
1

Network Utility Maximisation with Packet
Corruption

Lachlan L. H. Andrew and David A. Hayes

This draft is a work-in-progress.

Abstract— Find out how much a source should back off its
rate if some of its packets are corrupted.

I. INTRODUCTION

TCP is often used over links with significant loss not
caused by congestion, such as wireless links. To handle such
links, TCP variants have been proposed which do not respond
to loss in the way standard TCP does [1]. DCCP provides
a mechanism to signal that packets have been corrupted.
Even if corruption loss can be distinguished from congestion-
related loss, loss causes inefficiency, and the question arises,
what rate a flow should send at for a given level of loss.
This paper finds the transmission rates which maximise the
performance (“utility”) of the network in the presence of loss,
and remarkably show that flows with loss should often transmit
at a higher rate than those without loss, while to achieve
proportional fairness, corruption-related loss should be ignored
entirely.

The paper is structured as follows: an overview of related
work that addresses the problem of erasures in TCP type
environments, followed by an extension of the NUM frame-
work to cater for erasures which includes two case studies,
retransmitting erased packets and Forward Error Correction
(FEC), and finally a conclusion of the findings.

II. RELATED WORK

TCP carries most flow controlled traffic across the Inter-
net. The flow rate of modern TCP has been found to be
proportional to 1/

√
p, where p is the probability of packet

loss [2], [3]. Since standard TCP uses packet loss as a signal
indicating congestion, packet loss due to corruption prevents
sources reaching their “ideal” rate. Wireless communication
links have drawn attention to the question of what rate Internet
traffic sources should send when the corruption probability is
relatively high.

A. Loss-tolerant TCP

Over the last decade there have been many proposals on
how to make TCP more tolerant to erasures that are not
due to congestion. Some proposals, such as [4], isolate the
error prone link from the rest of the network and correct link
errors locally. TCP Westwood[5] operates in a similar fashion
to TCP=RENO, except that when duplicate or a timeout
occurs, ssthresh is not halved, but set to an estimate of

the available bandwidth based the average rate ACKs were
being received just prior to the loss. FAST-TCP [6] and TCP
Vegas[7] seek to decouple the congestion and error control
mechanisms using delay as an indicator of congestion. LT-
TCP [1] uses Explicit Congestion Notification (ECN) signals
and a hybrid FEC/ARQ to help tolerate erasures due to cor-
rupted packets. TCP-ELSA [8] uses Explicit Loss Notification
Messages (ELN) from a wireless base station to indicate a
transmission based loss, as opposed to a congestion based loss,
only invoking the TCP congestion control algorithm when the
loss is due to congestion.

FEC was at one time considered computationally imprac-
tical for transport layer protocols implemented in software.
Higher speed computers, and the use of erasure codes rather
than full FEC codes have made them a practical tool.

III. NETWORK UTILITY MAXIMISATION FRAMEWORK

Let Ui(xi; εi) be the total “utility” obtained by a user i
which sends data at rate xi [bits/s] (xi min ≤ xi ≤ xi max), of
which a fraction εi is corrupted by the network. In this analysis
it will be assumed that εi is a parameter that is independent
of optimisation process.

Kelly [9], [10], followed by Low [11], pioneered the ap-
proach of determining rates by maximising the sum of the
utilities obtained by users, subject to the constraint that no
link is overloaded. That is, solving

max
x

∑
i

Ui(xi; εi) (1)

s.t. Rx ≤ C (2)

where C = (cl) with cl the capacity of link l, and R = (rli)
with rli = 1 if user i’s data uses link l.

In the original work, ε was implicitly assumed to be 0,
yielding Ui(xi) as a function of one variable. The problem
is decomposed through the dual problem of maximising the
Lagrangian

L(x, p) =
∑

i

Ui(xi)−
∑

l

pl

(∑
i

rlixi − cl

)
, (3)

over x ≥ 0 given p, and then minimising over p ≥ 0. The
Lagrange multipliers, pl, can be thought of as a “price” that
the network assigns to each link.

Each source solves its own sub-problem

∂L(x, p)
∂x

= U ′
i(xi)−

∑
l

rlipl = 0 ∀i (4)

2

by setting
xi = (U ′

i)
−1(qi) (5)

where qi =
∑

l rlipl is the sum of the prices of the links it
uses.

Similarly, each link solves its part of the dual problem,
setting

∂L(x, p)
∂pl

=
∑

i

rlixi − cl = 0 ∀l. (6)

For example, this can be achieved by a gradient projection
method, giving

pl(t + 1) =

[
pl(t)− γ

(∑
i

rlixi − cl

)]+

. (7)

where [·]+ = max(·, 0) and γ ∈ (0, 1] is a step size parameter.
Note that users need not all have the same utility function,

although they typically typically will to ensure fairness. This
paper assumes all users have the same utility function.

IV. UTILITY MAXIMISATION WITH CORRUPTION LOSS

Assumptions
• Corrupt packets still cause congestion. This is true in the

common case that the loss is on a last-hop wireless access
link. It is not true in the other common case of a multi-
hop mesh network.

• Sources can identify the fraction of loss due to corruption.
Where stated, it will also be assumed that individual
losses can be classified as congestion related or corruption
related; in the remainder of the paper, it is only required
that the fraction be known.

• Corruption probability is unrelated to congestion level.
That is not the case if corruption is due to excess colli-
sions, or the physical layer adapts its coding according
to congestion.

• Links have fixed capacity. Again, this depends on the
physical layer; on short timescales, it may not be true
due to MUD or adaptive coding.

• Link prices are zero unless the link is fully utilised, in
which case link prices are non-negative.

• Greedy sources,
If erasures occur, each user’s utility is reduced by an amount

depending on the erasure rate. The optimal rates now become

xi = (U ′
i)
−1(qi; εi) (8)

where U ′
i(·; ε) = ∂Ui(xi; ε)/∂xi and (U ′

i)
−1(·; εi) is the

inverse of U ′
i with respect to the first variable.

The optimal rate to send in the presence of erasures depends
only on how much a non-zero erasure rate reduces the user’s
utility. We now consider two cases.

This work asssumes that corrupt packets still cause their
share of congestion, travelling through the network to the
receiver. This is typical of download over wireless access
links where corruption is most likely on the final link to
the receiver, however, it may not necessarily follow where
corruption occurs elsewhere on the path through the network.

A. Case 1: Retransmit corrupt packets

If no bit in a corrupt payload is trusted, the obvious response
is to discard the packet and ask for it to be retransmitted. That
is, packets are as good as lost, and we simply know that the
“loss” is not due to buffer overflow. Thus, though a source
transmits at rate xi, it only achieves utility for rate xi(1− εi):

U(xi; εi) = U(xi(1− εi); 0). (9)

If erasures are carried through the network, xi is still the
rate from source i seen through the network. The Lagrangian
is

M(x, p) =
∑

i

Ui(xi(1− εi); 0)

−
∑

l

pl

(∑
i

rlixi − cl

)
(10)

giving the optimality conditions for the dual problems as

∂M(x, p)
∂x

= (1− εi)U ′
i(xi(1− εi); 0)−

∑
l

rlipl = 0 ∀i

(11)

and

∂M(x, p)
∂pl

=
∑

i

rlixi − cl = 0 ∀l (12)

The price update rule to enforce (12) is identical to the one if
there were no erasures (6).

Since qi =
∑

l rlipl, (11) can be rewritten as

qi = (1− εi)U ′(xi(1− εi); 0)

solving for xi gives

xi =
1

1− εi
(U ′)−1

(
qi

1− εi
; 0
)

.

Thus, by (8),

(U ′)−1(qi; εi) =
1

1− εi
(U ′)−1

(
qi

1− εi
; 0
)

. (13)

B. Case 2: Sources use “channel coding”

An alternative to asking for packets to be retransmitted is to
add redundancy to the transmitted data in the form of forward
error control coding (FEC) [?].

Consider again the case in which the corrupted packet carrys
no useful information. Burst erasure correction codes, such
as linear block codes [12], may be constructed to correct up
to n − k losses, where n is the number of encoded blocks,
and k the number of encoded blocks required to retrieve the
sent data. If packet erasures occur with probability, ε, and the
erasure correction code perfectly matches network erasures
(n− k)/n = ε, the utility again becomes (??).

In practice we require (n − k)/n > ε to account for the
random nature of packet erasures. This is less efficient than
simply retransmitting corrupt packets, however, transmission
across networks with high bandwidth-delay products benefit

3

from the quicker correction of erasures. A robust mechanism
will still need to be combined with an ARQ mechanism.

Consider again the case in which the corrupted packet car-
ries no useful information. This forms an information-theoretic
burst-erasure channel. If bursts are removed by interleaving
data, each bit position becomes a binary-erasure channel with
erasure probability ε. Since this binary-erasure channel has a
capacity of 1 − ε bits per symbol, the utility again becomes
(9).

In some applications, such as uncoded perceptual data like
PCM audio, partically corrupt packets may still be useful. If
corrupt packets on average carry useful information δi then

U(xi; εi, δi) = U(xi(1− (1− δi)εi); 0). (14)

Except where noted, this is equivalent to a system which gets
no value from corrupt packets, but has a slightly lower loss
rate, ε̃i = (1− δi)εi.

From here on, we will consider a single source, and drop
the subscript i.

C. Interpretation

The factor of 1/(1 − ε) can be interpreted as the source
getting to retransmit the packets “for free”. However, the
congestion price must also be scaled up. In particular, for a
lossed based protocol, each congestion-related loss must carry
the weight of 1/(1− ε) lost packets.

This is the only place in the paper in which (a) individual
losses must be able to be classified as corruption/congestion
(b) a system in which corrupt packets have equal value δ is
different from a system with reduced corruption loss rate.

The above change can be implemented in a similar way to
HS-TCP and H-TCP, by simply changing the factor by which
the window is reduced in response to each loss, while keeping
the additive increase rate unchanged. The difference would be
that the factor depends on ε rather than the window size or
time since the last loss. However, increasing the factor by
which the window is reduced increases the burstiness of the
traffic. Simpler solutions can be obtained for special cases of
the utility function, U , as described in Section VI.

V. CONDITIONS FOR LOSS TO REDUCE FAIR RATE

The intuitive behaviour of corruption errors always reducing
the fair rate corresponds to

1
1− ε

(U ′)−1

(
q

1− ε
; 0
)
≤ (U ′)−1 (q; 0) . (15)

for all q > 0 and ε ∈ [0, 1). Call a utility function satisfying
(15) rate reducing. A utility function satisfying (15) with the
inequality reversed is rate increasing. If it is both rate increas-
ing and rate decreasing, it is rate neutral. It is possible for a
utility function to be neither rate increasing, rate decreasing
nor rate neutral.

Theorem 1: Let g(r) = (U ′)−1(1/r).
A utility funciton is rate reducing if and only if

ag(r) ≥ g(ar) (16)

for all a ∈ (0, 1] and r > 0. A sufficient but not necessary
condition for U to be rate reducing is that g be convex on
[0,∞).

A utility funciton is rate increasing if and only if

ag(r) ≤ g(ar) (17)

for all a ∈ (0, 1] and r > 0. A sufficient but not necessary
condition for U to be rate increasing is that g be concave on
[0,∞).

Proof: Setting a = 1−ε and r = 1/q in (15) yields (16).
To see that convexity of g is sufficient, note that g(0) = 0
since. . . . To see that it is not necessary, consider

g1(r) =

{
r2 0 ≤ r ≤ 1
3r/2− 1/2 r > 1.

The conditions for rate increasing follow similarly, using
g2(r) = g−1

1 (r) to show that concavity is not necessary.

VI. MO AND WALRAND’S α-FAIRNESS

A useful family of utility functions introduced in [13] has
the form

U(x) =

{
log x α = 1
(1− α)−1x1−α α > 1

(18)

giving

U ′(x) = x−α (19)

For α = 1, this yields Kelly’s proportional fairness [10],
for α → ∞ it yields max-min fairness and for α → 0
it seeks to maximise throughput without regard to fairness.
Most importantly, in the “minimum potential delay” case [14]
corresponding to α = 2, it yields a good approximation to
TCP Reno’s behaviour [15]. Similarly HS-TCP [16] targets
α = 1.2.

For these utility functions, (13) and (19) give

1
1− ε

(U ′)−1

(
q

1− ε
; 0
)

= (1− ε)1/α−1q−1/α (20)

= (1− ε)1/α−1(U ′)−1(q; 0) (21)

The optimal rate is simply obtained by calculating the
congestion window, w, based only on the packets received and
ignoring corruption loss, but then instead of using w directly
in the sliding window mechanism, using

ŵ = (1− ε)1/α−1w. (22)

For example, TCP would increase CWND by 1 every RTT as
usual, and halve CWND on loss as usual, but scale CWND
by (1− ε)1/α−1 to obtain ŵ which is then the actual number
of packets are allowed to be outstanding in the network. This
incurs minimal additional computation, requires no table look-
up, and does not increase the burstiness of the rate.

A. Interpretation
Corollary 1: A function of the form (18) is rate increasing

if and only if α ≥ 1, rate decreasing if and only if α ≤ 1 and
rate neutral if and only if α = 1.

Several special cases are of interest.

4

a) Max-min fairness, α → ∞: Since Max-min fairness
aims to give a high rate to the flow with the lowest rate,
regardless of the cost incurred, we would expect α → ∞
to give a fair rate, x, which depends only on the throughput
achieved, x(1− ε), without regard to the impact of the loss ε
on the price q. Indeed, (22) becomes ŵ∞ = w/(1− ε). In the
terminology of Section IV-C, this allows sources to retransmit
lost packets “for free”, without the concomitant requirement
that they respond more severly to losses.

b) Maximum throughput, α → 0: Corruption losses
waste capacity, and intuitively maximum throughput should
allocate all bandwidth to flows on a given link with the lowest
loss rates.

In the case that some flows at each link have zero loss,
(1 − ε)1/α−1 = 1 for loss-free flows (ε = 0), while it tends
to 0 for all other flows, and the bandwidth is allocated among
the loss free flows as if the lossy flows did not exist.

The case is slightly more complicated if all flows at some
bottleneck link experience some loss. In this case, (1 −
ε)1/α−1 → 0 for all flows, and it seems that (22) predicts
zero windows (and hence zero throughput) for all flows, which
clearly does not maximise throughput. However, the network’s
response does indeed ensure maximum throughput by the
way the congestion signal adapts. If the link were not fully
utilised, the congestion signal (either delay or congestion loss)
would drop to zero, and the calculated window w would rise
until the link is fully utilised. For any non-zero α, there
is are equilibrium rates that fill the link capacity. Because
(1 − ε2)1/α−1/(1 − ε1)1/α−1 → 0 as α → 0 for ε2 > ε1,
in the limit all bandwidth will be allocated to the flows with
the lowest corruption loss, and throughput will indeed be
maximised.

c) Proportional fairness, α = 1: For α = 1 the optimal
rate is completely independent of the erasure rate, ε.

FAST TCP [6] is a well-known protocol which uses delay
rather than loss as a signal of congestion, and achieves pro-
portional fairness [17], [18]. Early implementations of FAST
responded to loss in the same way that Reno does, but more
recent implementation totally ignore small amounts of loss.
The results of this section show that that is actually the most
consistent response, given its proportionally fair bandwidth
allocation.

d) TCP fairness, α = 2: Since “TCP friendliness”
corresponds to α = 2 > 1, TCP is on the max-min fair
side of proportional fairness, and again it is in keeping with
that flows should send at rate (1− ε)−1/2 times higher when
they experience non-congestion packet corruption on their final
link.

This finding goes against the traditional notion that cor-
ruption loss should cause TCP-friendly flows to reduce their
rates. That notion comes from assuming that the aim of TCP-
friendliness is to maximise throughout, whereas it is actually
to promote fairness between the rates flows achieve.

REFERENCES

[1] O. Tickoo, V. Subramanian, S. Kalyanaraman, and K. K. Ramakrishnan,
“LT-TCP: End-to-end framework to improve TCP performance over
networks with lossy channels.” in IWQoS, 2005, pp. 81–93.

[2] T. V. Lakshman and U. Madhow, “The performance of TCP/IP for
networks with high bandwidth-delay products and random loss,” IEEE/
ACM Trans. Networking, vol. 5, no. 3, June 1997.

[3] M. Mathis, J. Semke, and J. Mahdavi, “The macroscopic behaviour of
the TCP congestion avoidance algorithm,” ACM Computer Communica-
tion Review, vol. 27, no. 3, 1997.

[4] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Perfor-
mance enhancing proxies intended to mitigate link-related degradations,”
IETF, RFC 3135, June 2001.

[5] S. Mascolo, C. Casseti, M. Gerla, M. Sanadidi, and R. Wang, “TCP
Westwood: end-to-end bandwidth estimation for efficient transport over
wired and wireless networks,” in Proc. ACM Mobicom, Rome, Italy, July
2001.

[6] D. X. Wei, C. Jin, and S. H. Low, “FAST TCP: Motivation, architecture,
algorithms, performance,” IEEE/ACM Trans. Networking, vol. 14, no. 6,
pp. 1246–1259, Dec. 2006.

[7] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End-to-end congestion
avoidance on a global internet,” IEEE J. Select. Areas Commun., vol. 13,
no. 8, pp. 1465–1480, Oct. 1995.

[8] Y. Yang, H. Zhang, and R. Kravets, “Channel quality based
adaptation of TCP with loss discrimination,” in Proc. of the IEEE
Global Communications Conference (GLOBECOM’02), 2002. [Online].
Available: citeseer.ist.psu.edu/yang02channel.html

[9] F. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, pp. 33–37, 1997.

[10] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: Shadow prices, proportional fairness and stability,” J. Op. Res.
Soc., vol. 49, pp. 237–378, 1998.

[11] S. H. Low and D. E. Lapsley, “Optimization flow control I: Basic
algorithm and convergence,” IEEE/ACM Trans. Networking, vol. 7,
no. 6, pp. 861–875, Dec. 1999.

[12] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” ACM Comp. Commun. Rev., vol. 27, no. 2, pp. 24–36, Apr.
1997.

[13] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 556–567, Oct.
2000.

[14] L. Massoulie and J. Roberts, “Bandwidth sharing: objectives and al-
gorithms,” IEEE/ACM Trans. Networking, vol. 10, no. 3, pp. 320–328,
June 2002.

[15] S. Kunniyur and R. Srikant, “End-to-end congestion control: utility func-
tions, random losses and ECN marks,” IEEE/ACM Trans. Networking,
vol. 11, no. 5, pp. 689–702, Oct. 2003.

[16] S. Floyd, “Highspeed TCP for large congestion windows,” IETF, RFC
3649, Dec. 2003.

[17] S. H. Low, L. L. Peterson, and L. Wang, “Understanding Vegas: A
duality model,” Journal of the ACM, vol. 49, no. 2, pp. 207–235, Mar.
2002.

[18] L. L. H. Andrew, L. Tan, T. Cui, and M. Zukerman, “Fairness compar-
ison of FAST TCP and TCP Vegas,” in Proc. Intl. Teletraffic Congress
19 (ITC-19), 2005.

