraint becomes:

wn,m log(1 + γn,m(ρn,m, q)) ≥ cn,m.

IV. OPTIMAL POWER AND BANDWIDTH ALLOCATION

A. Problem Formulation

We consider here the resource allocation problem of finding
optimal power and bandwidth allocation for users. We formu-
late this resource allocation problem as a power minimization
problem, subject to all users achieving their target spectral
efficiencies:

min
ρ,w

∑
n∈N

∑
m∈Cn

wn,mρn,m (2)

s.t.

wn,m log (1 + γn,m(ρn,m, q)) ≥ cn,m, ∀m ∈ Cn, (3)∑
m∈Cn

wn,m = 1, (4)

ρn,m > 0, ∀m ∈ Cn, (5)
wn,m > 0, ∀m ∈ Cn, (6)

where γn,m(ρn,m, q) is the SIR at user m as defined by (1).
Note that this problem is not convex, but can be transformed

into a convex optimization problem by an appropriate change
of variables [12]. We do not take this approach here, as it is
not clear how to find a distributed solution to the transformed
problem.

B. Distributed Solution : Algorithm 1

In this subsection, we solve the optimization problem (2)-
(6) by decomposing it into a set of single cell subproblems,
each of which is convex. Each subproblem is a problem of
allocating subcarriers and power levels within a single cell,
assuming the allocations used in other cells remain fixed.

We consider the problem of finding the optimal
(ρ∗n(q), w∗n(q)) for base station n when the vector of total
powers for the network, excluding cell n, is given by the
components of q, excluding qn. For each n ∈ N , define Ωn

by

Ωn = {wn :
∑

m∈Cn

wn,m = 1 and wn,m ≥ 0,∀m ∈ Cn},

which are the available weight vectors for base station n. The
optimal (ρ∗n(q), w∗n(q)) to use at base station n under q will
solve the weight-optimization problem:

min
wn∈Ωn

∑
m∈Cn

wn,mρn,m (7)

subject to meeting constraints (3)-(6).
Rewriting the optimization (7) in terms of pn,m’s, we get:

min
wn∈Ωn

∑
m∈Cn

pn,m (8)

s.t.

wn,m log
(

1 +
1

Kn,m(q)
pn,m

wn,m

)
≥ cn,m, ∀m ∈ Cn,

pn,m > 0, ∀m ∈ Cn,

wn,m > 0, ∀m ∈ Cn,

where

Kn,m(q) =
σ2

m +
∑

k 6=n Γk,mqk

Γn,m

is assumed fixed. Let

gn,m(pn,m, wn,m) = Rn,m − wn,m log

�
1 +

1

Kn,m(q)

pn,m

wn,m

�
.

It can be shown that ∇2gn,m(pn,m, wn,m) is positive semi-
definite. Therefore, the problem (8) is convex in both pn and
wn. Thus, there exists a unique w∗n(q) that solves (8). Let
the corresponding power allocation be p∗n(q). The solution to
problem (8) can be found using Lagrangian techniques.

Define In(q) =
∑

m∈Cn
p∗n,m(q). Then, the requirement for

base station n to support all of its users is:

qn ≥ In(q).

The requirement for the network to be able to support the
spectral efficiency requirements of all users is given by the
vector inequality:

q ≥ I(q)

where I(q) = (In(q))n∈N .
To show that the solution to the global multi-cell problem

(2)-(6) is unique, we apply the framework developed in Yates
[6]. Lemma 1 in [6] states that if I(q) is standard, and if there
is any feasible power vector q satisfying q ≥ I(q) then I(q)
has a unique fixed point, which is the minimal solution to the
inequality q ≥ I(q).

A function I(q) is standard [6] if for all q ≥ 0 the following
properties are satisfied:
• Positivity I(q) > 0
• Monotonicity If q ≥ q′, then I(q) ≥ I(q′)
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• Scalability For all α > 1, αI(q) > I(αq)

Theorem 1: I(q) is standard.
Proof:

• Positivity: this follows since σ2
m > 0.

• Monotonicity: Suppose that q ≥ q′. When the vector of
total powers for the network is q, for user m ∈ Cn, we
have

w∗
n,m(q) log

(
1 +

1
Kn,m(q)

p∗n,m(q))
w∗

n,m(q)

)
= cn,m. (9)

Now, if instead the interference to mobiles in cell n was
generated by the vector q′, but the bandwidth allocated
for user m remains w∗n(q), let the power allocation at
base station n be p′n, where

w∗
n,m(q) log

(
1 +

1
Kn,m(q′)

p′n,m

w∗
n,m(q)

)
= cn,m. (10)

Using (9) and (10) and the fact that Kn,m(q) ≥
Kn,m(q′), we have p∗n,m(q) ≥ p′n,m. Since w∗n(q) is not
necessarily optimal under q′, p′n,m ≥ p∗n,m(q′). Hence,
p∗n,m(q) ≥ p∗n,m(q′). Consequently, In(q) ≥ In(q′).

• Scalability: Suppose α > 1. Let p′n be the power
allocation at base station n when it uses w∗n(q) and the
vector of total powers for the network is αq. Then,

w∗
n,m(q) log

(
1 +

1
Kn,m(αq)

p′n,m

w∗
n,m(q)

)
= cn,m. (11)

Using (9) and (11) and the fact that αKn,m(q) >
Kn,m(αq), we have αp∗n,m(q) > p′n,m. Since w∗n(q) is
not necessarily optimal under αq, p′n,m ≥ p∗n,m(αq).
Hence, αp∗n,m(q) > p∗n,m(αq). Consequently, αIn(q) >
In(αq).

Since, I(q) is standard, the standard power control algorithm
[6],

q(t+1) = I(q(t))

will converge to the minimal solution. Solving for In(q) at
base station n requires the knowledge of Kn,m = ρn,m

γn,m(q) .
Therefore, this algorithm can be executed locally at each base
station with the feedback on achieved SIR from only its users,
and hence is distributed.

V. REDUCED COMPLEXITY SCHEMES

With the optimization problem of (2)-(6), the number of
degrees of freedom available to base station n is 2Ln−1 (Ln

power densities and Ln−1 weights) where Ln is the number of
mobiles in cell n. In this section, we consider bandwidth and
power allocation problem (2)-(6) with additional constraints.
In both schemes that we consider in this section, the additional
constraints reduce the number of degrees of freedom available
to base station n to Ln.

A. Per User Power Control : Algorithm 2

We now consider the resource allocation problem (2)-
(6) with static bandwidth allocation. The weight vectors are
chosen a priori, proportional to the spectral efficiency targets
of the users. In cell n, the choice of the weight vector is given
by:

wn,m =
cn,m∑

m′∈Cn
cn,m′

, ∀m ∈ Cn. (12)

The resource allocation problem then is to choose the
appropriate power spectrum for users with the objective of
power minimization, subject to meeting the spectral efficiency
requirements of the mobiles. Mathematically, the allocation
problem is to solve (2) subject to meeting constraints (3), (5)
and (12). The number of degrees of freedom available to base
station n is Ln: the power density to allocate to each mobile
in the cell.

Note that this scheme requires some form of signal hopping
over subcarriers, similar to FLASH-OFDM, in order to achieve
the effect of interference averaging.

The solution to the resource allocation problem can be found
using a similar approach to Section IV-B. Solving the single
cell subproblem in this case reduces to solving (3) for power
spectral density ρ∗n,m(q) for each user m ∈ Cn given the
weight vector wn (eq. (12)) and the vector of total powers for
the network q. By defining In(q) =

∑
m∈Cn

wn,mρ∗n,m(q),
it can be easily shown that this problem falls readily under
Yates’ framework.

B. Dynamic Bandwidth Allocation : Algorithm 3

We next consider the resource allocation problem (2)-(6)
with the additional constraint that each base station uses a flat
transmit power spectrum, that is,

qn = ρn,m, ∀m ∈ Cn. (13)

Each base station can still choose an appropriate power level
and vary the bandwidth allocation to its users. The number
of degrees of freedom available to base station n is Ln,
namely: Ln − 1 weights and a single transmit power level.
Mathematically, the allocation problem is to solve (2) subject
to meeting constraints (3)-(6) and (13).

This problem has been considered in [13] in the context of
a general wireless network. A provably convergent distributed
algorithm was proposed to solve this problem. The summary
of the algorithm is as follows:

Algorithm 3:
Initialization: Start with any initial transmit power vector

q(0). For k = 0, 1, 2, . . . do:
Iteration k:
• Compute a pseudo-weight ŵn,m for each user m given

the the vector of powers for the network, q(k) (using (3)):

ŵn,m =
cn,m

log(1 + γn,m(q(k)
n , q(k)))

, ∀m ∈ Cn.

Define σ̂n =
∑

m∈Cn
ŵn,m. Note that the pseudo weight

vector ŵn computed above is infeasible if σ̂n > 1.
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• Compute a feasible weight vector w(k)
n by normalizing

ŵn:

w(k)
n,m =

ŵn,m

σ̂n
, ∀m ∈ Cn.

• Use the newly computed weight vector w(k)
n to compute

the transmit power requirement q
(k)
n,m for the users m ∈

Cn (using (3)):

q̂n,m = Kn,m(q(k))

[
exp

(
cn,m

w
(k)
n,m

)
− 1

]
, ∀m ∈ Cn.

• Compute the power to use for the next iteration depending
on the value of σ̂n:

q(k+1)
n =

 min
m∈Cn

q̂n,m, if σ̂n > 1

max
m∈Cn

q̂n,m, otherwise.

Each iteration of Algorithm 3 can be considered as a
mapping T from q(k) to q(k+1). The mapping T is not
standard, and hence the results of [6] do not apply. Although T
does not satisfy the monotonicity condition required in Yates’
framework, the convergence analysis of Algorithm 3 exploits
some key properties of the mapping T . These properties imply
that to any sequence (q(k))∞k=0 generated by Algorithm 3, a
monotonically non-increasing upper bounding sequence, and a
monotonically non-decreasing lower bounding sequence, can
be constructed with the property that both bounding sequences
provably converge to the minimal solution. See [13] for the
details of this argument.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the algorithms
developed in this paper. In particular, we investigate the effect
on performance in reducing the available degrees of freedom
for optimization.

We consider a cellular network that spans an area of
3km × 3km. This area is divided into 9 square cells of size
1km × 1km. The base stations are located at the center of
their respective cells. There are 250 users, uniformly randomly
distributed in the network. Each user communicates only to
the base station of the cell it is located. The target spectral
efficiency for each user is chosen randomly, as described
below. We use free-space propagation for distances up to
500 m, and a log distance path loss, with exponent 3, beyond
that (relative to the reference distance of 500 m). For all
distances we include a log-normal shadowing with a mean
of 0 dB and a standard deviation of 8 dB. We assume a noise
power spectral density of 10−19 W/Hz at each receiver.

To obtain the curve of average total symbol energy vs.
average total spectral efficiency in Fig. 3, we average total user
spectral efficiencies over many random realizations of user
locations and shadowing. In each realization of user locations
and shadowing, each user selects its target spectral efficiency
randomly from a set of spectral efficiencies {c, 2c, 3c, 4c},
where c is a scaling factor. For each network realization,
the spectral efficiencies can be varied by tuning the scaling
factor c. For each network realization, there is a limit to
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Fig. 2. A particular realization of the network: total symbol energy vs. total
spectral efficiency using Algorithm 3
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Fig. 3. Average total symbol energy vs. average total spectral efficiency for
the network

how high we can scale up c; there is an energy explosion
that occurs as the capacity limit is reached for that network
realization. Fig. 2 depicts the capacity limit for a particular
network realization using Algorithm 3. All three algorithms
have the same qualitative behaviour.

The averaging of total spectral efficiencies is achieved
as follows. For each network realization, the total symbol
energies are computed for a set of values of c. Then, for a
fixed set of total symbol energies, corresponding total spectral
efficiencies are computed by interpolation as demonstrated
in Fig. 2. The average total spectral efficiency for a given
total symbol energy is the average of such computed total
spectral efficiencies over many network realizations. Fig. 3
plots the average total symbol energy versus average total
spectral efficiencies for the three algorithms averaged over 100
realizations. Notice that all three algorithms suffer an energy
explosion, as their average capacity limits are reached.

From Fig. 3, it is clear that Algorithm 1 uses the least
amount of energy for a given total spectral efficiency. This
is not surprising since it solves for the globally optimal
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allocation. The loss in performance in terms of capacity for
a given total symbol energy for Algorithms 2 and 3 is small
compared to Algorithm 1 which has all the degrees of freedom
available. Of the two reduced complexity schemes, Algorithm
3 marginally outperforms Algorithm 2. The capacity penalty
for Algorithm 2 is around twice that of Algorithm 3.

VII. CONCLUSIONS

We have compared three different power and bandwidth
allocation schemes for the downlink of an OFDM cellular
system. Algorithm 1 dynamically allocates both subcarriers
and power spectral densities to each mobile, and in general
the transmit power spectrum of each base station will not be
flat. Algorithm 2 allocates subcarriers in a static manner, via
(12), and then dynamically allocates power spectral densities
to the mobiles. Algorithm 3 allocates subcarriers in a dynamic
manner, and allows the base stations to adjust their transmit
power dynamically as well, under the constraint that the
transmit spectrum is flat. All algorithms solve an optimization
problem, in the sense that they provably converge to a solution,
when it exists, and when it exists it is unique.

Algorithm 2 incorporates the traditional approach to band-
width allocation, such as used in the Flarion system, in that
the modulation scheme for each mobile is fixed in advance,
based on its spectral efficiency requirement. Algorithm 2 is a
power control algorithm that tries to ensure that the required
SIR’s of the mobiles are achieved. In this approach, a mobile
close to a base station will receive much less power than a
mobile near the cell boundary. As a result, there will be a
large dynamic range in the possible interference levels that
a mobile will receive from other base stations, since these
base stations are also controlling their transmit power levels to
accommodate their users. To obtain the interference averaging
that we assume in this paper, it is necessary to employ
a frequency hopping strategy, and one that is coordinated
between cell sites. This is true in the Flarion system, with the
Latin square hopping patterns designed to provide the requisite
interference averaging (see [5]).

In Algorithm 1, and also Algorithm 3, a mobile far away
from the base station can receive more bandwidth (subcarriers)
to compensate for the path loss, and this is available also to a
mobile experiencing a large amount of interference. Indirectly,
allocating more bandwidth will also allocate the mobile more
received power, for the same fixed base station transmit power,
but there is an additional degree of flexibility in that the
modulation scheme can adapt.

With dynamic bandwidth allocation, the mobiles close to the
base station will be allocated a small number of subcarriers.
The base station can use a larger constellation size and hence
pack more information into the symbols for these users. On
the other hand, the users further away from the base station
will be allocated a larger number of subcarriers, and hence a
higher rate in symbols per second. In this case, only a small
constellation size for the symbols is required to achieve the
same bit rate. The downside of this approach is the increased
complexity of the coding and adaptive modulation required.

From the numerical results section, we conclude that both
Algorithm 2 and Algorithm 3, provide solutions that are nearly

as good as that of Algorithm 1. Of the two, Algorithm 3
has marginally better performance in terms of power levels
or capacity.

The model used in the paper, and in the simulations,
takes account of lognormal shadowing and path loss, but not
frequency selective multipath fading. Under the assumptions of
the paper, it is not necessary to implement a frequency hopping
strategy when using Algorithm 3. The interference averaging
requirement automatically is satisfied since the transmit power
spectra of the base stations is flat. In future work, we will
incorporate frequency selective fading. In that case, a fre-
quency hopping strategy may still be useful in conjuction with
Algorithm 3 to obtain frequency diversity, although it may not
be necessary if each mobile is allocated a sufficient number of
widely spaced subcarriers. However, the careful coordination
of the hopping patterns between cells, as in a Latin square
design, may not be necessary under Algorithm 3.

The focus of the present paper is a multi-user cellular
OFDM system. However, the model is equally applicable to a
TDMA system, and in that case, the model already includes
flat fading, and the simulation results can easily be extended
to include Rayleigh fading.
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