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We consider single-pass, lossless, queueing systems dysttede subject to Poisson job arrivals at an unknown Bsevice
rates are allowed to depend on the number of jobs in the systeto,afixed maximum, and power consumption is an increasing
function of speed. The goal is to control the state depergkamice rates such that both energy consumption and deldepte
low. We consider a linear combination of the mean job delay aedgy consumption as the performance measure.

We examine both the “architecture” of the system, which we dedma specification of the number of speeds that the system
can choose from, and the “design” of the system, which we definbeaactual speeds available. Previous work has illustrate
that when the arrival rate is precisely known, there isittbnefit in introducing complex (multi-speed) architectuyesin view
of parameter uncertainty, allowing a variable number of spé@groves robustness.

We quantify the trade®s of architecture specification with respect to robustnasalysing both global robustness and a
newly defined measure which we call local robustness.

Keywords: Parameter uncertainty; robust design; controlled singleesejueue; speed scaling

1. Introduction

Performance analysis, design and control by means of stiiclgagueing models (cf. W(11989) has
affected a variety of fields, including not only telecommunizasi and computing systems but also ser-
vice engineering, manufacturing, logistics, health-cavad trdfic and biological modelling. A typical
gueueing model abstracts unknown job arrival and servipgirements by means of stochastic processes
and distributions. The resulting dynamics of queue-lengtitkload or other performance processes are
analysed yielding performance measures that ultimatédyvefbr better design and control of the sys-
tem at handDesignof the system often refers to aff-dine specification of parameters whereasitrol

of the system typically refers to an on-line decision makiaged on state measurements (e.g. setting
service speeds). In this paper we shall use a third tarahjtecture selectigrreferring to the action of
deciding what are the design and control parameters thaivaitable to process.

Almost all of the queueing theoretic, performance anajyd#sign, control and architecture selection
literature is based on the underlying assumption that tblegiility laws of arrival and service processes
are precisely known. A few exceptions to this rule are mewiblater in this section. In practice, this as-
sumption is often too strong, especially due to the factdbédining precise a-priori parameter estimates
is not possible in many settings. Our contribution in thipgras in quantifying the fect of architecture
selection on robustness. Here the propertsobtistnessefers to the ability of the system to operate in a
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near-optimal manner even when estimates of parametersvateenot precise, or even grossly incorrect.
As this is generally a vague concept, one of the contribstifrthis paper is in proposing measures of
robustness.

Our analysis focuses on a model that is applicable to comgugiistems operating in an energy aware
speed-scaling environment. The model we consider is AB/MPS queue with state dependent service
rates. A Poisson stream of jobs arriving at ratés served by a processor sharing (PS) regime that
operates as follows: When there arpbs in the system, each job is served at a sgte, wheresy = 0.
The objective of design and control is to minimise the opegatost, defined as a linear combination
of mean delay and mean energy consumption. High service gaererally imply low job delay yet
typically incur higher computing energy costs due to the tiaat power consumption of devices is often
a strictly convex, increasing function of the processingesh

Wierman et al. (2009) and Andrew et al. (2010), in their stgdif similar models and cost objectives,
showed that when is known, a single speed architectusg € s, = ...) yields comparable performance
to an optimally tailored sequence of speeds. In that sensiep@le architecture can beffigient. The
pitfall mentioned in those studies is that in the more réal&etting in whichi is unknown, multi-speed
architectures are generally more robust. More preciselhsdire design arrival ratdgy, then a multi-
speed architecture where the speeds are optimisey fimeatly outperforms a single-speed architecture
also optimised fory in cases where the actual arrival ratediffers fromay. Andrew et al. (2010) also
discussed the service fairness along with optimality abdstness, and argued that only two out of three
objectives can be achieved at the same time, although E®treards achieving all three has since been
made by Elahi et al. (2012).

The robust multi-speed architecture in Andrew et al. (20 Eegally allows each system occupancy,
n, to have an arbitrary speagwhich is not subjected to an overall maximum bound. Such ariteature
generally does not come without additional costs of manufaty, device-footprint, control complexity
and other application specific issues. The question then nsnéow many speeds are required in order
to allow for robust speed-scaled systen@?equivalently:How does architecture selectiorffect the
robustness of the system to parameter uncertainty?

In specifying an architecture, one aspect is the number afable speeds, and another is the ability
of the control to adapt to the actual load. We consider twaweg:Fixed Allocation(FA) andAdaptive
Allocation (AA). In both regimes, the set of available speeds is fixed aigtetime, yet the way states
are mapped to speeds varies:

o Fixed Allocation (FA): There is a fixed (design-time) mapping, settfdgo be one of the available
speeds. In this case there is no run-time control calculatio

e Adaptive Allocation (AA): It is assumed that the true arrival ratg is accurately estimated at
run-time hence allowing, to be mapped to one of the available speeds in a way that catsmi
performance for the given,.

It is clear that adaptive allocation provides greater rtiess than fixed allocation, yet in many comput-
ing scenarios, this is not without additional design comipyeNote that our adaptive allocation scheme
assumes that, is estimated perfectly and that the resulting system isaadst state with that,. One
may also consider adaptive control in the sense of estignatjrand optimising the control in a time-
varying environment, yet this is not the focus of our curnsatk.

In this paper, we examine optimal designs for architecturiéis a finite available number of speeds
subject to a fixed maximum. We compare robustness measurgsdrethe AA and FA regimes. We
introduce two robustness measurgiebal robustness, applicable when nothing is known abiguand
local robustnesapplicable whem, ~ 14. These measures of system architecture robustness are impor
tant in their own right and may be applied to similar modelg &0 show numerically an interesting
counter-intuitive result: Having more speeds under the égfime can be less globally robust. fsbe-
comes sfficiently large.
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Related work: There has been extensive work on optimal control of birthttd@aocesses and re-
lated models. Low (1974) considered a similar queue but used policies to control the unknown
arrival rate to maximise the long run average expected kpar unit time. George and Harrison (2001)
considered the case where the arrival rate is known witke-stapendent service rates and developed a
numerical technique that imposes no upper bound on thecsgerate. Ata and Shneorson (2006) con-
sidered controlling both arrival and service rates to masénthe system objective, which is the average
welfare in their model. Efrosinin and Semenova (2009) lookedstightly diferent system where server
reliability is uncertain. Control for an /s system was discussed by Serfozo (1981) assuming arrival
and service rates can be chosen upon arrival based on tletaystem occupancy. Jain et al. (2005)
investigated a queue-dependent multiprocessor servitersywhich also adopts dynamic service rates.
The trade-ff between delay and energy was also studied in Goseling e2@09j in the context of a
system with multiple queues. None of these papers dealsalitistness properties in depth.

Research on speed scaling often studies the worst-casermparfce, rather than average performance.
In this context, Chan et al. (2007), Lam et al. (2008) and Blagtsal. (2008) have considered the linear
combination of delay and energy with an upper bound on thedsgénlike the present paper, they make
the usual assumption that all speeds below some upper baoarmeanissible and do not consider the
case of constrained architectures to a small finite numbgredds as we do.

Robustness, parameter uncertainty and adaptive control of queues: It appears that the field of
performance analysis and control of queues in face of paeracertainty is almost unstudied. For il-
lustration, observe the annotated bibliography, Nazgratial Pollet (2011), containing a comprehensive
list of papers in the literature dealing with parameterreation in queues. There are under 250 such
publications, and almost none of them explicitly deals withtrol in the view of uncertainty. An excep-
tion is Jain et al. (2010), dealing with robustness with eespo the probability laws of the underlying
stochastic processes using advanced point process tifeagmprehensive survey of robust control
methods in the context of operations research is in Lim e280§), yet it appears that the robustness
point of view has not yet been fully investigated in queuesteNthough that one may view the general
line of research of insensitivity (cf. Taylor 2011) as syppd robust results. Yet these are with respect
to distributions and typically not with respect to unknowentand rates.

Our contribution is mainly conceptual and numerical, yethweieve it bears significant importance
for computer system engineers as well as for future researclesign and control of systems in view of
parameter uncertainty. The remainder of the paper is orgdris follows: Section 2 defines the model
and objective function, and surveys related work. Sectiorre®gnts the robustness measure results
for both global and local robustness. The results are themsuised in Section 4 where further open
questions are put forward.

2. Model and Design Framework

2.1. Model and notations

We consider an NG/1-PS queue with state dependent service rates. Jobs arcivedang to a Poisson
process with ratel > 0. Job sizes are finite mean i.i.d. random variables indeperafethe arrival
process. Without loss of generality we assume the meanZebssiL. LetQ(t) denote the number of jobs
in the system at timé The PS scheme is as follows: At timhé& Q(t) = n, each job is served at a rate
sh/n, where the sequence of speeds; @ < s1 < S < ... is a result of the design and control of the
system.

The insensitivity of the MG/1-PS, even under speed scaling, (cf. Kelly 1979), allows ugrore
the actual shape of the job-size distribution, as it doesafiett the law of the proces3(t). In other
words, the occupancy distribution of this queue is the sasrthat of an MM/1 queue with the same
arrival and state-dependent service rates. We therefmie durselves to performance objectives that
depend only on the marginal occupancy distribution. The ggsQ(t) is represented by an irreducible
continuous time birth-death process on the state sflade...}; see for example Norris (1997). We



October 22, 2012

14:55 International Journal of Systems8eie  tdinh-JSS-robustness-v3

4 Taylor & Francis and I.T. Consultant

assumel < sufds;, S, ...} and hence(t) is positive-recurrent with a unique stationary distribag
(mo, 1,...,), m = lim,. P(Q(t) = i), satisfying the partial balance equations; = s.17.1 and
Yicomi = 1.

In this model, speeds are constrained to be within the sat,[Q]. The number of unique speeds is
specified by the architecture parametér {0, 1,2, ...} U co. For finiteK, the available set of speeds is,
M =10 = po, p1, . - - ik Mmaxd, With g < piv1 < umax. Hence there ar + 2 available speeds. K = oo,
any speed within [Qumay is allowed. We refer to the latter case@mtinuum speedrchitecture which
is equivalent to the multi-speed architecture discussatfierman et al. (2009), except that the speeds
are now constrained by an upper bound. In this case, we degnbteu, for simplicity of the notation
below.

Crabill (1972) showed that the optimal speeds are non-dsirg, hence the optimal policy would be
a threshold policy characterised by threshalds. ., 6x. Thus, for finiteK, our policies remain optimal
if we assume the speeds are monotonically non-decreasiegn@pping ok, to M can be then specified
by a non-decreasing sequence of integer thresholds suich £héy < 0; < 0, < -+ < Ok < Oky1 = .
For a given queue occupanny> 0, letJ(n) = maxXk : 8¢ < n} with J(0) = —1. Now the speed-scaling
mapping is given bys, = pjn)+1. For example, iK = 5,605 = 17 andds = 20 thens;g = Si9 = Sy = s
while 5,7 = uz andsy; = us.

The performance metric we consider is the average runnirigpensinit time. The running cost of a
single job consists of two parts: the sojourn time in the &ys{Twaiting) @and the energy consumed by
processing itE). LetZ/A denote the running cost for a single job. TR&A = BTwaiing+ E. The average
running cost per job is theB[Z]/A = BE[T] + E[E]. The average running cost per unit time — which we
will henceforth refer to as simply “cost” — is then achievedrbultiplying both sides byt and applying
Little’s law (Little 1961) to give

z=E[Z] = BE[N] + E[Py], (1)

whereP,, denotes the power consumption rate when the occupamcyfisis objective has been studied
previously in both the stochastic context (George and Banr2001, Wierman et al. 2009) and in worst-
case contexts (Pruhs et al. 2008). The parangataticates the relative cost of delay. This can be omitted
by the appropriate choice of units, but we retain it to emjseathat the relative weights given kband

P, are problem specific. OfteR,, is a strictly convex non-decreasing function of the speed, &e
assume that

Pn = ﬁ, a > l. (2)
For a given architecture specification, the design variatdesbe cast as the vectors

,u:(lll,--.,ﬂK), 92(91,...,9K),

which may be taken to be infinite vectorkif= co. Then withg anda fixed, the cost can be written as a
function — denotedy (u, 6, 1) — of the architecturé, the design variables and the load. pet A/y;
fori=1,....K+1,letp = [Tj_yp; " fori=1,...K,letl ={i:ie{L2.. .. K+1p#1and

let7 ={i:ie{l,2...,K+1},p =1}. Thenz(u. 6, ) is

b1 — 6701 - i) + (o — pHOTy gy — pfitatt
o Zpi.—l(ﬁ( 1= 6ip (L= pi) + (pi - p; )+p o; Q) -

ﬂ.
i (1-p)? 1-pi '

¢ (OO g g
iel
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with the normalising constant
HI i1 -1
o = Zp| 1= 4 _ + Zp| 1(0I 0 1) . (4)
iel iel

This follows from a straightforward (yet tedious) computas as detailed in Appendix A. Observe that
in practical situations, the right hand summations (d¥glin both (3) and (4), remain empty.

2.2. Design Framework

In our framework the design variables are optimised for adatermined arrival rately < pmax (“d”
stands for design), yet at runtime there is often anothévahmate 1, < umax (“@” stands for actual),
where typicallyly # 1a. FOrK < oo, in theFixed Allocation(FA) case, lefuf ,(1q) andog ,(14) denote
the optimising design variablesandé of

min zx (u, 6, Aq),
w0

subject to the coordinates pfandd being ordered. Hence giverdasign assumptioaf 14, the optimal
design would bé;. o(14). 0z a(da))-

In the Adaptive Allocation(AA) case, use the fixed componeift,(1q) as above and consider the
optimisation

mgin Zk (g a(4d), 6, Aa).

Denote the optimiser & (14, 1a). Hence given aesign assumptioof A4, the optimal design remains
HEA(Ag) as above, and further based on actual measuremengsthie optimal control i9}, 5(Ad, Aa)-

For a given architecture, solving the fixed allocation degigyblem or the adaptive allocation control
problem involves optimisation ak (-). ForK < co we have implemented the optimisation using a Gauss-
Seidel method with a local-search refinement. In cas€ ef co we use dynamic-programming. More
details are in Appendix B.

Note that in the continuum speed ca$e £ o) under Fixed Allocation, the thresholds aie= i,
which allows (3)—(4) to be represented as

= Smeim= SO s ST e

2.3. Practical Implication

The foregoing model was motivated by the study of a multitagkiperating system on a processor with
typical power saving features. Multitasking operatingtegss allow multiple jobs to be run in parallel.
A simple but reasonable model is to treat the sharing pokcgracessor sharing. Hence, we model the
dynamics as an fG/1 processor sharing queue with a constant arrival tated occupancy-dependent
service rates, in the staten. As explained in Wierman et al. (2009), processor sharirigsensitive to
the job size distribution even when the service rate dependse occupancy. This greatly simplifies the
evaluation of any performance metric depending only ondtgibution, as considered here.

We are specifically interested in the case that speed variaiachieved using dynamic voltage and
frequency scaling (DVFS) in a CMOS (complementary metal-exddmiconductor) integrated circuit.
The processing speed of such systems is often assumed to fo@rtoal to the clock frequency,
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although issues such as cache performance have an ingréafiirence. The power consumption is
often modelled as proportional to the cube of the clock fegapy. This is because the dynamic power in
CMOS is proportional t&/? f whereV is the scalable voltage, which was historically scaled propnal

to clock frequency, as mentioned in Chandrakasan et al2j19®wever, some CMOS devices do not
scaleV this way, as power is closer to quadratic in spédtVierman et al. 2009).

DVFS is becoming less important because Dennard’s scalimdDennard et al. 1974) is no longer
used, resulting in less flexibility in scaling voltages. Howee future architectures may still result in
power that is super-linear in speed. Multiple processing @vchitectures are increasingly adopted by
current processor designs, replacing DVFS (Kumar et al. R0@%nulticore architectures, speed scaling
of paralleling workloads can be achieved by turning corearahdt. If cores are heterogeneous, this can
also result in poweP, being a convex function of the speed as considered hererdiicgdo Hofstee
(2005).

Prior work such as George and Harrison (2001) or Wierman €2@09) assumed no upper limit of
system speed. However, as technology limits always plaegpar bound on the processing speed, we
constrain all speeds, to be in the range [Qumax for some given constanimax. Since our interest is to
see the ffect of the number of speeds, we constrain the total numbgresfds to b& + 2, with speeds
from M. Our decision variables include thespeeds:; to uk.

In the CMOS situation we are modellingfi@irent decision variables are decided on fiedént phases
in the design process. We assume ghare fixed properties of a given piece of hardware. We assume
they must be chosen when that chip is designed, before ibwiiknvhat load it will be subjected to. The
threshold; are typically implemented in software in the operating sgstand can be determined later
based on a real-time estimate of the load, g8.dh contrastK might determine the size of a software-
visible register that stores the current speed, or mighgrdene the number of external pins required to
signal this information; for compatibility reasons, thidarmation may need to be held constant over an
entire family of chips sharing the same instruction set igecture (ISA). For that reason, we concern
ourselves more with robustness resulting from the choi¢€ @ opposed to robustness of the individual
Hi-

Note that this objective places no cost on switching betvepereds, as this switching cost is relatively
small in comparison with the energy cost or the delay costs aksumption is made due to the fact that
the typical switching time between speeds is in the orde0of $econds as shown in an experiment by
Hartman (2008), while the job service time is often in theevrof seconds.

3. Quantifying Robustness

In this section we present the main contribution of our pageantifying the &ects of parameter un-
certainty due to discrepancies betwegrand, for various architecture specifications. We consider the
error metricsAga(-) andAaa(+) for fixed allocation and adaptive allocation respectively:

Ara(da, Ad, K) = Zx (ura(Ad), Oz a(Ad), a) — Zoo (U p(Aa), O A(1a), Aa). (6)
AAA(/la, Ad, K) =2ZK (IIFA(ﬂd)a HZA(/ld, /la), /1a) - Zoo(ﬂTZA(/la)’ 6’;A(/la), /la)- (7)

Both metrics compare the cost under a given architectureifggion and design for a giveiy to
the minimal possible cost.,(upA(4a), O A(4a), 4a), for this A4, attained withK = co and Ay = Aa.
The metrics capture the distance to the optimal cost indigdtie éfect of parameter uncertainty on
performance: a low value implies “more robustness”.

We have calculated the error metrics for a variety of contimna of 15, 1g and architecture specifica-
tionsK for “FA” and “AA’ cases. In all cases we useehax = 1, anda = 3. Our results are best presented
by fixing A4 at one of several values:3(design for light load), & (design for medium load) or.D
(design for moderately heavy load). We considered two wahi¢he relative cost of delag; 0.01 and
0.1. The former places more importance on energy savings tieaattier. \We then varied, over a fine
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Figure 1. Fixed Allocation (FA): The error metric, or the diste to the optimal cost using policy optimised for logdwith the reality of
load 1, and fixed thresholds.

grid within (0, 1) and evaluated the error metrics for each value. Note Hedt such evaluation requires
carrying out two optimisations, one fag(-) and one foiz,.(-), as outlined in Appendix B.

Since we are looking at the error metric over the whole possdoigel; € (0, umax), assessment af
over that range may be viewed as measugludpal robustnessrhis is in contrast to thiocal robustness
defined later in this section.

3.1. Global Robustness in Fixed Allocation and Adaptive Allogath Designs

The Fixed Allocation (FA) case: Figure 1 shows the metriga(41a, Ag, K) for increasing architectures

K from K = 0 (“Only umax’) and K = 1 (“Two speeds”) up to a continuum of speeds, for a system
that uses both the speeds and the thresholds optimisety.fdfote that all examples inclugénax as
one (the largest) of the available speeds; this is in contcathe single-speed “gated static” policy
studied in Wierman et al. (2009), in which the single speed o@timised for the design load, and the
“continuum” case could use arbitrarily high speeds as tlweipancy increase.

Recall that Wierman et al. (2009) observed substantialyatgr robustness when using a system de-
signed with no constraints on the number of speeds than wéieg a system with a single optimally
chosen speed. This was explained by the fact that, if the ldoadhis much higher than the design load,
then the mean occupancy will be higher; since the speed isca@asing function of the occupancy, this
increased occupancy causes the average speed used to dre &éghk appropriate for a higher load.

It is natural to expect that a similar conclusion would apjlthe model studied here, in which the
system is forced to include the maximum spegdy as one available speed, and that increasing the
number of available speeds will monotonically increasertimistness. When the actual load is low,
this is indeed the case. In fact, having even a single additispeed (“Two speeds”) yields most of the
benefit obtained from having a continuum of speeds.

However, as the actual load approachgsy designs with more available speeds actually become
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Figure 2. System occupancies and general costs when acaghilsl very close tamax (1a = 0.9umay)- This figure compares costs f&r= 0
andK = 3 with low design loads

monotonicallylessrobust, in the sense that the penaliya(1a, 14, K) for mis-estimating the load in-
creases. This is most apparent when the design load is loviitémaveight () is given to delay.

This paradox is explained by noting that fixed thresholds weesluWhen the load is almog,ax,
the average processing speed must also be alm@st Thus the system in whichmay is the only
speed available is optimal. If more speeds are availabd, tihe system will need to maintain a higher
occupancyN to cause speefhx to be used.

If the second highest spegad_1 is much less thapg, then the occupancy will be increased by almost
Ok, increasing the cost by almg#iy, as illustrated in Figure 2. This figure shows the system ocaypan
and cost at a very high, (15 = 0.98umay for small A4 so that the second highest speeds are relatively
small. The mean occupancies and costs are computed for twe:da3 only use@max (K = 0) and (b)
optimal settings for designed loag for a four speed systenk(= 3). When only running withimay, the
costs are constant regardlessigf However, for multiple speed system, the occupancy is aszd by
roughly6x and the cost is increased by rougfilix .

The Adaptive Allocation (AA) case: Results for adaptive allocation are in Figure 3. Note thae her
the robustness monotonically increases as the numberitdlaiesspeeds increases, as intuition suggests.
As expected, the penalty for mis-estimating the load is bnedr the design loadly. However, it also
tends to 0 when the actual load approacigs, even though this is far fromy. This is again because
at such high loads, the system must nearly always operafgeatigmax, Which is implemented in all
designs regardless af;. The resulting bi-modality raises the interesting questibmwhat speeds are
“maximally robust” in the sense of minimising the maximumeox, of Aaa(4a, A4, K). This optimum
depends o, but Figure 3 suggests that it corresponds roughly to desjghie system to work at a load
of aboutumay/3. This is in contrast to the common practice of designing CRWsIésktop computers
with a second speed that is very close to the maximum speed.

Comparison of FA and AA: Adjusting the thresholdg occurs on a much slower time-scale than
adjusting the actual speeds. Implementing dynamic thidshocurs a non-negligible additional cost
to software development. To decide whether or not to imptgrdgnamic thresholds, it is important to
guantify how much benefit it provides over using dynamic é&tigpendent) speeds with static thresh-
olds. Figure 4 shows this improvement for several paramet@binations. This suggests that dynam-
ically adjusting the thresholds may not be justified unlessdbsign load is well below the maximum
load for which the system can be stable.

3.2. Quantitative measure of “Local” Robustness

When the load is known approximately but not perfectly, tlesigner may still be interested in the
sensitivity of costs to minor deviations @f from A4. For this we introduce the notion of local robustness
defined in terms of the curvature of the cost penaltiore precisely, define tHecal robustnessf the
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Figure 3. Adaptive Allocation (AA): Distance to the optimalst using policy optimised for loagh with the reality of loadl; and adjustable
thresholds.
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Figure 4. Benefits in cost reduction of having adjustablesholds at runtime.

system withK + 2 speeds optimised for a load &f as

d?Ara(das Ag, K)
4z

R(1q, K) = {

-1
} . ®)
Aa=Ay

It is sensible to use the second derivative here insteadeofirt, since the first derivative is approxi-
mately zero at the design load Afa were defined ag (uf A(Ad), O A(Ad), Aa) = Z (EA(Aa), O A(Aa), Aa),
it would be exactly zero.

For a given setting, we estimaR ,, by taking a least square fit (Boyd and Vandenberghe 2004) of
a parabola to the fference in costs over 40 equally spaced points in the int@ayat tmax/50, g +
Umax/50]. The value ofumay/50 was chosen to be large enough to avoid numerical errorsmnyall
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Figure 5. Local robustness of a fixed allocation (FA) as fiomcof the number of speeds: R(.)

enough allowing an accurate estimate of the second demvatiote that such numerical evaluation of
the local robustness is computationally intensive, sirsaEhgoint used for the least squares fit requires
solving an optimisation.

As in the global robustness cases described above, we eofigiat load, medium load or moderately
heavy load. We also consider three valueg:00.01 and 01 as analysed for global robustness as well
as an intermediate value of0%. We generally expect that allowing more speeds in theitaathre
specification will make the system more “locally robust”. Thesgtion is how quickly local robustness
improves with the complexity of the architecture. Answesia Figure 5.

To identify how many speeds are enough, we seek the “knedieofuirve ofR(-) against the number
of speedK + 1. In the curve we label the axes with powers of 2, since thisrdgnes the number of
bits required by the instruction set architecture (ISA).é\biat the final point on the axis, labelled “inf”,
is the continuum case when there is no constraint on the sp@bd results show that the knee is most
pronounced for the smalledty and appears to be at around six sped€is=( 5). Indeed, eight speed
(K = 7) gives robustness almost indistinguishable from thahefdontinuum case. This suggests that it
is suficient that the ISA allocate three bits to the register spewfthe current speed.

In general, it appears that the local robustness is inerganily when there are few speeds, and
decreasing imMyg when there are many speeds. Similarly, the local robustregststto increase &%
increases.

4. Conclusion and Outlook

This paper has identified and explained an anomaly in the peaioce of queues with speed scaling
optimised for an inaccurate estimate of the load. Tlisot causes the performance of such a speed
scaler operating at high load to degrade as the number dabiaispeeds increases. Specifically, this
is due to inappropriate choice of speed at runtime, makimtifficult to quantify the improvement in
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robustness due to such an increase.

However, when the error in the load estimate is low, the perémce does monotonically improve as
the number of levels increases. This suggests that it may $slppe to define a meaningful measure of
“local robustness” which could be used to determine the rermabspeeds required, as we have proposed
in this paper.

This work assumed very simplified models. For example, thecspeading functiorP, only considers
active power in CMOS circuits, whereas leakage power isfo@upan increasing fraction of total power
consumption (Kaxiras and Martonosi 2008). The fornPgfis also suitable for cases where the speed
of processing is proportional to the clock speed, whereagruprocessors are heavily influenced by
delays due to memory access. Nevertheless, we expect thiatipainsight to hold more generally: If
the speed selection algorithm is based on inaccurate pseaestimates, then having a wider range of
speeds available may be counter-productive.
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Appendix A. Objective Cost
The analysis in this appendix follows the notation and as$iomg of Section 2.

Proposition A.1:  For K < oo, when it exists, the stationary distributi¢mo, 1, ...) of Q(t) is

AT
7T = 70 P3(r) Pj(n)ﬂ’ (A1)
forn> 1land,
GI HI 1 -1
7o = Z/% 1T +ZP. 16 -6 . (A2)
iel iel

Further the expected cost=zE[Z] is represented by equation (3).

Proof : From the partial balance equations, the stationary prababflbeing in staten is
n—o6;
Tt = Tg_,; ne{6i-1+1,6}

Induction onn yields (A1). Nownyg is obtained by k= 72, 7

Ok+1 -1

)

_ 01 Nn—61 91 n 6o Op— 91 n—6k

o = § .01 § PPy ~F § plpz oot E plpz - PK41
L n=0

n=0,+1 n=0,+1 n=0k+1

[ Oks1-1 -1
- Zpﬁplsz 1+p22p” "+t i Kzl: p'}lff} :

n=61 n=6, n=6k
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The summations above simplify due to

_plﬁl =01 .
EZP”“lz{ i Pi*L (A3)
n=6,_; -6, pi=1

(o]

yielding (A2). The expected costis= BE[N] + E[Pn] = Z(ﬁn + Pp)mn, in which
i=0

K+1

E[N] — ﬂoZpl 1 Z npn i 1’
n=60i_1
and,
K+1
E[Pn] = FOZP. M Z pr 0
n=0;_ 1+1
Note that
. (0i-1 - bip;"~ o (A -pi) + (oi - l+9' gi_l) 21
Z o = @-p)? ol (Ad)
n=6i-1 51616 — 1) — 61-2(61-1 - 1)], pi=1

Equation (3) can be obtained by substituting (A3) and (A4) thie expression fdE[N] andE[Py]. O

Appendix B. Numerical Optimization Algorithms

B.1l. K=0

WhenK = 0, the system runs only with the maximum service atgx for all 5 except fori = 0. In
this case, the system is simply anfMy1 queue with arrival ratd and service ratgmax and the cost is
deterministic for a given:

Z:BE[N]+E[PN]:ﬁZnﬂn+Zﬂn,umax=ﬁ’u — + (L= moliax = B——

0 1 max max

1 + /l,umax (B1)

B2 1<K<ow

Recall that we want to solve:
mien z (1, 0, A4, 8, @).
My

It is known that the optimal policy is of threshold type asy@d in Crabill (1972) and mentioned in
George and Harrison (2001). Thus, we enforce th& monotonically non-decreasing. We can then
use the Gauss-Seidel method (or block coordinate decermtjlied in (Bertsekas 1999, section 2.7)) to
numerically find the optimal settings (speeds and thresholds

In general, the search starts with an initial feasible gie$s#°). The search was performed K2
dimensions, each dimension being an element of speed vednothreshold vectof. Each iteration



October 22, 2012 14:55 International Journal of Systems8eie  tdinh-JSS-robustness-v3

International Journal of Systems Science 13

consists of the search for new values for &l Zariables, and is divided intok2phases. At each phase,

it is a single dimension optimisation, holding the most rdea@mputed values of other variables. For

each iteration, searches were performed for all speeds flidstreen thresholds. The iterations continue

until the maximum change betweeu %) and (**,6<"1) is less thare = 10719 indicating that £*,6%)

has converged tq,0"). The searches for speeds and thresholds were performetféngdt techniques.
In particular, phaseis= 1, ..., K of iterationk calculate

k _ - k k ko k-1 k-1. k-1 k-1
o= argmin ze (Uy, - - M g s Migqs s Mg 507 e 0) (B2)

K <uk<ykl
M SHSHiL g

This phase uses the new values that were found@ir < j) in this iteration while it retainsz'j“1 @i>1)

from the previous iteration. Using the assumption that thst ¢unction is uni-modal (as numerical

evidence suggests it is), golden section search was useaibtdaieu}‘. The search range was bounded

between the most recent adjacent spepﬁ@ !‘;11], with the convention thatyk.1 = umaxandug = 0.
Phases + K = K +1,..., 2K calculate

ok = argmin z(uk, ... 105 08 Lo 0L . (B3)
o <ol

Finding 6 cannot use Golden Section search due to the shape of cost asti@fiuof 6. Numerical
errors sometimes cause it to enter an incorrect search thagdoes not include the global optimum.
Since thresholds are naturally discrete, an exhaustivetseas instead performed over a truncated state
space for such cases. Again, the search range was bounaezeheft | 60<°!]. For the search of, a
sufficiently largegk ,, to be considered infinite was chosen.

Unfortunately, the discrete nature eh sometimes causes the convergence to a local optimum. To
overcome this problem, we introduced a heuristic to refineréisalts. When Gauss-Seidel iterations
returns [z, #) and an estimate of the optimal cost, an exhaustive search was then perfoforel the
neighbour points of.. We used each point as an initial guess for new Gauss-Seidalidns. If any of
these searches returned a cost that is lessztthe process would be repeated with this new point at the
centre of the search region. In all of these seargih@ss kept unchanged. This refinement process was
repeated until it found a point with a lower pthan all its neighbours. The fingt,(#) andz were taken
as (u*,0") andz'.

An experiment was performed to test this heuristic. About@sand combinations aof, 8 and K
were chosen. A procedure was performed to each combinatibnanhousand initial feasible points
which were generated randomly. If the heuristic worked ttoereach combination, it would return the
same optimal settings for all the initial guesses. This aetlim 92.8% of cases, which suggests that
this search is seldom stuck in poor local optima. For someemé cases (specifically foris very
small), there were dlierences among the optimal settings; however, in these tteseptimal costs were
approximately the same, and on average 78.8% of initiaifEapoints converged to the lowest cost
point.

B3 K=o

The caseK = oo refers to ourcontinuumarchitecture representing the case where no restriction in
number of speeds is applied. Speeds can be chosen freelyn \Withima,] for each state of system
occupancy. A feasible policy = [u1,u2,...] maps the speed; € [0, umay t0 System staté, where
system state refers to the number of jobs in the system. Thmalgpolicy »* is a feasible policy that
minimises the average cost per unit timdt is a classic infinite horizon control for state dependent
M/M/1 queue problem which was numerically solved using dynamaggamming with relative value
iteration and uniformisation of the service rate.

At iterationk, therelative value functiorfor statei as the number of jobs in the system is, according
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to Bertsekas (2005),

. . Z(|,/.,l) M . Mmax— M . .
he«(i) = min + he1(i—1)+ he1(i) + he(i+1
k(i) N T T T 1(i-1) E— 1(i) . 1(i+1)
Z(S, - A
i) | K os-p+ By (s) hes(S +1)
ueOpmad | A + Umax A + Hmax A+ Umax A+ Umax
. . . L . . Bi+ u® .
wherez(i, 1) is the uniformised cost at staitevith speedu, given byz(i, u) = ,andS =0isa
Hmax
reference state. Als— oo, hy converges to thl* satisfying
. . . i, . - . .
Zah()= min | H oy B F (i + 1),
ueOpmad | A + Umax A + Mmax + Umax A+ Umax
where the optimal cost is
. Z(S, _
7= min | 28K K (so1)s BmT By gy he (S + 1))
peOpmad | A + max A + HUmax A+ Umax A+ Umax
With S = 0, the optimal cost can be evaluated as
A
7 = Hmax _pr) 4 h*(1) (B4)
A+ fmax A+ Umax

and the optimal speed in statés the “argmax” of the latest optimisation overin calculatinghy(i).
Thus, every state has its own speed. We started the iteratibr{lw(i)} = 0 and performed the search
for a truncated state space at each iteration. The iteratmped whenh, — h_1| < € = 10719,
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