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Abstract—Eventually, society will need to be powered almost
entirely by renewable energy sources. This will require very large
scale storage for long time periods, such as between seasons or
even between years. On these timescales, issues such as gradual
leakage of energy and price rises must be considered. This paper
considers optimal storage management schedules on these long
time scales, from the point of view of minimizing the purchase
price of electricity while meeting an inelastic demand. We show
that the two factors (leakage and price rises) have complementary
effects on the optimal storage level, which implies that peak
generation is non-monotonic when either is varied by itself.

I. INTRODUCTION

Building a sustainable and non-polluting global energy in-
frastructure is a huge task. It is not likely to be achieved in the
short term, but it must eventually be accomplished. In the long
term, society must be powered entirely by sustainable energy.
The leading renewable sources are dependent on the weather,
be it wind, sunshine or rainfall. The resulting intermittency
is a major challenge. Much work is going into developing
storage systems to provide energy during the sunless nights
and occasional windless days. However, both short- and long-
term storage is needed for a system powered entirely by
renewables [1]. The availability of and demand for energy
also vary on much longer timescales, both seasonally within
a year [2], and between years. Examples include a lack
of rainfall affecting hydroelectric generation in Portugal [3],
Brazil [4] and New Zealand [5].

Currently, fossil fuels are used as backup. For example,
Portugal’s coal consumption rose 56% year-on-year in June
2012, due to the 63% year-on-year drop in its hydroelectric
production. However, as argued in [6], if society is eventually
to be powered entirely by renewable energy then the only
alternative is to store energy for periods of many months. Such
large-scale storage can be achieved by technology such as
compressed air energy storage (CAES) [7] or the underground
storage of hydrogen generated by the electrolysis of water [1].

In this paper, we consider the optimal management of such
a long term storage system. We investigate the structural
properties of the optimal charging schedule subject to the
influence of two effects that are insignificant for short-term
storage but have a measurable influence when storing energy
on a long-term basis.

The first issue is energy leakage. Most forms of storage leak
energy on a timescale varying from hours for flywheels [8] or
months for batteries through to years for compressed hydro-
gen. This form of loss is very different from the “round-trip”
loss incurred by the charging and discharging process, and
must be managed differently. Although the latter is considered
in many studies of storage management (e.g., [9]), the former
is largely ignored.

The second issue is the fact that energy prices will rise in
real terms. Market prices are currently dominated by fluctu-
ations in demand due to economic cycles and fluctuations in
supply due to individual energy extraction projects. However,
with the advent of peak oil, there will be an inevitable upward
trend in prices driven by a fundamentally diminishing supply,
combined with the need to avoid polluting fuels.

There has been considerable work on managing energy
storage. Managing ideal storage is a “warehouse problem”,
which has been studied since the 1940s [10]. When storing
natural gas, it is common to apply receding horizon control to
a finite horizon dynamic program, known in the economics lit-
erature as the rolling intrinsic method [11]. Such models often
consider the charge/discharge inefficiency [9], [12], but do not
consider leakage. They also often treat price as a martingale,
with no upward trend. The understanding of the implications
of leakage and rising prices provided by the present paper will
assist such management policies to incorporate these important
factors.

Another factor often ignored [9], [12] is the nonlinearity in
the price of generation. Wholesale electricity markets around
the world are typically structured so that all electricity pur-
chased at a particular time is bought at the system marginal
price (SMP), which is the cost of the most expensive generator
called upon at that time. This causes the price per unit of
electricity to increase with the demand. Following [13], we
incorporate this important feature.

In this paper, we consider storage owned and managed by a
load serving entity (LSE), who must serve an inelastic demand
and purchase electricity from a separate entity or market. We
assume that the primary objective of the LSE is to minimize
the cost of purchasing electricity. However, the generation and
transmission companies are interested in minimizing the peak
generation and transmission required, and so we evaluate the
resulting charging schedules in terms of the peak generation
requirements, and also the total energy consumption.

In order to study long-term storage management, we de-
velop a new approach to studying infinite horizon problems in
which the average cost is increasing. Although good approx-
imations could be obtained by truncating the optimizations
to a suitably large finite horizon, to be sustainable we must
make decisions that are optimal not only for the next year,
next decade or even next century. We must consider the
implications on the timescale of civilizations. As suggested
by David McKay [14], a timescale of 1000 years is more
suitable. This calls for us to increase our understanding of
infinite horizon models.

After introducing the model in Section II, we consider the
implications of self-discharge in Section III and rising prices
in Section IV.
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II. MODEL

The notation in this paper will typically use upper case
letters for fixed parameters of the problem and lower case
letters for variables controllable in real time.

The grid must balance supply and demand; without energy
storage, the draw from the grid, g(t), should be able to satisfy
the demand (load) D(t) ≥ 0 at all time t, i.e., g(t) = D(t).
We consider demand to be inelastic (independent of changes
in price). Following common practice [15], [16], [17], [18], we
consider the hypothetical case that D(t) is known in advance.
Consider an energy storage system with capacity B > 0 is
installed between the generator and the user (load), allowing
the user to store energy b(t), by drawing extra power at a
rate of c(t) or consuming the stored energy at a rate of d(t).
The maximum charge and discharge rates are Cmax, Dmax

respectively. Further the storage has a charging efficiency of
η ≤ 1 and a leaks energy such that, if no charging occurs,
then b(t) = Sb(t− 1) for some S ∈ (0, 1].

The cost of drawing power g(t) from the grid is assumed
to have the form P (t)N(g(t)) for P (·) > 0 and nonlinearity
N(·), which is strictly convex increasing, to model the fact that
peak grid power increases the cost for the utility and increases
the strain on the grid. We will occasionally assume that N(·)
has the quadratic form N(g) = a0 +ga1 +g2a2/2 for a2 > 0.

This gives rise to an objective that would require the utility
to minimise its generation cost, assuming that the cost savings
by the utility will be passed on to the user by reducing the
electricity bill of the user for shifting demand. In particular,
we would like to know the optimal long term charging and
grid use schedule under arbitrary prices and arbitrary demands.
Specifically, for a long horizon T , we want to solve

arg min
g,b,c,d

T∑
t=1

P (t)N(g(t)) (1)

subject to,

b(t)− Sb(t− 1)− ηc(t) + d(t) = 0 (2a)
D(t) + c(t)− d(t)− g(t) = 0 (2b)

g(t) ≥ 0 (2c)
B − b(t) ≥ 0 b(t) ≥ 0 (2d)

Cmax − c(t) ≥ 0 c(t) ≥ 0 (2e)
Dmax − d(t) ≥ 0 d(t) ≥ 0 (2f)

with b(0) = 0, where the variables in square brackets are the
Lagrange dual variables corresponding to each constraint. Note
that capital letters denote parameters of the problem instance,
lower case letters denote decision variables and Greek letters
(except η) denote Lagrange multipliers.

If η = 1 the solutions for c and d need not be unique.
We consider only the solution in which min(c(t), d(t)) = 0
for all t, which corresponds to the storage never charging and
discharging simultaneously.

The structure of the optimal solution to this problem was
presented in [19], and is repeated here for completeness.
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Fig. 1: Annual daily demand for Victoria in 2012, from
1 January to 31 December. Note the weekly cycle, the trend for
more demand in winter (July) and isolated peaks of demand
in summer (December/January).

Theorem 1. Consider an interval [t1, t2] on which b∗(t) ∈
(0, B). There exists a constant

R = ξ∗ +

T−1∑
τ=t

Sτ
(
β∗(τ)− β̄∗(τ)

)
(3)

such that, when the storage is neither charging at maximum
rate nor discharging at maximum rate (i.e., d < Dmax and
c < Cmax) then

P (t)N ′(g∗(t))St ∈ [ηR+, R+] (4)

where R+ = max(R, 0). The left hand side is at the lower
limit of this interval when the storage is charging, c(t) > 0,
and the upper limit when the storage is discharging, d(t) > 0.

Moreover, when the storage is discharging at maximum rate,
P (t)N ′(g∗(t))St ≥ R and when it is charging at maximum
rate, P (t)N ′(g∗(t))St ≤ ηR+. When P (t)N ′(g∗(t))St is in
the interior of the interval, the storage is neither charging nor
discharging.

III. IMPACT OF SELF-DISCHARGE

On long timescales the leakage of energy and increases
in electricity price. ffect the optimal charging schedule. This
section explores the impact of leakage with constant prices,
and the following considers rising prices. Leakage is important
even on a short timescale for some storage technologies such
as flywheels, which lose up to 50% of their stored energy in
24 hours [8].

The structure will be illustrated using total daily demand
from the Australian state of Victoria throughout the year
2012 [20] (see Fig. 1). This demand exhibits both weekly
fluctuations and a seasonal trend. The average load is higher
in winter, but the load is more variable in summer with isolated
hot days causing spikes in cooling-related demand.

Since the only way leakage S appears in Theorem 1 is as
a multiplicative factor of St, it is tempting to assume that
the optimal charging schedule for S < 1 will be the same
as that for S = 1 except that the marginal price increases
exponentially where it used to be flat. Figure 2 shows this is
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Fig. 2: Optimal generation with leakage. Generation is piece-
wise increasing.

not the case. Increased leakage causes the storage to empty
and fill more frequently. As a result, intervals over which the
marginal cost is constant with S = 1 are split into multiple
intervals of increasing marginal cost, separated by downward
jumps.

The figure suggests that whenever the price decreases for
a low rate of leakage, the price also decreases for a higher
rate of leakage. Conversely, whenever the price jumps up for
a high rate of leakage, it also jumps up for a lower rate. This
is because these decreases occur when the storage is empty,
and the storage is typically empty with high leakage whenever
it is with low leakage. However, this is not always the case.

Theorem 2. The energy level bT (t) can decrease with S.

Proof: The proof will be constructive. To simplify nota-
tion, the superscript T will be omitted. Consider the function
N(g) = g2a/2, and a short sequence of demands D(t − 1),
D(t), D(t+1), with D(t−1), D(t+1) sufficiently large that
b(t − 1) = b(t + 1) = 0, and 0 < D(t) � D(t + 1), and a
capacity B large enough not to limit b(t). Further assume that
P (t) = P (t+ 1). Then b(t) satisfies

g(t+ 1) = b(t+ 1) +D(t+ 1)− b(t)S
g(t) = b(t) +D(t)− b(t− 1)S

and so the cost of these two steps is

N
(
b(t)+D(t)−b(t−1)S

)
+N

(
b(t+1)+D(t+1)−b(t)S

)
.

This is minimized either for the b(t) that satisfies

N ′
(
b(t)+D(t)−b(t−1)S

)
−SN ′

(
b(t+1)+D(t+1)−b(t)S

)
= 0

(5)
or, if that is negative, for b(t) = 0. For N(g) = g2a/2, (5) is
solved for

b(t) =
S(b(t− 1) + b(t+ 1) +D(t+ 1))−D(t)

1 + S2

Since, by construction, b(t− 1) = b(t+ 1) = 0, we have

b(t) =
SD(t+ 1)−D(t)

1 + S2
.
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(a) No leakage
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(b) 5% per month leakage
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(c) 15% per month leakage

Fig. 3: Optimal storage level as a function of time, for three
leakage rates and fixed prices. The optimal level typically
decreases as the leakage rate increases. Storage size is B =
384GWh. Note the different vertical scales.

If D(t) > SD(t + 1) then this solution is negative and so
b(t) = 0. Otherwise,

db(t)

dS
=
D(t+ 1) + 2D(t)S −D(t+ 1)S2

(1 + S2)2
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Fig. 4: Capacity vs Leakage for a given peak generation. (Note:
S is leakage per day.)

which is negative in the interval

S ∈

(√
D2(t) +D2(t+ 1)−D(t)

D(t+ 1)
, 1

]
.

which is non-empty for D(t) > 0.

A. Implications

As seen in Figure 2, the piecewise increase of generation
tends to increase peak power demand, which reduces the
ability of the storage to shave peaks of demand. Hence,
to achieve a given level of peak shaving, a more leaky
storage facility must have a higher capacity. See Fig. 4. As
a result, selecting the appropriate storage technology involves
the expected tradeoff between capacity and leakage.

However, this expected conclusion only applies when the
self discharge rate is relatively small. Remarkably, the reverse
is true when the discharge rate increases. This is illustrated
in Figure 5, which shows the peak generation required as a
function of the leakage for several storage capacities. For low
leakage, the larger storage capacities provide more smoothing
and so reduce the peak demand. However, for high leakage,
having storage larger than a threshold does not provide further
saving. Moreover, that threshold of storage capacity is smaller
as the leakage increases.

To understand why, consider lossless storage smoothing a
given demand. Once the capacity is large enough to supply
all the peaks without fully discharging, increasing the capacity
does not provide further smoothing. For leaky storage, it is not
optimal to charge the storage too much, as shown in Figure 3,
because this increases the rate of energy loss. Thus the size
of storage required to accommodate the maximum range of
states of charge decreases as the leakage increases. Results for
round-trip charge/discharge inefficiency are analogous [19].

Leakage also wastes energy. Figure 6 shows the total energy
generated as a function of the leakage for the Victorian load.
As expected, the total generation (and hence loss) initially
increases. However, as the leakage becomes very large, the

10
−5

10
−4

10
−3

5750

5800

5850

5900

5950

6000

6050

6100

6150

Leakage (1−S) 

P
e
a
k
 G

e
n
e
ra

ti
o
n
 M

W

 

 

48GWh
96GWh
180GWh
384GWh
960GWh

Fig. 5: Maximum generation vs leakage with fixed prices.
(Note: S is leakage per day.)
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Fig. 6: Total generation vs leakage with fixed prices.

total generation begins to reduce. That is again because the
optimal storage level reduces as the leakage rate increases;
since the rate of losing energy is proportional to the state of
charge of the storage, the reduction in storage level reduces the
total loss. As a result, the maximum total energy loss due to
leakage with these parameters is less than 0.1% of generation.
This is almost an order of magnitude lower than the loss due
to round-trip inefficiency reported in [19].

IV. IMPACT OF RISING PRICES

Let us now turn to the other factor that comes into play
on long timescales: the increase of prices in real terms. There
are many reasons to believe that the trend will be for energy
prices to grow faster than inflation for many decades to come.

In the short term, this may be driven by the need for further
investment in aging electricity generation and transmission
infrastructure. It is not clear how long this process will take,
or when it will need to be repeated.

Another natural reason to expect prices to increase is the
transition away from carbon-intensive energy sources towards
either renewable resources or nuclear. Where this is done by
putting a price on greenhouse gas pollution, it is clear that
it causes an increase in price, but such increases also occur
where it is done by explicit regulation.
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Fig. 7: Peak generation with rising prices and no leakage.

Even without the concern over pollution, fossil fuel energy
sources are set to become more expensive as they become
harder to extract. The recent development of “unconventional”
extraction methods for oil and gas is providing a short-term
fluctuation in this trend, but paradoxically, the current rapid
extraction of these unconventional reserves will increase the
rate at which the price rises when these reserves are also
nearing exhaustion.

For these reasons, it is safe to assume that prices will
rise over the very long term. However, this leaves open the
question of whether these price rises will be rapid enough
to affect storage management. There are two cases in which
this can occur. The first is if energy storage by individual
customers allows “panic buying” in response to short-term
price fluctuations [21]. The second, the focus of this paper,
is if storage is used to smooth seasonal fluctuations in the
availability of renewable energy. This smoothing will occur
over the timescale of months or years, during which the
underlying price can rise by a non-negligible amount.

Let us first look at the impact of rising prices on the man-
agement of ideal storage. We will take the standard economic
model that the relative rate of change of price is constant (i.e.,
that price grows exponentially), and take P (t) = (1 + Q)t.
Figure 7 shows a trend complementary to that of Fig. 5, with
the horizontal axis reversed; that is, the “ideal” case (no price
increases) is on the left this time rather than the right. Once
again, the less ideal the case is (the faster the price rise), the
less peak shaving occurs, and the less benefit there is to having
more storage.

This suggests that the use of leaky storage when prices are
rising would be doubly bad. However, as Figure 8 shows, this
is not the case. In fact, there is a dip in peak generation, which
becomes more pronounced as the storage capacity increases.

A hint as to the reason can be seen by considering the
actual generation when the price is increasing but there is no
loss. Figure 9 shows that the generation decreases between
discontinuities when the price is increasing, in contrast to the
increase seen in Figure 2 for the case of leakage with constant
prices. Intuitively, it is sensible to charge the storage early
when energy is cheaper. This suggests that the dip may occur
when the two effects “cancel out” in the sense of having a flat
generation profile between discontinuities. Since P (t) = (1 +
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Fig. 8: Peak generation with both leakage and rising prices.
Leakage 0.2% per month (≈ 6 × 10−4 per day). Note the
minimum peak generation occurs when the price increase
roughly matches the leakage rate.
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Fig. 9: Optimal generation with rising prices, without leakage.
Generation decreases between steps. Price increase 0%, 12%
and 20% per annum.

Q)t, (4) shows that this occurs when (1 +Q)tSt is constant,
that is, (1 +Q)S = 1. Moreover, the form in (3) suggests that
g∗ is the same for any Q and S such that (1 + Q)S = 1.
However, note that β∗ and β̄∗ in (3) are Lagrange multipliers,
and depend on Q and S. Hence R and g∗ may also depend
on Q and S even subject to the constraint (1+Q)S = 1. This
is investigated in Figure 10, which shows that increasing self
discharge increases the amount of peak generation required.
That is, although the fluctuations of Figures 2 and 9 have been
flattened out, they are flattened out at a higher level for large
Q and 1/S. This is not surprising, since the leakage increases
the total generation required.

Note also that minimizing the peak generation is one of
many objectives. In an energy constrained future, the most
important goal is to minimize the total energy consumption
used to meet a given demand. Even though having rising prices
can cancel the effect that leakage has on the peak generation,
it cannot avoid the fact that leakage still wastes energy. In
fact, having rising prices actually increases the amount of
energy lost. This can be seen in Figure 11, which plots the
total power generation against the loss rate for different rates
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Fig. 10: Peak generation as a function of leakage, subject to
the constraint (1 + Q)S = 1, i.e., generation is piecewise
constant.
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Fig. 11: total generation vs loss with increasing prices. Note
the conflict between obtaining minimum peak generation min-
imum total generation. B = 960GWh

of price increase. Recall that the reason for the reduction in
generation for very high loss was that it becomes optimal to
eschew use of storage altogether. However, when prices are
rising, there is an increased financial benefit in using storage,
and so it remains in use even when it incurs higher losses.

V. CONCLUSION

In contrast to most work, this paper has considered storage
for periods of months or years rather than hours. It studied
the impact of energy storage loss and rising prices on the
optimal management of energy storage. Both factors are
important when energy is stored for long periods, as required
in renewable-only systems.

Each factor reduces the ability of storage to reduce the
peak demand, but using opposite mechanisms: energy leakage
causes the optimal generation to be piecewise increasing,
whereas increasing prices cause it to be piecewise decreasing.
Hence peak shaving is greatest when the rate of price increase
approximately matches the rate of energy leakage such that, in
the absence of charging or discharging, the total market value
of the stored energy remains constant. This causes a local
minimum in the peak generation as a function of leakage rate.

Conversely, there is a local maximum in the total generation;
this is because the total generation matches the total demand
if either there is no leakage or there is so much leakage that
the storage is hardly used.
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