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Abstract—This paper proposes a comprehensive but tractable
model of IEEE 802.11 carrying traffic from a mixture of
saturated and unsaturated (Poisson) sources, with potentially
different QoS parameters, TXOP limit, CWmin and CWmax. The
model is used to investigate the interaction between these two
types of sources, which is particularly useful for systems seeking
to achieve load-independent “fair” service differentiation. We
show that, when the TXOP limit for unsaturated sources is greater
than one packet, batches are distributed as a geometric random
variable clipped to TXOP limit. Furthermore, we present asymp-
totic results for the access delay distribution, which indicates that
it is infeasible to obtain real-time service in the presence of 8 or
more saturated sources regardless of the real time traffic load
given that all stations use CWmin of 32.

Index Terms—IEEE 802.11e EDCA, heterogeneous traffic.

I. INTRODUCTION

Wireless local area networks (WLANs) are widely deployed
to provide widespread Internet access through WiFi-enabled
mobile devices such as laptops and smart phones. Internet
applications over WLANs consist not only of throughput-
intensive applications such as email and file transfer but also
of delay-sensitive ones such as voice and video. To provide
quality of service (QoS) differentiation, IEEE 802.11e was
specified in [1], which defines a contention-based medium
access control (MAC) scheme called Enhanced Distributed
Channel Access (EDCA). EDCA allows service differentiation
by tuning various MAC parameters: the minimum spacing
between packets (Arbitration Inter-Frame Space or AIFS), the
minimum and maximum contention windows (CWmin and
CWmax), and transmission opportunity limit (TXOP limit).

In this paper, we model 802.11 EDCA WLANs with a
mixture of saturated non-realtime sources which seek high
throughput, and unsaturated real-time sources which demand
low delay. The motivation is to enable the study of MAC
mechanisms such as [18] that improve service for both types of
users by means of EDCA parameters: TXOP limit, CWmin and
CWmax. We do not model variable AIFS because it provides
load-dependent prioritization, which does not help to achieve
the “fair” service differentiation we seek.

A detailed description of the protocol and related concepts
is presented in [1]. Like the original Distributed Coordination
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Function (DCF) in IEEE 802.11, EDCA enables users to
contend for the wireless channel using carrier sense multiple
access with collision avoidance (CSMA/CA), with truncated
binary exponential backoff (BEB) and slotted idle time.

Existing models of DCF and EDCA [5–16] can be classified
by the traffic (saturated vs. unsaturated) and protocol issues
(DCF vs. EDCA) they consider, and by whether they explicitly
model backoff as a Markov chain or only require the mean
value at each backoff stage (mean-based analysis). Our model
is of the latter, simpler type but more comprehensive than
existing models of that type. To clarify this contribution, we
first recall existing models of heterogeneous users.

Several models have been proposed for unsaturated traffic
with heterogeneous arrival rates and packet sizes in single-
class IEEE 802.11 DCF WLANs: [5] and [6] propose Markov
chain models while [7] proposes a mean-based analysis. The
former are derived from the saturated model in [2] by introduc-
ing to the Markov chain additional states representing an idle
station. The latter also extends a saturated model, this time
by conditioning the attempt probability on a source having
a packet to send [19]. Conversely, saturated traffic can be
approximated by setting the probability a source has a packet
to send at any given time to be 1 as suggested in [7].

Naturally, the above DCF models do not include TXOP
limit and CWmin differentiation. Many EDCA models [8–17]
consider heterogeneous traffic differentiated by CWmin and
AIFS; however, few explicitly consider TXOP limit. Among
those that do, most such as [8, 10] are based on Markov chains.
Few [13, 16] use mean-based analysis. Creating an accurate
model of TXOP limit differentiation requires more than simply
inflating the packet length [13]. Two important aspects of large
TXOP limit are missed in most models: the distribution of the
number of packets sent per channel access (the “burst size”)
and the residual time of an ongoing transmission from another
station when a packet arrives at an idle station. The model
in [10] captures the former but requires a burdensome matrix
calculation on each iteration when solving the fixed point, and
ignores the effect of loss on the distribution.

Our contributions are to: (1) model the residual time of an
ongoing transmission in unsaturated sources’ delay and show
its importance; (2) calculate the distribution of the burst size
of unsaturated sources; (3) propose a simple approximation
to access delay distribution; (4) derive a lower bound on the
number of saturated sources for which unsaturated sources
experience unacceptable delay.

After introducing notation and assumptions in Section II,
we present a model of EDCA WLANs with unsaturated and
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saturated nodes in Section III, which is validated in Section IV.
Delay asymptotics are studied in Section V.

II. NOTATION AND MODELING ASSUMPTIONS

We model an 802.11 EDCA WLAN with a set U of Nu ≥ 0
unsaturated Poisson sources (e.g. voice traffic) and a set S
of Ns ≥ 1 saturated, bulk data sources, which always have
packets to transmit.

The model assumes an ideal channel so that packets received
correctly unless multiple sources transmit at the start of the
same slot (a “collision”). Sources do not use RTS/CTS. All
packets from a given source have equal size, and unsaturated
sources can accommodate an arbitrary number of packets.

In the following description of notation, s ∈ S, u ∈ U
and x, y ∈ S ∪ U denote arbitrary sources, U [a, b] denotes an
integer uniformly distributed on [a, b], A ∼ B denotes that A
and B are equal in distribution, and E[·] is ensemble average.

Source x emits packets of constant size lx in bursts of a
(possibly random) number of packets ηx, bounded above by
the constant rx.

The backoff mechanism imposes a slotted structure on time,
with slot sizes independently distributed as a random variable
Y , which is σ if the slot is idle or longer if a transmission
is attempted. In each slot, x attempts to transmit with “at-
tempt probability” τx and, conditional on making an attempt,
collides with “collision probability” px. Following [2], these
are assumed independent of the number of previous attempts
of this packet, or packets from other stations.1 If the first
packet in the burst collides, the remainder are not transmitted.
Transmissions of subsequent packets in a burst, not subject to
contention, are not considered “attempts”.

Each burst is attempted up to K times, with the jth attempt
occurring after a backoff of Uxj ∼ U [0, 2min(j,m)Wx − 1]
slots, where Wx is called the contention window. We assume
Uxj is independent of random variables mentioned above. The
size of a slot conditioned on source u performing a backoff
is distributed as Yu.

With probability Lx, all attempts of a burst suffer collisions,
in which case the first packet is discarded.

Packets arrive to a source u as a Poisson process of rate λu

and are queued. Source u has a packet to transmit a fraction
ρu of the time. If a packet arrives when u has no packets to
transmit, then with probability denoted 1− bu it observes the
channel idle and transmits immediately. Such arrivals (termed
“asynchronous”) do not experience collisions, due to carrier
sensing by the other stations at the start of the next slot.

Slots that are idle, collisions and successful transmissions
are denoted by superscripts i, c, and s. The (random) time
that a burst sent by a source x occupies the channel if it is
successfully transmitted is given by

T s
x = Taifs + ηx(Tpx + Tack) + (2ηx − 1)Tsifs (1)

where Taifs, Tsifs, and Tack are the durations of AIFS, SIFS, and
an ACK packet, and Tpx is the transmission time of a packet

1The model can be modified to reflect the fact that the residual life
paradox [21] causes retransmissions to have different collision probabilities,
as explained in [20].

from the source x. The deterministic value of T s
x conditioned

on ηx = 1 is denoted Tx.
The duration of a collision slot is the maximum of Tx over

all sources x involved in the collision.2

III. MODEL

We now present a model that takes the system parameters
Wx, rx, Tpx, and λu, as input, and predicts the throughput of
a source s ∈ S and the access delay of a source u ∈ U.

Without loss of generality, sources are indexed in non-
increasing order of packet size, regardless of whether they
are saturated or unsaturated. That is, Tx ≥ Ty for x < y.

A. Fixed point model

The model is a set of fixed-point equations, where the
collision probabilities are expressed in terms of the attempt
probabilities, and vice versa. We will now derive the fixed
point equations which will be presented in (9) below.

First, to determine the collision probability, denote the
probability that no sources transmit in a given slot by

G =
∏

x∈S∪U
(1− τx). (2)

The collision probability of a given source x ∈ S ∪ U is

px = 1− G

1− τx
. (3)

Second, the attempt probability of a saturated source s is
the mean number of attempts per burst divided by the mean
number of slots per burst

τs =
∑K

k=0 pk
s∑K

k=0(E[Usk] + 1)pk
s

(4)

where the mean number of backoff slots is

E[Usk] = 2min(k,m)−1Ws − 1/2. (5)

Next, we determine τu, the attempt probability of an un-
saturated source u. First, consider the number of packets u
“serves” for each burst formed. With probability Lu = pK+1

u ,
the first packet in the burst is discarded. Otherwise, u suc-
cessfully sends on average E[ηu] packets. (The latter depends
on the queue size distribution at the node; for light load,
E[ηu] = 1, and in general it is given by (31) in Section III-C.)
Thus bursts are formed at rate

λu

Lu + (1− Lu)E[ηu]
(6)

Next, determine the mean number of attempts per burst from
u under the usual approximation [7, 10, 16, 22] that all bursts
contend for the channel, even if they arrive asynchronously.
The mean number of attempts is then

1 +
K∑

j=1

pj
u =

1− pK+1
u

1− pu
(7)

2This is because stations involved in the collision wait for the ACK as
usual, and other stations wait an Extended Inter-Frame Space (EIFS) [1].
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Simulations suggest this is reasonably accurate, which appears
to be due to the presence of saturated sources. This approxi-
mation is not required in the delay model of Section III-B.

From (6), (7) and the fact that there are 1/E[Y ] slots per
second, the attempt probability of the source u is

τu =
λu

Lu + (1− Lu)E[ηu]
1− pK+1

u

1− pu
E[Y ] (8)

A special case of Eq. (8) in 802.11 DCF WLANs without
saturated sources coincides with the model of [22].

The fixed point is between the collision probabilities in (3)
and the attempt probabilities derived from (4) and (8):

τs = 2(1− pK+1
s )/

(
Ws(1− (2ps)m+1)

1− ps

1− 2ps
+

(2mWs + 1)(1− pK+1
s )− 2mWs(1− pm+1

s )
)

(9a)

τu =
λu

Lu + (1− Lu)E[ηu]
E[Y ]

1− pK+1
u

1− pu
(9b)

px = 1− G

1− τx
. (9c)

The mean slot time E[Y ] can be expressed in terms of the
probabilities ai, as

x and ac
x that a given slot contains (a) no

transmissions, (b) a successful burst transmission from source
x, or (c) a collision involving the source x and only sources
y > x with packets no larger than Tx. Specifically,

E[Y ] = aiσ +
∑

x∈S∪U
as

xE[T s
x ] +

∑

x∈S∪U
Txac

x (10a)

ai = G (10b)

as
x =

τx

1− τx
G (10c)

ac
x =

τx

1− τx


∏

y≤x

(1− τy)−G


 (10d)

E[T s
x ] = Taifs + E[ηx](Tx + Tack) + (2E[ηx]− 1)Tsifs (10e)

Note that all Ns+Nu values of ac
x can be calculated in O(Ns+

Nu) time, by the nested structure of the products in (10d).
The fixed point (9) involves E[ηx] and E[Y ]. For light load,

E[ηx] = 1; hence, solving (9) requires only (10). In general,
E[ηx] is given by (31) derived from the delay model; hence,
the delay model in Section III-B must be included.

Simpler form for K = m = ∞: Although the retry limit
is K = 7 in 802.11, in many settings a source rarely uses all
seven retransmissions. In that case, it is reasonable to reduce
the complexity of the model by approximating K and m as
infinite. Then, the fixed point (9) simplifies to

τs =
2

Ws
1−ps

1−2ps
+ 1

, s ∈ S (11a)

τu =
λu

E[ηu]
E[Y ]

1
1− pu

, u ∈ U (11b)

px = 1− G

1− τx
, x ∈ S ∪ U (11c)

B. Delay model
We now calculate the access delay of bursts from an

unsaturated source. This is not only an important performance

metric, but also used to determine E[ηx] in (9). Access delay
is defined to be duration between the instant when the burst
reaches the head of the queue and begins contending for the
channel, and the time when it is successfully received.

We first propose an access delay model for a burst that
arrives at an empty queue. The novelty is that we capture
two important features in that case: the behavior when the
burst arrives at idle channel, and the residual time of the busy
period during which the burst arrives. The probability bu that
the burst arrives at busy channel can have an effect of up to
25% on the delay estimates when load is light. Moreover, the
residual transmission time, Tres,u, is significant in the presence
of sources with large TXOP limit.

Let Du be the random access delay of a burst from an
unsaturated source u ∈ U. Then

Du = T s
u + Au. (12)

where T s
u , given by (1), is random since ηu is random. The

random total backoff and collision time of the burst before it
is successfully transmitted has the distribution

Au =





0 w.p.
1− bu

1− bu + bu(1− pK+1
u )

Auk w.p.
bupk

u(1− pu)

1− bu + bu(1− pK+1
u )

, K ≥ k ≥ 0
(13)

in which Auk is the random total backoff and collision time of
the burst provided that it is successfully transmitted in the kth
backoff stage. The remainder of the complexity of the delay
model comes from estimating the duration of the backoff slots
which comprise Auk. Write

Auk =
k∑

j=0

Buj +
k∑

j=1

Cu + Tres,u (14)

where Cu is the random duration of a collision involving u,
and the random the backoff time in the jth stage is

Buj =
Uuj∑

k=1

Yu,k. (15)

Here Uuj is the number of backoff slots in the jth backoff
stage, and the Yu,k ∼ Yu are the independent, identically
distributed (i.i.d.) durations of a slot conditional on source
u not transmitting, namely

Yu =

{
σ w.p. ai

u

Tx w.p. ac
xu, x ∈ S ∪ U \ {u}

T s
x w.p. as

xu, x ∈ S ∪ U \ {u}
(16)

where ai
u, ac

xu and as
xu are the probabilities, conditional on u

not transmitting, of an idle slot, a collision between a source
x and sources y > x with packets no larger than Tx, and a
success of a burst from a source x. ai

u and as
xu are obtained

by dividing the analogous quantities in (10b)–(10c) by 1− τu

while ac
xu is given by

ac
xu =

τx

1− τx


 ∏

y≤x,y 6=u

(1− τy)− G

1− τu


 . (17)

The random collision time Cu is the duration of the longest
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packet involved in a collision involving source u,

Cu = max(Tu, Tx) w.p. acu
xu, x ∈ S ∪ U \ {u} (18)

where acu
xu is the probability that the source u collides with the

source x and possibly sources y > x with packets no larger
than Tx, given by

acu
xu =

τx

1− ai
u

∏
y<x
y 6=u

(1− τy) (19)

Finally, the probability bu can be estimated as

bu = 1− ai
uσ

E[Yu]
. (20)

Mean access delay: From (12), the mean access delay is

E[Du] = E[Au] + E[T s
u ]. (21)

An explicit expression for E[Au] is given in [23], using Wald’s
theorem [24] for (15). This is a function of the mean slot
duration E[Yu] seen by the source u, mean collision delay
E[Cu] and mean residual time E[Tres,u].
E[Yu] and E[Cu] are found from (16) and (18), respectively.

E[Tres,u] is given by [21]

E[Tres,u] =
E[Y b

u ]
2

+
Var[Y b

u ]
2E[Y b

u ]
, (22)

where Y b
u is the duration of a busy period caused by trans-

missions of other sources. Its distribution is similar to that of
Yu of (16), conditioned on the slot not being idle.

Simpler form for K = m = ∞: The mean access delay
again simplifies when K and m are infinite, becoming

E[Au] ≈ bu

((
1

2(1− 2pu)

)
WuE[Yu] +

E[Yu]
2(1− pu)

+
pu

1− pu
E[Cu] + E[Tres,u]

)
. (23)

Remark 1: Although E[Yu] and E[Y b
u ] can be calculated

using (16), it is simpler to use

E[Yu] =
E[Y ]− as

uE[T s
u ]− E[Cu]τupu

1− τu
, (24)

which comes from the fact that Yu is Y excluding components
involving the source u which are successful transmission of
u or collision involving u and the fact that the probabilities
a slot is idle, contains a successful transmission, or contains
a collision among an arbitrary number of sources of Yu are
similar to those of Y scaled by 1− τu.

Then, E[Y b
u ] is given from E[Yu] as

E[Y b
u ] =

E[Yu]− σai
u

1− ai
u

(25)

However, the form (16) is needed to calculate Var[Y b
u ], and

the distribution of delay as done in [23].

Under high load, a burst of an unsaturated source is likely
to see a non-empty queue when arriving. Hence, it will
have queueing delay in addition to access delay. The mean
queueing delay can be straightforwardly calculated using the

P-K formula for an M/G/1 queue with the mean and variance
of the service time determined from the access delay model.
However, that is out of scope of the present paper.

To see that the access delay model above can still be used in
the presence of queueing, note that there are three possibilities
a packet arriving to an unsaturated source can observe:
• Empty queue and channel idle for AIFS. For this case,

Au = 0 as in the first case of (13).
• Empty queue but channel not idle for AIFS. For this case,

Au = Auk with Auk given in (14).
• Non-empty queue. For this case, Au = Auk with Auk

given in (14) but without E[Tres,u].
The last two cases can be approximated by the second

term of (13) when E[Tres,u] is small. The probability of
Au = 0 is slightly over-estimated by (13), but this effect
is small at high load, since bu → 1 as load increases. It is
confirmed by simulation in Section IV that (13) is often a
good approximation for delay at high load.

Note that the above delay model becomes inaccurate in the
uncommon case that E[Tres,u] is significant compared with the
access delay, which occurs when the arrival rate from source
u is high while the arrival rate from other stations is light and
other stations use very large TXOP limit. A more accurate by
less tractable model is obtained by replacing (14) and (13) by

A′uk =
k∑

j=0

Buj +
k∑

j=1

Cu

A′u =





0 w.p. (1− bu)(1− ρu)/Θ
A′uk + E[Tres,u] w.p. bu(1− ρu)/Θ

A′uk w.p. pk
u(1− pu)ρu/Θ

where Θ = (1−bu)(1−ρu)+(1−(1−bu)(1−ρu))(1−pK+1
u ).

C. Distribution of burst size

1) Saturated sources: The burst size ηs of a saturate source
s is a constant and equal to rs, the maximum number of
packets that fit in TXOP limit of the source s. This is because
a saturated source always has a packet waiting to transmit.

In particular, by (1),

ηs = rs =
⌊

TxOP limit− Taifs + Tsifs

Tpx + Tack + 2Tsifs

⌋
(26)

2) Non-saturated sources: A non-saturated source u will
send in bursts up to ru or the number of packets in the
queue, whichever is less. To estimate the distribution of these
burst sizes we first model the queue size process. Note that in
this model, packets arrive separately. In practice, packets may
arrive in bursts. The model could be extended to one such as
[25], but that is out of the scope of this paper.

a) Distribution of queue size: Model the queue size
process as the Markov chain in Fig. 1, with state k = 0, 1, 2 . . .
corresponding to having k packets in the queue. From state k,
there are transitions at rate λu to state k + 1 corresponding to
packet arrivals. From state k ≥ 1, there are transitions to state
k−1 at rate µuLu, corresponding to the loss of a single packet
due to excess collisions. In states k = 1, . . . , ru, all packets
can form a single batch, and so there are transitions to state 0
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Fig. 1. The transition diagram of queue size of an unsaturated source u.

at rate µu(1− Lu) due to the successful transmission of this
batch. In states k > ru, each batch consists of ru packets and
so there are transitions to state k−ru at rate µu(1−Lu). Note
that this Markov approximation is only useful for estimating
the queue distribution for low occupancies; we will show in
Section V that the tail of the service time distribution can
be heavy, which means this Markov approximation does not
capture the tail properties of the queue size. However, the burst
size distribution does not depend on the tail.

In the above Markov chain, the total service rate at each
state is the same and determined by

µk = µu = 1/E[Du], ∀k ≥ 1 (27)

where µk is the total service rate at state k; µu is the mean
service rate of source u; E[Du] is given by (21).

As noted in [26], the service rate may actually differ be-
tween states. However, as will be shown by simulation below,
the approximation of constant service rate is actually more
accurate than the approximation in [26] under the considered
circumstances, as well as being more tractable.

Let Qu be a random variable representing the queue size of
an unsaturated source u in this Markov model.

Observe that Fig. 1 is similar to that of bulk service systems
in [21], except there is an additional transition from every state
k to the previous state k − 1 which represents the case when
the head of queue packet is dropped due to exceeding retry
limit. This suggests the following result.

Theorem 1: If 0 < λu < µu(Lu + ru(1 − Lu)) then the
above Markov chain has a geometric steady state distribution,

P [Qu = k] =
(
1− 1

z0

)( 1
z0

)k

, k = 0, 1, 2, · · · (28)

where z0 > 1 is a solution of

ρuzru+1 − (1 + ρu)zru + Luzru−1 + 1− Lu = 0 (29)

where ρu = λu/µu.

Proof: The proof decomposes the transition matrix A of
the Markov chain as the sum of those of an M/M/1 queue and
a bulk service queue, with equal steady state distributions.

Let A′x be the transition matrix of an M/M/1 queue with
service rate Luµu and arrival rate xλu, and A′′x be the
transition matrix of a bulk service queue [21] with service rate
(1−Lu)µu and arrival rate (1−x)λu. For x ∈ (0, Luµu/λu),
the M/M/1 queue has geometric steady state probabilities Q′x
whose mean q′x increases continuously from 0 to ∞. For
x ∈ (1− (1−Lu)µu/λu, 1), the bulk service queue has geo-
metric steady state probabilities Q′′x whose mean q′′x decreases
continuously from ∞ to 0. Let (a, b) be the intersection of
those intervals. This is non-empty by the upper bound on λu.
Then q′x − q′′x increases continuously on (a, b). It is negative

as x → a, as either q′a = 0 if a = 0 or q′′x → ∞ as
x → ∞ if a > 0. Similarly, it is positive as x → b. Hence
there is an x̃ ∈ (a, b) ⊆ (0, 1) such that Q′

x̃ = Q′′
x̃. Then

0 = Q′x̃(A′ + A′′) = Q′
x̃A, and so the geometric distribution

Q′x̃ is the steady state distribution of the original Markov chain.
Substitution of (28) into balance equations of the Markov

chain, implies that z0 is the solution greater than 1 of (29).
b) Distribution of burst size: Here we determine the

distribution of burst size ηu of an unsaturated source u, which
is a function of the queue size. Since the transmission rate
is equal (µu) in each state, the distribution of burst size ηu

is equal to that of min(Qu, ru) conditioned on Qu ≥ 1,
which has complementary cumulative distribution function
(ccdf) This burst size

P [ηu > k] =
{

(1/z0)k 0 ≤ k < ru

0 k ≥ ru.
(30)

Then, the mean burst size is the sum of its ccdf as follows.

E[ηu] =
∞∑

k=0

P [ηu > k] =
1− (1/z0)ru

1− 1/z0
(31)

c) Comparison with other work: [26] proposed a Markov
chain of the queue size similar to the above except that
it (a) assumes different service rates for different states,
(b) ignores the transition when the retry limit is exceeded, and
(c) has a finite buffer. Then, the distribution of queue size Qu is
determined by numerically solving balance equations and the
distribution of burst size is approximated by the (time average)
distribution of min(Qu, r) conditioned on Qu > 0. One
drawback of that approach is that it does not admit a closed-
form solution for the distribution. Hence, it is computationally
costly due to matrix calculation on each iteration when solving
the fixed point, especially when the buffer size is large.

Using the fixed-point model (9)–(10), we investigate the
mean burst size E[ηu] determined from two Markov chains of
queue size distribution: ours in Fig. 1 and the one in [26]. To
have fair comparison, Lu is assumed to be 0 and the buffer
capacity is set to be large (100 packets). The highest difference
in E[ηu] between two Markov chains occurs when the network
load is light and the arrival rate of source u is reasonably
high. We simulate such a scenario, specifically one with one
saturated source and one unsaturated source with the arrival
rate changing from small to large.

It is not explicitly stated in [26] how the service rate in each
state is determined. Since it is constant for states greater than
ru, we assume that the service rate at state k satisfies

1/µk = E[Au] + T s
u |ηu=k, ∀k ≥ 1 (32)

where T s
u |ηu=k is the duration of a successful transmission of

a burst of k packets, given by (1) with ηu = k.
The results in Fig. 2 shows that E[ηu] from our Markov

chain is closer to the simulation than that from the Markov
chain of [26]. At this light load, the truncation to an occupancy
of 100 packets is insignificant, and Lu = 0; hence, the two
Markov chains only differ in whether the service rate µk is
constant or given by (32). We believe the inaccuracy of [26]
is because (32) neglects the fact that some fraction of the
access delay E[Au] has already elapsed by the time state k is
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Fig. 2. The average burst size E[ηu] as a function of the arrival rate of an
unsaturated source λu. (Unsaturated stations: Poisson arrivals with rate λu,
Nu = 1, lu = 100 Bytes, Wu = 32, ru = 7; Saturated stations: Ns = 1,
ls = 1040 Bytes, Ws = 32, ηs = 1.)

reached, and so should not be reflected in (the reciprocal of)
the transition rate. Since the true mean transmission time is
the sum of an increasing term and a decreasing term, it is not
clear a prior whether the constant rate µu or the increasing
rate (32) would be a better model.

Another possible source of error is in obtaining the burst
size distribution from the queue occupancy distribution. In [26]
the burst size distribution was approximated by the time
average distribution of min(Qu, r) conditioned on Qu > 0.
However, the burst size depends on the queue size not at a
typical point in time, but at a service instant. Thus, the weights
given to different queue occupancies should be proportional to
µkP [Qu = k], rather than P [Qu = k]. In our model, µk is
independent of k and so these become equivalent.

D. Throughput of saturated sources

The throughput in packets/s of a saturated source s ∈ S
is the average number of packets successfully transmitted per
slot divided by the average slot length [2]

Ss =
E[ηs]τs(1− ps)

E[Y ]
. (33)

E. Model summary

Our model from previous sections is summarized as follows.
At low load, E[ηu] = 1 for u ∈ U; hence, the fixed point

consists of (9), (10) and (26).
At high load, E[ηu] (u ∈ U) depends on the distribution of

queue size which involves the access delay; hence, the fixed
point includes not only (9), (10) and (26) but also the delay
model (12)–(22) and the burst size model (27)–(31).

The outputs px, τx, Ss and E[Du] can be determined by iter-
atively solving the fixed point numerically and applying (33).

Consistency of the model: For our model to be physically
meaningful, the rate of successful channel accesses per second
of source u should be less than that of a saturated source with
the same CWmin, m, and K.3 When all sources have equal

3It is not trivial that a saturated source achieves higher throughput than an
unsaturated one; a network of only unsaturated sources can obtain a higher
throughput than one of saturated sources [2, Fig. 3] because of the lower
collision rate. However, within a given network, a saturated source gets a
higher throughput than an unsaturated one with the same parameters.

TABLE I
MAC AND PHYS PARAMETERS FOR 802.11b SYSTEMS

Parameter Symbol Value
Data bit rate rdata 11 Mbps

Control bit rate rctrl 1 Mbps
PHYS header Tphys 192 µs
MAC header lmac 288 bits

UDP/IP header ludpip 160 bits
ACK packet lack 112 bits

Slot time σ 20 µs
SIFS Tsifs 10 µs
AIFS Taifs 50 µs

Retry limit K 7
Doubling limit m 5
Buffer capacity 50 packets

CWmin, m, and K, this implies that for all s ∈ S and u ∈ U,

λu

E[ηu]
<

Ss

E[ηs]
(34)

For situations where the burst arrival rate λu/E[ηu] does not
satisfy (34), an alternate instance of model (9)–(34) should be
used, in which source u is replaced by a saturated source.

IV. NUMERICAL EVALUATION AND DISCUSSION

To validate the model (9)–(10),(12)–(22),(26)–(31), and
(33), it was compared with simulations (using ns-2.33 [30]
and [31]) and, where possible, two existing models [5], [7].

We simulated networks of unsaturated and saturated sources
sending packets to an access point using DCF and EDCA. All
sources use the user datagram protocol (UDP). Unsaturated
sources use either Poisson or quasi-periodic traffic (CBR with
randomness in inter-arrival time). Saturated sources receive
CBR traffic faster than they can transmit. We use the 802.11b
parameters in Table I. The Tx and T s

x in (1) are

Tpx = Tphys +
lmac + ludpip + lx

rdata
, x ∈ S ∪ U

Tack = Tphys + lack/rctrl

Simulation results are shown with 95% Student-t confidence
intervals [28]. In some figures, the confidence intervals are too
small to be seen.

A. Validation and comparison with existing DCF models
Here our model is compared with existing models for

heterogeneous traffic [5, 7] using 802.11 DCF. To apply our
model to DCF, we adjusted the backoff decrement rule by
replacing T s

x and Tx in (10a) and (16) by (T s
x+σ) and (Tx+σ).

1) Summary of two benchmark models: We first recall the
models in [5] and [7].

a) Markov chain: The model in [5] is based on a
Markov chain similar to that of [2], with additional states for
unsaturated sources. It assumes that unsaturated sources have
minimal buffers; therefore, when a packet arrives at a busy
source, it will be dropped. This causes the collision probability
computed from this model to be smaller than that of models
with non-zero buffers, such as our model.
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b) Mean-based: In [7] the mean-based approach is used
for heterogeneous traffic where the attempt probability of an
unsaturated source is multiplied by the probability ρ that the
source having a packet to send. For saturated sources, ρ = 1.
Unsaturated sources are assumed to have infinite buffers.

It will be shown later in Figs. 3 and 4 that the results of
this model are not very accurate in settings we consider. We
propose a modification to the model [7] which replaces ρ by

ρslot =
λ(w̄u + E[Ru])
Ss(w̄s + E[Rs])

, (35)

where the numerator is the mean number of slots per second in
which an unsaturated source has a packet, and the denominator
is the mean total number of system slots per second; Ss and
λ are the throughput of a saturated source s and the arrival
rate of an unsaturated source u; w̄u and E[Ru] are the mean
number of backoff slots and attempts that a packet from source
u encounters before being successfully sent; and w̄s and E[Rs]
are the corresponding values for source s. In (35), the service
time of source u is not used and hence not involved in the
fixed point equations as it is in [7]. The proposed modification
improves the match between the model of [7] and simulated
values of the collision probabilities and throughput, but the
match to mean access delay remains poor.

2) Validation: We simulated networks of Nu identical
unsaturated sources sending packets of size lu with Poisson
arrival of rate λ, and Ns identical saturated sources sending
packets of size ls. We varied Nu, Ns, λ and lu. All sources
have the same MAC parameters 〈CWmin = 32, η = 1〉.

a) Scenario 1: The collision probability and throughput
of a saturated source, and the collision probability and mean
access delay of an unsaturated source are shown in Fig. 3
as functions of Nu, parameterized by Ns. These figures show
results from our model as well as from [5], [7] and simulation.

Our model and the model [5] accurately capture the increase
in collision probabilities when Ns and Nu increases, and the
resulting decrease in throughput and increase in mean access
delay. However, collision probabilities and mean access delay
from [7] are much higher than those of the simulation.

b) Scenario 2: The collision probability and throughput
of each saturated source, and the collision probability and
mean access delay of an unsaturated source are shown in Fig. 4
as functions of lu, parameterized by λ. Results are obtained
from our model, [5], [7], and simulation.

Figure 4 shows that results from our model correctly capture
the increase in collision probability with increasing lu and λ,
and the resulting decrease in throughput and increase in mean
access delay. As for Scenario 1, the model in [7] overestimates
the collision probabilities and mean access delay.

This scenario violates the zero-buffer assumption of [5],
which hence becomes inaccurate when the packet arrival rate
of unsaturated sources is 50 packets/s. That model predicts a
high packet drop rate at high traffic load, which causes the
collision probabilities to be underestimated.

In summary, our model for a network with both unsaturated
and saturated sources developed in Section III is simple and
versatile, and provides results more accurate than existing
models when buffers are large.
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Fig. 5. Throughput of a source of type s1 and s2 and mean access
delay of a source of type u1, Scenario 3. (Unsaturated stations of type u1:
Poisson arrivals with λu1 = 10 packets/s, lu1 = 500 Bytes, ηu1 = 2;
Unsaturated stations of type u2: Poisson arrivals with λu2 = 45 packets/s,
lu2 = 100 Bytes, ηu2 = 5; Saturated stations of type s1: ls1 = 1200 Bytes,
ηs1 = 1; Saturated stations of type s2: ls2 = 800 Bytes, ηs2 = 2.)

B. Validation in 802.11e EDCA

1) Scenario 3: We simulated networks with 4 traffic types,
denoted u1, u2, s1 and s2, of which the first two are
unsaturated. The number of sources N , burst size η and packet
size l are distinguished by subscripts u1 to s2. Unsaturated
sources of types u1 and u2 have arrival rates λu1 and λu2.

QoS parameters 〈CWmin, η〉 of sources of types u1, u2, s1
and s2, respectively, are 〈32, 2〉, 〈32, 5〉, 〈96, 1〉 and 〈96, 2〉.

The throughput of a source of type s1 and s2, and the mean
access delay of a source of type u1 are shown in Figs. 5(a)
and 5(b) as functions of the number of sources per type.

From Fig. 5(a), the throughput of a saturated source of type
s1 is less than that of type s2. This is because types s1 and s2
have the same CWmin but type s1 has smaller TXOP limit and
larger packet size. Our model provides a surprisingly accurate
estimate of the throughput.

Fig. 5(b) shows that our model provides a reasonably accu-
rate estimate of the mean access delay despite its simplicity
compared with Markov chain based models. The model also
predicts the access delay of sources of type u2 with accuracy
similar to that of type u1.

2) Scenario 4: We simulated networks of Nu identical
unsaturated sources sending bursts of ηu packets of size lu
with the packet arrival rate λ, and Ns identical saturated
sources sending fixed bursts of ηs packets of size ls.

QoS parameters 〈CWmin, η〉 of unsaturated and saturated
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Fig. 3. Collision probabilities, throughput, and mean access delay for DCF, Scenario 1. Figs. 3(a), 3(c) and 3(d) clearly show that our model is much more
accurate than the model in [7]. (Unsaturated stations: Poisson arrivals with rate λ = 10 packets/s, lu = 100 Bytes, Wu = 32, ηu = 1; Saturated stations:
ls = 1040 Bytes, Ws = 32, ηs = 1.)
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Fig. 4. Collision probabilities, throughput, and mean access delay for DCF, Scenario 2. Figs. 4(b) and 4(d), respectively, show clearly that our model is
much more accurate than the models in [5] and [7]. (Unsaturated stations: Poisson arrivals with rate λ, Nu = 10, Wu = 32, ηu = 1; Saturated stations:
Ns = 2, ls = 1040 Bytes, Ws = 32, ηs = 1.)
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Fig. 6. Mean access delay and throughput when Ws and ηs are scaled
together, Scenario 4. (Unsaturated stations: “quasi-periodic” traffic with rate
λ = 10 packets/s, Nu = 10, lu = 200 Bytes, Wu = 32, ηu = 1; Saturated
stations: Ns = {1, 3, 5, 7}, ls = 1040 Bytes, Ws = ηsWu.)

sources, respectively, are 〈32, 1〉 and 〈32ηs, ηs〉.
The packet inter-arrival times of unsaturated sources are set

to be uniformly distributed in the range 1/λ±1%. This quasi-
periodic model represents voice traffic (which is often treated
as periodic CBR traffic [32]), subject to jitter such as that
caused by the operating system. Explicitly including this jitter
is necessary to avoid “phase effect” artifacts in the results.

The throughput in packets/s of a saturated source is shown
in Fig. 6(a) as a function of ηs, parameterized by Ns. When
ηs increases, there are fewer bursts from saturated sources
contending for the channel, which decreases their collision
probability. As a result, the throughput increases.

One of our model’s contributions is to capture the residual
time of busy period during which a burst arrived Tres,u, which
was not important in DCF and has often been overlooked in
EDCA models. Fig. 6(b) shows the mean access delay of a
burst from unsaturated sources with and without Tres,u in the
access delay models under the same scenario. As seen, when
ηs is large, Tres,u has significant effect on delay estimation.

Also from Fig. 6(b), when ηs increases, for Ns > 1, there
is a local minimum access delay. Initially, the dominant effect
is the decrease in collisions due to the larger backoff window
Ws of saturated sources. For larger ηs, the increase in residual
time Tres,u dominates this. This suggests there is an optimal

value for ηs where the access delay of unsaturated sources is
minimum. This qualitative effect is not captured by models that
neglect Tres,u. More importantly, Fig. 6 shows that increasing
Ws and ηs together can benefit both unsaturated and saturated
sources. Although the optimal value of ηs may vary in different
scenarios, in most cases, ηs of 2 provides an improvement in
the throughput of a saturated source and a reduction in mean
access delay of unsaturated sources. Our model can be used
to estimate the optimal ηs in this scenario.

V. APPLICATION OF THE MODEL

To demonstrate the usefulness of our model, we will use it
to determine the distribution of access delay experienced by a
burst from an unsaturated source. This is useful for tasks such
as determining the appropriate size for jitter buffers.

For tractability, here we approximate K and m to be infinite
in the whole model and bu = 1 in the delay model. Simulation
results show that this gives accurate estimates of delay in the
typical range of interest, from 10 ms to 1 s.

A. Analysis of access delay distribution

Note that access delay distribution can be calculated using
transform methods. The generating function of ccdf of access
delay can be derived from its probability mass function (pmf).
The distribution can then be obtained by numerical inversion
of the z-transform, using the Lattice-Poisson algorithm [27].
The details are not illuminating and hence referred to [23].

1) Approximation method: It is more informative to con-
sider a simple approximate model of the access delay. The
total burst access delay is the sum of many random variables:
the backoff delays at each stage. However, at particular points,
the ccdf of the access delay can be estimated accurately, from
which the remainder can be estimated by interpolation. We
will now derive such an approximation.

Let Wmed(k) be the median number of backoff slots used by
bursts which succeed at the kth backoff stage (starting from
k = 0). Since the number of slots at each stage j, Uuj , is
symmetric about its median M [Uuj ] = (2jWu − 1)/2, the
median of their sum is

Wmed(k) =
k∑

j=0

M [Uuj ] =
(

2k − 1
2

)
Wu − k + 1

2
. (36)

Note that Wmed(k) is larger than (2k − 1)Wu − k, the
maximum number of backoff slots that could be experienced
by a burst that succeeds at stage k−1 or earlier. It is possible
for a burst which succeeds at stage k + 1 or later also to
experience Wmed(k) backoff slots but the probability of that is
small, especially if pu is small. Thus the unconditional ccdf
of experiencing Wmed(k) backoff slots is slightly below the
following upper bound

ccdfW (Wmed(k)) ≤ 1−



k−1∑

j=0

(1− pu)pj
u +

1
2
(1− pu)pk

u




= pk
u

(
1 + pu

2

)
, (37)
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which becomes tight for pu ¿ 1.
So far, this gives a good approximation for the ccdf of the

number of backoff slots experienced. This can be related to the
actual delay distribution by approximating the duration of each
backoff slot by its mean, and adding the additional overhead of
each stage. Thus, the delay associated with Wmed(k) backoff
slots is approximately

D(Wmed(k)) ≈Wmed(k)E[Yu] + kE[Cu] + E[Tres,u] + E[T s
u ]

=2kWuE[Yu] + k(E[Cu]− E[Yu]/2) + K ≡ f(k)
(38)

The approximation becomes tight for large k by the law of
large numbers. This implies k ≈ f−1(D(Wmed(k)), and so
when D = D(Wmed(k)) for some k,

ccdfD(D) ≈
(

1 + pu

2

)
pf−1(D)

u (39)

It turns out that (39) is a good approximation for any delay
D ≥ D(Wmed(0)).

However, for delay D < D(Wmed(0)), which corresponds
to the total number of backoff slots from 0 to Wu/2 − 1,
a much better approximation is possible. Note that the most
likely way to back off for a small number of slots is to back
off once, which gives a uniform distribution of the number of
slots. Thus for j = 0, 1, . . . , Wu/2− 1, the ccdf of a delay

D(j) = jE[Yu] + E[Tres,u] + E[T s
u ]

is approximately

ccdfD(D(j)) ≈ 1− (1− pu)
j + 1
Wu

= 1− 1− pu

Wu

(
1 +

D(j)− E[Tres,u]− E[T s
u ]

E[Yu]

)
.

(40)

Thus, we propose the approximation that finds the ccdf from
(40) for delays less than D((Wu − 1)/2), and from (39) for
larger delays.

2) Power law delay distribution: In the proposed model,
with unlimited retransmissions, the distribution of burst access
delays has a power law tail (AtkP (D > t) → 1 as t →∞ for
some A, k). Although the true delay cannot be strictly heavy
tailed when retry limit is finite, the approximation holds for
delays in the typical range of interest, from 10 ms to 1 s [33].

This power law arises since the duration and probability of
occurrence of the kth backoff stage increase geometrically in
k. This is distinct from the heavy tailed delays in ALOHA,
which are caused by heavy-tailed numbers of identically
distributed backoffs. Although the latter effect is very sensitive
to the assumption of infinite retransmissions and the lack of
burst fragmentation, 802.11 can be usefully modeled as heavy
tailed even with typical limits of 6 to 8 retransmissions.

Note from (38) that f(k) = 2kWuE[Yu] + O(k), where
h(m) = O(g(m)) means that there exists a C such that for
all sufficiently large m, |h(m)| < Cg(m). Thus, by (39), the
complementary CDF of a large delay D is approximately

ccdfD(D) ≈ 1 + pu

2

(
D

WuE[Yu]

)log2(pu)

(41)

That is, the distribution has power law tail with slope log2(pu),
which increases (becomes heavier) with increasing congestion,
as measured by the collision probability pu. This is consistent
with the more detailed calculations of [34]. This insight would
not be obtained by the direct use of the z-transform.

3) Excessive queueing delay: One application of the pre-
ceding result is to determine the congestion level at which
the expected queueing delay for unsaturated sources becomes
excessive. Although “excessive” will depend on the specific
application, we will use the criterion that the expected queue-
ing delay is infinite in our model with no limit on the BEB.
If each source is assumed to implement an M/G/1 queue, then
this corresponds to the service time having infinite variance.

Consider a log-log plot of the ccdf of a random variable
D whose ccdf is the right hand side of (41). The minimum
(steepest) slope for which the variance of D becomes infinite
is −2 [34]. The right hand side of (41) suggests that this slope
is log pu/ log 2. Thus the variance of D is infinite when pu ≥
2−2 = 1/4. Under the model (11) and (33)–(34), we will
now derive the minimum number of saturated sources Ns for
which this occurs; that is, the Ns such that, for any number of
unsaturated source Nu with arbitrary arrival rate, unsaturated
sources using the same backoff parameters as saturated sources
will have pu ≥ 1/4. Let us start with the following lemma,
proved in Appendix A.

Lemma 1: Let s and u denote an arbitrary saturated and
unsaturated source. Under the model (11) and (33),

τs

τu
=

SsE[ηu]
λuE[ηs]

1− τs

1− τu
.

If, in addition, (34) holds then pu > ps.
Theorem 2: Consider the model (11) and (33)–(34), with all

sources using the same backoff parameters (Wx = W,∀x ∈
S ∪ U). If

Ns ≥ 1 +
log(3/4)

log(1− 4
3W+2 )

(42)

then for any Nu ≥ 1 and λu > 0, the variance of the random
variable whose ccdf is the right hand side of (41) is infinite.
The proof is in Appendix A. Surprisingly, the sufficient con-
dition for infeasibility (42) depends only on W , the minimum
contention window, and not settings such as channel data rate,
traffic of real-time source, or the TXOP limit.

From (41), the distribution of an unsaturated source’s access
delay Du under the model (11)–(34) has a tail which is
approximately power law, given by the right hand side of (41).
Hence, under the condition (42), the variance of the access
delay Du is predicted to be infinite.

Note that the variance of the delays in the real system will
not be infinite, due to the truncation of the backoff process.
However, the high variability is enough to cause significant
degradation of the user experience.

B. Numerical validation and discussion

This section is to validate: (i) approximation method of
determining access delay distribution; (ii) the slope of the
distribution curve’s tail; (iii) the condition (42) for the infinite
variance of unsaturated sources’ access delay.
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Fig. 8. Access delay distribution of unsaturated sources. (Unsaturated
stations: Poisson with λ = 10 packets/s, Nu = 1, lu = 100 Bytes, Wu = 32,
ηu = 1; Saturated stations: Ns = 8, ls = 1040 Bytes, Ws = 32, ηs = 1.)

The simulated network is the same as that in Section IV.
In the simulation, all sources have the retry limit of 7 and the
doubling limit of 5.

1) Validation of the distribution of access delay: The distri-
bution of unsaturated sources’ access delay determined from
approximation and z-transform methods and simulation are
shown in Fig. 7. Although assuming infinite retransmission,
both the approximation and z-transform methods provide ac-
curate estimates in the typical range of interest, from 10 ms to
hundreds of ms. The approximation is of comparable accuracy
to the z-transform method.

2) Slope of distribution curve’s tail: The straight line in
Fig. 7 shows the slope log2(pu). It captures the trend of the
distribution curve reasonably well in the typical delay range
from tens to hundreds of ms.

3) Validation of Theorem 2: From (42), when W is 32 as
in 802.11 DCF, the minimum number of saturated sources
required for infinite variance of unsaturated sources’ access
delay is 8. This is validated in Fig. 8 which shows the
access delay distribution of unsaturated sources from NS-2
simulation. As seen, the slope of distribution curve’s tail is
slightly greater than −2 in the typical range of interest, from
tens to hundreds of ms. This implies that these delays will
occur as often as if the system had a power law tail with
infinite variance.

VI. CONCLUSION

We have provided a comprehensive but tractable fixed
point model of 802.11 WLANs with both unsaturated and

saturated sources and shown that it provides accurate estimates
of delay, throughput and collision probability in comparison
with two existing models. We have proposed a closed form
approximation for the distribution of the queue size of un-
saturated sources, which is sufficiently accurate at low queue
occupancies to predict the burst size distribution.

Using the model to investigate the interaction between these
two traffic types, we have briefly shown that “fair” service
differentiation can be achieved based on two QoS parameters,
TXOP limit and CWmin. Moreover, a simple method to ap-
proximate access delay distribution has been proposed. From
this, the slope log2(pu) of distribution curve’s tail has been
obtained and used to determine the lower bound on the number
of saturated sources at which excessive queueing delay will be
seen by unsaturated sources of arbitrary load, when all sources
use the same MAC parameters.

APPENDIX A
PROOF OF THEOREM 2

Proof of Lemma 1: Dividing ps from (11c) by pu from
(11c), we have

1− pu

1− ps
=

1− τs

1− τu
(43)

Moreover, by (33),

τs =
Ss

E[ηs]
E[Y ]
1− ps

(44)

Dividing (44) by τu from (11b), and applying (43) gives

τs

τu
=

SsE[ηu]
λuE[ηs]

1− pu

1− ps
=

SsE[ηu]
λuE[ηs]

1− τs

1− τu
(45)

which establishes the first claim.
By (34), this implies τs > τu, whence pu > ps by (43).

Proof of Theorem 2: The result is a consequence of
Lemma 1 and the following observations, which will be
established below.

1) All else being equal, ps is increasing in Nu.
2) If there are Nu = 0 unsaturated source and

Ns ≥ 1 +
log(3/4)

log(1− 4
3W+2 )

(46)

then ps ≥ 1/4.
3) If pu > 1/4 then the variance of the random variable

whose ccdf is the right hand side of (41) is infinite.

These can be shown as follows:

1) This follows from (11c) since τu ∈ [0, 1], and τs is
decreasing in ps.

2) When Nu = 0, (11c) becomes ps = 1 − (1 − τs)Ns−1.
Thus ps ≥ 1/4 if

τs ≥ 1−
(

3
4

)1/(Ns−1)

. (47)

Conversely, (11a) decreases in ps, and so ps ≥ 1/4 if

τs ≤ 4
3W + 2

(48)
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Combining (47) and (48), ps ≥ 1/4 if

1−
(

3
4

)1/(Ns−1)

≤ τs ≤ 4
3W + 2

which upon rearrangement gives (46).
3) If pu > 1/4, then the random variable whose ccdf is the

right hand side of (41) has a tail heavier than kD−2
u for

some k, and hence infinite variance.
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