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We consider single-pass, lossless, queueing systems at steady-state subject to Poisson job arrivals at an unknown rate.Service
rates are allowed to depend on the number of jobs in the system, up to a fixed maximum, and power consumption is an increasing
function of speed. The goal is to control the state dependentservice rates such that both energy consumption and delay arekept
low. We consider a linear combination of the mean job delay and energy consumption as the performance measure.

We examine both the “architecture” of the system, which we define as a specification of the number of speeds that the system
can choose from, and the “design” of the system, which we define as the actual speeds available. Previous work has illustrated,
that when the arrival rate is precisely known, there is little benefit in introducing complex (multi-speed) architectures, yet in view
of parameter uncertainty, allowing a variable number of speeds improves robustness.

We quantify the tradeoffs of architecture specification with respect to robustness,analysing both global robustness and a
newly defined measure which we call local robustness.
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1. Introduction

Performance analysis, design and control by means of stochastic queueing models (cf. Wolff 1989) has
affected a variety of fields, including not only telecommunications and computing systems but also ser-
vice engineering, manufacturing, logistics, health-care, road traffic and biological modelling. A typical
queueing model abstracts unknown job arrival and service requirements by means of stochastic processes
and distributions. The resulting dynamics of queue-length,workload or other performance processes are
analysed yielding performance measures that ultimately allow for better design and control of the sys-
tem at hand.Designof the system often refers to an off-line specification of parameters whereascontrol
of the system typically refers to an on-line decision makingbased on state measurements (e.g. setting
service speeds). In this paper we shall use a third term,architecture selection, referring to the action of
deciding what are the design and control parameters that areavailable to process.

Almost all of the queueing theoretic, performance analysis, design, control and architecture selection
literature is based on the underlying assumption that the probability laws of arrival and service processes
are precisely known. A few exceptions to this rule are mentioned later in this section. In practice, this as-
sumption is often too strong, especially due to the fact thatobtaining precise a-priori parameter estimates
is not possible in many settings. Our contribution in this paper is in quantifying the effect of architecture
selection on robustness. Here the property ofrobustnessrefers to the ability of the system to operate in a
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near-optimal manner even when estimates of parameter values are not precise, or even grossly incorrect.
As this is generally a vague concept, one of the contributions of this paper is in proposing measures of
robustness.

Our analysis focuses on a model that is applicable to computing systems operating in an energy aware
speed-scaling environment. The model we consider is an M/G/1-PS queue with state dependent service
rates. A Poisson stream of jobs arriving at rateλ is served by a processor sharing (PS) regime that
operates as follows: When there aren jobs in the system, each job is served at a ratesn/n, wheres0 = 0.
The objective of design and control is to minimise the operating cost, defined as a linear combination
of mean delay and mean energy consumption. High service rates generally imply low job delay yet
typically incur higher computing energy costs due to the fact that power consumption of devices is often
a strictly convex, increasing function of the processing speed.

Wierman et al. (2009) and Andrew et al. (2010), in their studies of similar models and cost objectives,
showed that whenλ is known, a single speed architecture (s1 = s2 = . . .) yields comparable performance
to an optimally tailored sequence of speeds. In that sense, asimple architecture can be sufficient. The
pitfall mentioned in those studies is that in the more realistic setting in whichλ is unknown, multi-speed
architectures are generally more robust. More precisely, fixsome design arrival rate,λd, then a multi-
speed architecture where the speeds are optimised forλd greatly outperforms a single-speed architecture
also optimised forλd in cases where the actual arrival rateλa differs fromλd. Andrew et al. (2010) also
discussed the service fairness along with optimality and robustness, and argued that only two out of three
objectives can be achieved at the same time, although progress towards achieving all three has since been
made by Elahi et al. (2012).

The robust multi-speed architecture in Andrew et al. (2010) generally allows each system occupancy,
n, to have an arbitrary speedsn which is not subjected to an overall maximum bound. Such an architecture
generally does not come without additional costs of manufacturing, device-footprint, control complexity
and other application specific issues. The question then remains:How many speeds are required in order
to allow for robust speed-scaled systems?Or equivalently:How does architecture selection affect the
robustness of the system to parameter uncertainty?

In specifying an architecture, one aspect is the number of available speeds, and another is the ability
of the control to adapt to the actual load. We consider two regimes:Fixed Allocation(FA) andAdaptive
Allocation (AA). In both regimes, the set of available speeds is fixed at design time, yet the way states
are mapped to speeds varies:

• Fixed Allocation (FA): There is a fixed (design-time) mapping, settingsn to be one of the available
speeds. In this case there is no run-time control calculation.

• Adaptive Allocation (AA): It is assumed that the true arrival rateλa is accurately estimated at
run-time hence allowingsn to be mapped to one of the available speeds in a way that optimises
performance for the givenλa.

It is clear that adaptive allocation provides greater robustness than fixed allocation, yet in many comput-
ing scenarios, this is not without additional design complexity. Note that our adaptive allocation scheme
assumes thatλa is estimated perfectly and that the resulting system is in steady state with thatλa. One
may also consider adaptive control in the sense of estimating λa and optimising the control in a time-
varying environment, yet this is not the focus of our currentwork.

In this paper, we examine optimal designs for architectureswith a finite available number of speeds
subject to a fixed maximum. We compare robustness measures between the AA and FA regimes. We
introduce two robustness measures:global robustness, applicable when nothing is known aboutλa, and
local robustnessapplicable whenλa ≈ λd. These measures of system architecture robustness are impor-
tant in their own right and may be applied to similar models. We also show numerically an interesting
counter-intuitive result: Having more speeds under the FA regime can be less globally robust asλa be-
comes sufficiently large.
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Related work: There has been extensive work on optimal control of birth-death processes and re-
lated models. Low (1974) considered a similar queue but used price policies to control the unknown
arrival rate to maximise the long run average expected reward per unit time. George and Harrison (2001)
considered the case where the arrival rate is known with state-dependent service rates and developed a
numerical technique that imposes no upper bound on the service rate. Ata and Shneorson (2006) con-
sidered controlling both arrival and service rates to maximise the system objective, which is the average
welfare in their model. Efrosinin and Semenova (2009) looked at a slightly different system where server
reliability is uncertain. Control for an M/M/s system was discussed by Serfozo (1981) assuming arrival
and service rates can be chosen upon arrival based on the current system occupancy. Jain et al. (2005)
investigated a queue-dependent multiprocessor service system which also adopts dynamic service rates.
The trade-off between delay and energy was also studied in Goseling et al. (2009) in the context of a
system with multiple queues. None of these papers deals withrobustness properties in depth.

Research on speed scaling often studies the worst-case performance, rather than average performance.
In this context, Chan et al. (2007), Lam et al. (2008) and Bansal et al. (2008) have considered the linear
combination of delay and energy with an upper bound on the speed. Unlike the present paper, they make
the usual assumption that all speeds below some upper bound are permissible and do not consider the
case of constrained architectures to a small finite number of speeds as we do.

Robustness, parameter uncertainty and adaptive control of queues: It appears that the field of
performance analysis and control of queues in face of parameter uncertainty is almost unstudied. For il-
lustration, observe the annotated bibliography, Nazarathy and Pollet (2011), containing a comprehensive
list of papers in the literature dealing with parameter estimation in queues. There are under 250 such
publications, and almost none of them explicitly deals withcontrol in the view of uncertainty. An excep-
tion is Jain et al. (2010), dealing with robustness with respect to the probability laws of the underlying
stochastic processes using advanced point process theory.A comprehensive survey of robust control
methods in the context of operations research is in Lim et al. (2006), yet it appears that the robustness
point of view has not yet been fully investigated in queues. Note though that one may view the general
line of research of insensitivity (cf. Taylor 2011) as supplying robust results. Yet these are with respect
to distributions and typically not with respect to unknown demand rates.

Our contribution is mainly conceptual and numerical, yet webelieve it bears significant importance
for computer system engineers as well as for future researchon design and control of systems in view of
parameter uncertainty. The remainder of the paper is organised as follows: Section 2 defines the model
and objective function, and surveys related work. Section 3 presents the robustness measure results
for both global and local robustness. The results are then summarised in Section 4 where further open
questions are put forward.

2. Model and Design Framework

2.1. Model and notations

We consider an M/G/1-PS queue with state dependent service rates. Jobs arrive according to a Poisson
process with rateλ > 0. Job sizes are finite mean i.i.d. random variables independent of the arrival
process. Without loss of generality we assume the mean job size is 1. LetQ(t) denote the number of jobs
in the system at timet. The PS scheme is as follows: At timet if Q(t) = n, each job is served at a rate
sn/n, where the sequence of speeds, 0= s0 < s1 ≤ s2 ≤ . . . is a result of the design and control of the
system.

The insensitivity of the M/G/1-PS, even under speed scaling, (cf. Kelly 1979), allows us to ignore
the actual shape of the job-size distribution, as it does notaffect the law of the processQ(t). In other
words, the occupancy distribution of this queue is the same as that of an M/M/1 queue with the same
arrival and state-dependent service rates. We therefore limit ourselves to performance objectives that
depend only on the marginal occupancy distribution. The processQ(t) is represented by an irreducible
continuous time birth-death process on the state space{0,1, . . .}; see for example Norris (1997). We



October 22, 2012 14:55 International Journal of Systems Science tdinh-JSS-robustness-v3

4 Taylor& Francis and I.T. Consultant

assumeλ < sup{s1, s2, . . .} and henceQ(t) is positive-recurrent with a unique stationary distribution,
(π0, π1, . . . , ), πi = limt→∞ P(Q(t) = i), satisfying the partial balance equations,λπi = si+1πi+1 and
∑∞

i=0 πi = 1.
In this model, speeds are constrained to be within the set [0, µmax]. The number of unique speeds is

specified by the architecture parameter,K ∈ {0,1,2, . . .} ∪ ∞. For finiteK, the available set of speeds is,
M = {0 = µ0, µ1, . . . , µK , µmax}, with µi ≤ µi+1 ≤ µmax. Hence there areK+2 available speeds. IfK = ∞,
any speed within [0, µmax] is allowed. We refer to the latter case ascontinuum speedarchitecture which
is equivalent to the multi-speed architecture discussed inWierman et al. (2009), except that the speeds
are now constrained by an upper bound. In this case, we denotesn by µn for simplicity of the notation
below.

Crabill (1972) showed that the optimal speeds are non-decreasing, hence the optimal policy would be
a threshold policy characterised by thresholdsθ1, . . . , θK . Thus, for finiteK, our policies remain optimal
if we assume the speeds are monotonically non-decreasing. The mapping ofsn toM can be then specified
by a non-decreasing sequence of integer thresholds such that 0 = θ0 < θ1 ≤ θ2 ≤ · · · ≤ θK < θK+1 = ∞.
For a given queue occupancyn > 0, let J(n) = max{k : θk < n} with J(0) = −1. Now the speed-scaling
mapping is given by:sn = µJ(n)+1. For example, ifK = 5, θ3 = 17 andθ4 = 20 thens18 = s19 = s20 = µ4

while s17 = µ3 ands21 = µ5.
The performance metric we consider is the average running cost per unit time. The running cost of a

single job consists of two parts: the sojourn time in the system (Twaiting) and the energy consumed by
processing it (E). Let Z/λ denote the running cost for a single job. ThenZ/λ = βTwaiting+E. The average
running cost per job is thenE[Z]/λ = βE[T]+E[E]. The average running cost per unit time — which we
will henceforth refer to as simply “cost” — is then achieved by multiplying both sides byλ and applying
Little’s law (Little 1961) to give

z= E[Z] = βE[N] + E[PN], (1)

wherePn denotes the power consumption rate when the occupancy isn. This objective has been studied
previously in both the stochastic context (George and Harrison 2001, Wierman et al. 2009) and in worst-
case contexts (Pruhs et al. 2008). The parameterβ indicates the relative cost of delay. This can be omitted
by the appropriate choice of units, but we retain it to emphasise that the relative weights given toN and
Pn are problem specific. OftenPn is a strictly convex non-decreasing function of the speed, and we
assume that

Pn = sαn, α > 1. (2)

For a given architecture specification, the design variablescan be cast as the vectors

µ =
(

µ1, . . . , µK
)

, θ =
(

θ1, . . . , θK
)

,

which may be taken to be infinite vectors ifK = ∞. Then withβ andα fixed, the cost can be written as a
function — denotedzK(µ, θ, λ) — of the architectureK, the design variables and the load. Letρi = λ/µi

for i = 1, . . . ,K + 1, letρ•i =
∏i

j=1 ρ
θ j−θ j−1

j for i = 1, . . . ,K, letI = {i : i ∈ {1,2, . . . ,K + 1}, ρi , 1} and

letI = {i : i ∈ {1,2, . . . ,K + 1}, ρi = 1}. ThenzK(µ, θ, λ) is

π0








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

∑

i∈I
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(
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i )(1− ρi) + (ρi − ρ
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i )

(1− ρi)2
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i

1− ρi
µαi
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(3)

+
∑

i∈I

ρ•i−1
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2
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with the normalising constant

π0 =
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

∑

i∈I

ρ•i−1
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i

1− ρi
+
∑
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
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



−1

. (4)

This follows from a straightforward (yet tedious) computations as detailed in Appendix A. Observe that
in practical situations, the right hand summations (overI), in both (3) and (4), remain empty.

2.2. Design Framework

In our framework the design variables are optimised for a pre-determined arrival rate,λd < µmax (“d”
stands for design), yet at runtime there is often another arrival rateλa < µmax (“a” stands for actual),
where typicallyλd , λa. For K < ∞, in theFixed Allocation(FA) case, letµ∗FA(λd) andθ∗FA(λd) denote
the optimising design variablesµ andθ of

min
µ,θ

zK(µ, θ, λd),

subject to the coordinates ofµ andθ being ordered. Hence given adesign assumptionof λd, the optimal
design would be

(

µ∗FA(λd), θ∗FA(λd)
)

.
In the Adaptive Allocation(AA) case, use the fixed componentµ∗FA(λd) as above and consider the

optimisation

min
θ

zK(µ∗FA(λd), θ, λa).

Denote the optimiser asθ∗AA(λd, λa). Hence given adesign assumptionof λd, the optimal design remains
µ∗FA(λd) as above, and further based on actual measurements ofλa, the optimal control isθ∗AA(λd, λa).

For a given architecture, solving the fixed allocation designproblem or the adaptive allocation control
problem involves optimisation ofzK(·). ForK < ∞we have implemented the optimisation using a Gauss-
Seidel method with a local-search refinement. In case ofK = ∞ we use dynamic-programming. More
details are in Appendix B.

Note that in the continuum speed case (K = ∞) under Fixed Allocation, the thresholds areθi = i,
which allows (3)–(4) to be represented as

zK(µ, θ, λ) =
∞
∑

n=0

(βn+ µαn)πn =

∞
∑

n=0

(βn+ µαn)λn

∏n
i=1 µi

/















1+
∞
∑

n=1

λn

∏n
i=1 µi















. (5)

2.3. Practical Implication

The foregoing model was motivated by the study of a multitasking operating system on a processor with
typical power saving features. Multitasking operating systems allow multiple jobs to be run in parallel.
A simple but reasonable model is to treat the sharing policy as processor sharing. Hence, we model the
dynamics as an M/G/1 processor sharing queue with a constant arrival rateλ and occupancy-dependent
service ratesn in the staten. As explained in Wierman et al. (2009), processor sharing isinsensitive to
the job size distribution even when the service rate dependson the occupancy. This greatly simplifies the
evaluation of any performance metric depending only on thisdistribution, as considered here.

We are specifically interested in the case that speed variation is achieved using dynamic voltage and
frequency scaling (DVFS) in a CMOS (complementary metal-oxide-semiconductor) integrated circuit.
The processing speed of such systems is often assumed to be proportional to the clock frequencyf ,
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although issues such as cache performance have an increasing influence. The power consumption is
often modelled as proportional to the cube of the clock frequency. This is because the dynamic power in
CMOS is proportional toV2 f whereV is the scalable voltage, which was historically scaled proportional
to clock frequency, as mentioned in Chandrakasan et al. (1992). However, some CMOS devices do not
scaleV this way, as power is closer to quadratic in speedf (Wierman et al. 2009).

DVFS is becoming less important because Dennard’s scaling law (Dennard et al. 1974) is no longer
used, resulting in less flexibility in scaling voltages. However, future architectures may still result in
power that is super-linear in speed. Multiple processing core architectures are increasingly adopted by
current processor designs, replacing DVFS (Kumar et al. 2005). In multicore architectures, speed scaling
of paralleling workloads can be achieved by turning cores onand off. If cores are heterogeneous, this can
also result in powerPn being a convex function of the speed as considered here, according to Hofstee
(2005).

Prior work such as George and Harrison (2001) or Wierman et al.(2009) assumed no upper limit of
system speed. However, as technology limits always place anupper bound on the processing speed, we
constrain all speedssn to be in the range [0, µmax] for some given constantµmax. Since our interest is to
see the effect of the number of speeds, we constrain the total number of speeds to beK + 2, with speeds
fromM. Our decision variables include theK speedsµ1 to µK .

In the CMOS situation we are modelling, different decision variables are decided on at different phases
in the design process. We assume theµi are fixed properties of a given piece of hardware. We assume
they must be chosen when that chip is designed, before it is known what load it will be subjected to. The
thresholdsθi are typically implemented in software in the operating system, and can be determined later
based on a real-time estimate of the load, or ofβ. In contrast,K might determine the size of a software-
visible register that stores the current speed, or might determine the number of external pins required to
signal this information; for compatibility reasons, this information may need to be held constant over an
entire family of chips sharing the same instruction set architecture (ISA). For that reason, we concern
ourselves more with robustness resulting from the choice ofK as opposed to robustness of the individual
µi .

Note that this objective places no cost on switching betweenspeeds, as this switching cost is relatively
small in comparison with the energy cost or the delay cost. This assumption is made due to the fact that
the typical switching time between speeds is in the order of 10−4 seconds as shown in an experiment by
Hartman (2008), while the job service time is often in the order of seconds.

3. Quantifying Robustness

In this section we present the main contribution of our paper: quantifying the effects of parameter un-
certainty due to discrepancies betweenλd andλa for various architecture specifications. We consider the
error metrics∆FA(·) and∆AA(·) for fixed allocation and adaptive allocation respectively:

∆FA(λa, λd,K) = zK(µ∗FA(λd), θ∗FA(λd), λa
)

− z∞
(

µ∗FA(λa), θ∗FA(λa), λa
)

. (6)

∆AA(λa, λd,K) = zK
(

µ∗FA(λd), θ∗AA(λd, λa), λa
)

− z∞
(

µ∗FA(λa), θ∗FA(λa), λa
)

. (7)

Both metrics compare the cost under a given architecture specification and design for a givenλd to
the minimal possible cost,z∞

(

µ∗FA(λa), θ∗FA(λa), λa
)

, for this λd, attained withK = ∞ and λd = λa.
The metrics capture the distance to the optimal cost indicating the effect of parameter uncertainty on
performance: a low∆ value implies “more robustness”.

We have calculated the error metrics for a variety of combinations ofλa, λd and architecture specifica-
tionsK for “FA” and “AA” cases. In all cases we usedµmax = 1, andα = 3. Our results are best presented
by fixing λd at one of several values: 0.3 (design for light load), 0.5 (design for medium load) or 0.7
(design for moderately heavy load). We considered two values of the relative cost of delay,β: 0.01 and
0.1. The former places more importance on energy savings than the latter. We then variedλa over a fine
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Figure 1. Fixed Allocation (FA): The error metric, or the distance to the optimal cost using policy optimised for loadλd with the reality of
loadλa and fixed thresholds.

grid within (0,1) and evaluated the error metrics for each value. Note that each such evaluation requires
carrying out two optimisations, one forzK(·) and one forz∞(·), as outlined in Appendix B.

Since we are looking at the error metric over the whole possible rangeλa ∈ (0, µmax), assessment of∆
over that range may be viewed as measuringglobal robustness. This is in contrast to thelocal robustness
defined later in this section.

3.1. Global Robustness in Fixed Allocation and Adaptive Allocation Designs

The Fixed Allocation (FA) case: Figure 1 shows the metric∆FA(λa, λd,K) for increasing architectures
K from K = 0 (“Only µmax”) and K = 1 (“Two speeds”) up to a continuum of speeds, for a system
that uses both the speeds and the thresholds optimised forλd. Note that all examples includeµmax as
one (the largest) of the available speeds; this is in contrast to the single-speed “gated static” policy
studied in Wierman et al. (2009), in which the single speed was optimised for the design load, and the
“continuum” case could use arbitrarily high speeds as the occupancy increase.

Recall that Wierman et al. (2009) observed substantially greater robustness when using a system de-
signed with no constraints on the number of speeds than when using a system with a single optimally
chosen speed. This was explained by the fact that, if the actual load is much higher than the design load,
then the mean occupancy will be higher; since the speed is an increasing function of the occupancy, this
increased occupancy causes the average speed used to be higher, as is appropriate for a higher load.

It is natural to expect that a similar conclusion would applyto the model studied here, in which the
system is forced to include the maximum speedµmax as one available speed, and that increasing the
number of available speeds will monotonically increase therobustness. When the actual load is low,
this is indeed the case. In fact, having even a single additional speed (“Two speeds”) yields most of the
benefit obtained from having a continuum of speeds.

However, as the actual load approachesµmax, designs with more available speeds actually become
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Figure 2. System occupancies and general costs when actual load is very close toµmax (λa = 0.9µmax). This figure compares costs forK = 0
andK = 3 with low design loads

monotonicallylessrobust, in the sense that the penalty∆FA(λa, λd,K) for mis-estimating the load in-
creases. This is most apparent when the design load is low, andlittle weight (β) is given to delay.

This paradox is explained by noting that fixed thresholds were used. When the load is almostµmax,
the average processing speed must also be almostµmax. Thus the system in whichµmax is the only
speed available is optimal. If more speeds are available, then the system will need to maintain a higher
occupancyN to cause speedµmax to be used.

If the second highest speedµK−1 is much less thanµK , then the occupancy will be increased by almost
θK , increasing the cost by almostβθK , as illustrated in Figure 2. This figure shows the system occupancy
and cost at a very highλa (λa = 0.98µmax) for smallλd so that the second highest speeds are relatively
small. The mean occupancies and costs are computed for two cases: (a) only useµmax (K = 0) and (b)
optimal settings for designed loadλd for a four speed system (K = 3). When only running withµmax, the
costs are constant regardless ofλd. However, for multiple speed system, the occupancy is increased by
roughlyθK and the cost is increased by roughlyβθK .

The Adaptive Allocation (AA) case: Results for adaptive allocation are in Figure 3. Note that here
the robustness monotonically increases as the number of available speeds increases, as intuition suggests.
As expected, the penalty for mis-estimating the load is small near the design load,λd. However, it also
tends to 0 when the actual load approachesµmax, even though this is far fromλd. This is again because
at such high loads, the system must nearly always operate at speedµmax, which is implemented in all
designs regardless ofλd. The resulting bi-modality raises the interesting questionof what speeds are
“maximally robust” in the sense of minimising the maximum over λa of ∆AA(λa, λd,K). This optimum
depends onβ, but Figure 3 suggests that it corresponds roughly to designing the system to work at a load
of aboutµmax/3. This is in contrast to the common practice of designing CPUs for desktop computers
with a second speed that is very close to the maximum speed.

Comparison of FA and AA: Adjusting the thresholdsθi occurs on a much slower time-scale than
adjusting the actual speeds. Implementing dynamic thresholds incurs a non-negligible additional cost
to software development. To decide whether or not to implement dynamic thresholds, it is important to
quantify how much benefit it provides over using dynamic (state-dependent) speeds with static thresh-
olds. Figure 4 shows this improvement for several parameter combinations. This suggests that dynam-
ically adjusting the thresholds may not be justified unless the design load is well below the maximum
load for which the system can be stable.

3.2. Quantitative measure of “Local” Robustness

When the load is known approximately but not perfectly, the designer may still be interested in the
sensitivity of costs to minor deviations ofλa fromλd. For this we introduce the notion of local robustness
defined in terms of the curvature of the cost penalty∆. More precisely, define thelocal robustnessof the
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Figure 3. Adaptive Allocation (AA): Distance to the optimal cost using policy optimised for loadλd with the reality of loadλa and adjustable
thresholds.
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system withK + 2 speeds optimised for a load ofλd as

R(λd,K) =













d2∆FA(λa, λd,K)
dλ2

a

∣

∣

∣

∣

∣

∣

λa=λd













−1

. (8)

It is sensible to use the second derivative here instead of the first, since the first derivative is approxi-
mately zero at the design load; if∆FA were defined aszK(µ∗FA(λd), θ∗FA(λd), λa

)

−zK
(

µ∗FA(λa), θ∗FA(λa), λa
)

,
it would be exactly zero.

For a given setting, we estimateRK,λd by taking a least square fit (Boyd and Vandenberghe 2004) of
a parabola to the difference in costs over 40 equally spaced points in the interval[λd − µmax/50, λd +

µmax/50]. The value ofµmax/50 was chosen to be large enough to avoid numerical errors, yet small
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Figure 5. Local robustness of a fixed allocation (FA) as function of the number of speeds: R(.)

enough allowing an accurate estimate of the second derivative. Note that such numerical evaluation of
the local robustness is computationally intensive, since each point used for the least squares fit requires
solving an optimisation.

As in the global robustness cases described above, we consider light load, medium load or moderately
heavy load. We also consider three values ofβ: 0.01 and 0.1 as analysed for global robustness as well
as an intermediate value of 0.05. We generally expect that allowing more speeds in the architecture
specification will make the system more “locally robust”. The question is how quickly local robustness
improves with the complexity of the architecture. Answers are in Figure 5.

To identify how many speeds are enough, we seek the “knee” of the curve ofR(·) against the number
of speedsK + 1. In the curve we label the axes with powers of 2, since this determines the number of
bits required by the instruction set architecture (ISA). Note that the final point on the axis, labelled “inf”,
is the continuum case when there is no constraint on the speeds. The results show that the knee is most
pronounced for the smallestλd and appears to be at around six speeds (K = 5). Indeed, eight speed
(K = 7) gives robustness almost indistinguishable from that of the continuum case. This suggests that it
is sufficient that the ISA allocate three bits to the register specifying the current speed.

In general, it appears that the local robustness is increasing in λd when there are few speeds, and
decreasing inλd when there are many speeds. Similarly, the local robustness tends to increase asβ
increases.

4. Conclusion and Outlook

This paper has identified and explained an anomaly in the performance of queues with speed scaling
optimised for an inaccurate estimate of the load. This effect causes the performance of such a speed
scaler operating at high load to degrade as the number of available speeds increases. Specifically, this
is due to inappropriate choice of speed at runtime, making itdifficult to quantify the improvement in
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robustness due to such an increase.
However, when the error in the load estimate is low, the performance does monotonically improve as

the number of levels increases. This suggests that it may be possible to define a meaningful measure of
“local robustness” which could be used to determine the number of speeds required, as we have proposed
in this paper.

This work assumed very simplified models. For example, the speed scaling functionPn only considers
active power in CMOS circuits, whereas leakage power is becoming an increasing fraction of total power
consumption (Kaxiras and Martonosi 2008). The form ofPn is also suitable for cases where the speed
of processing is proportional to the clock speed, whereas current processors are heavily influenced by
delays due to memory access. Nevertheless, we expect the qualitative insight to hold more generally: If
the speed selection algorithm is based on inaccurate parameter estimates, then having a wider range of
speeds available may be counter-productive.
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Appendix A. Objective Cost

The analysis in this appendix follows the notation and assumptions of Section 2.

Proposition A.1: For K < ∞, when it exists, the stationary distribution
(

π0, π1, ...
)

of Q(t) is

πn = π0 ρ
•
J(n) ρ

n−θJ(n)

J(n)+1, (A1)

for n ≥ 1 and,

π0 =



















∑

i∈I

ρ•i−1

1− ρθi−θi−1
i

1− ρi
+
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i∈I

ρ•i−1(θi − θi−1)



















−1

. (A2)

Further the expected cost z= E[Z] is represented by equation (3).

Proof : From the partial balance equations, the stationary probability of being in staten is

πn = πθi−1ρ
n−θi
i n ∈ {θi−1 + 1, θi}

Induction onn yields (A1). Nowπ0 is obtained by 1=
∑∞

i=0 πi :

π0 =

















θ1
∑

n=0

ρn
1 +

θ2
∑

n=θ1+1

ρ
θ1
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The summations above simplify due to

θi−1
∑

n=θi−1

ρ
n−θi−1
i =















1−ρ
θi−θi−1
i

1−ρi
ρi , 1,

θi − θi−1, ρi = 1
(A3)

yielding (A2). The expected cost isz= βE[N] + E[PN] =
∞
∑

i=0

(βn+ Pn)πn, in which

E[N] = π0

K+1
∑

i=1

ρ•i−1

θi−1
∑

n=θi−1

nρn−θi−1
i ,

and,

E[PN] = π0

K+1
∑

i=1

ρ•i−1µ
α
i

θi
∑

n=θi−1+1

ρ
n−θi−1
i .

Note that

θi−1
∑

n=θi−1

nρn−θi
i =























(θi−1 − θiρ
θi−θi−1
i )(1− ρi) + (ρi − ρ

1+θi−θi−1
i )

(1− ρi)2
, ρi , 1,

1
2 [θi(θi − 1)− θi−1(θi−1 − 1)] , ρi = 1.

(A4)

Equation (3) can be obtained by substituting (A3) and (A4) into the expression forE[N] andE[PN]. �

Appendix B. Numerical Optimization Algorithms

B.1. K = 0

WhenK = 0, the system runs only with the maximum service rateµmax for all si except fori = 0. In
this case, the system is simply an M/M/1 queue with arrival rateλ and service rateµmax and the cost is
deterministic for a givenλ:

z= βE[N] + E[PN] = β
∞
∑

n=0

nπn +

∞
∑

n=1

πnµmax= β
λ

µmax− λ
+
(

1− π0
)

µαmax= β
λ

µmax− λ
+ λµα−1

max. (B1)

B.2. 1 ≤ K < ∞

Recall that we want to solve:

min
µ, θ

zK(µ, θ, λd, β, α).

It is known that the optimal policy is of threshold type as proved in Crabill (1972) and mentioned in
George and Harrison (2001). Thus, we enforce thatµ is monotonically non-decreasing. We can then
use the Gauss-Seidel method (or block coordinate decent, described in (Bertsekas 1999, section 2.7)) to
numerically find the optimal settings (speeds and thresholds).

In general, the search starts with an initial feasible guess(µ0, θ0). The search was performed in 2K
dimensions, each dimension being an element of speed vectorµ or threshold vectorθ. Each iteration
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consists of the search for new values for all 2K variables, and is divided into 2K phases. At each phase,
it is a single dimension optimisation, holding the most recent computed values of other variables. For
each iteration, searches were performed for all speeds first and then thresholds. The iterations continue
until the maximum change between (µk,θk) and (µk+1,θk+1) is less thanǫ = 10−10 indicating that (µk,θk)
has converged to (µ∗,θ∗). The searches for speeds and thresholds were performed by different techniques.

In particular, phasesi = 1, . . . ,K of iterationk calculate

µk
i = argmin

µk
i−1≤µ

k
i ≤µ

k−1
i+1

zK(µk
1, . . . , µ

k
i−1, µ

k
i , µ

k−1
i+1 , . . . , µ

k−1
K ; θk−1

1 , . . . , θ
k−1
K ) (B2)

This phase uses the new values that were found forµk
j (i < j) in this iteration while it retainsµk−1

j (i > j)
from the previous iteration. Using the assumption that the cost function is uni-modal (as numerical
evidence suggests it is), golden section search was used to calculateµk

i . The search range was bounded
between the most recent adjacent speeds [µk

i−1,µ
k−1
i+1 ], with the convention thatµK+1 = µmax andµ0 = 0.

Phasesi + K = K + 1, . . . ,2K calculate

θki = argmin
θki−1<θ

k
i <θ

k−1
i+1

zK(µk
1, . . . , µ

k
K ; θk1, . . . , θ

k
i−1, θ

k
i , θ

k−1
i+1 , . . . , θ

k−1
K ). (B3)

Finding θki cannot use Golden Section search due to the shape of cost as a function of θki . Numerical
errors sometimes cause it to enter an incorrect search rangethat does not include the global optimum.
Since thresholds are naturally discrete, an exhaustive search was instead performed over a truncated state
space for such cases. Again, the search range was bounded between [θki−1,θ

k−1
i+1 ]. For the search ofθkK , a

sufficiently largeθkK+1 to be considered infinite was chosen.
Unfortunately, the discrete nature ofθki sometimes causes the convergence to a local optimum. To

overcome this problem, we introduced a heuristic to refine theresults. When Gauss-Seidel iterations
returns (µ, θ) and an estimatez of the optimal cost, an exhaustive search was then performedfor all the
neighbour points ofθ. We used each point as an initial guess for new Gauss-Seidel iterations. If any of
these searches returned a cost that is less thanz, the process would be repeated with this new point at the
centre of the search region. In all of these searches,µ was kept unchanged. This refinement process was
repeated until it found a point with a lower ofz than all its neighbours. The final (µ, θ) andz were taken
as (µ∗, θ∗) andz∗.

An experiment was performed to test this heuristic. About a thousand combinations ofλ, β and K
were chosen. A procedure was performed to each combination with a thousand initial feasible points
which were generated randomly. If the heuristic worked thenfor each combination, it would return the
same optimal settings for all the initial guesses. This occurred in 92.8% of cases, which suggests that
this search is seldom stuck in poor local optima. For some extreme cases (specifically forλ is very
small), there were differences among the optimal settings; however, in these casesthe optimal costs were
approximately the same, and on average 78.8% of initial feasible points converged to the lowest cost
point.

B.3. K = ∞

The caseK = ∞ refers to ourcontinuumarchitecture representing the case where no restriction in
number of speeds is applied. Speeds can be chosen freely within [0, µmax] for each state of system
occupancy. A feasible policyµ = [µ1,µ2,. . . ] maps the speedµi ∈ [0, µmax] to system statei, where
system state refers to the number of jobs in the system. The optimal policy µ∗ is a feasible policy that
minimises the average cost per unit timez. It is a classic infinite horizon control for state dependent
M/M/1 queue problem which was numerically solved using dynamic programming with relative value
iteration and uniformisation of the service rate.

At iterationk, therelative value functionfor statei as the number of jobs in the system is, according
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to Bertsekas (2005),

hk(i) = min
µ∈[0,µmax]

[

z(i, µ)
λ + µmax

+
µ

λ + µmax
hk−1(i − 1)+

µmax− µ

λ + µmax
hk−1(i) +

λ

λ + µmax
hk−1(i + 1)

]

− min
µ∈[0,µmax]

[

z(S, µ)
λ + µmax

+
µ

λ + µmax
hk−1(S − 1)+

µmax− µ

λ + µmax
hk−1(S) +

λ

λ + µmax
hk−1(S + 1)

]

wherez(i, µ) is the uniformised cost at statei with speedµ, given byz(i, µ) =
βi + µα

λ + µmax
, andS = 0 is a

reference state. Ask→ ∞, hk converges to theh∗ satisfying

z∗ + h∗(i) = min
µ∈[0,µmax]

[

z(i, µ)
λ + µmax

+
µ

λ + µmax
h∗(i − 1)+

µmax− µ

λ + µmax
h∗(i) +

λ

λ + µmax
h∗(i + 1)

]

,

where the optimal cost is

z∗ = min
µ∈[0,µmax]

[

z(S, µ)
λ + µmax

+
µ

λ + µmax
hk−1(S − 1)+

µmax− µ

λ + µmax
hk−1(S) +

λ

λ + µmax
hk−1(S + 1)

]

.

With S = 0, the optimal cost can be evaluated as

z∗ =
µmax

λ + µmax
h∗(0)+

λ

λ + µmax
h∗(1) (B4)

and the optimal speed in statei is the “argmax” of the latest optimisation overµ in calculatinghk(i).
Thus, every state has its own speed. We started the iteration with {h0(i)} = 0 and performed the search
for a truncated state space at each iteration. The iteration stopped when|hk − hk−1| < ǫ = 10−10.
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