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Abstract—Energy consumption in a computer system can be
reduced by dynamic speed scaling, which adapts the processing
speed to the current load. This paper studies the optimal way
to adjust speed to balance mean response time and mean energy
consumption, when jobs arrive as a Poisson process and processor
sharing scheduling is used. Both bounds and asymptotics for
the optimal speeds are provided. Interestingly, a simple scheme
that halts when the system is idle and uses a static rate while
the system is busy provides nearly the same performance as
the optimal dynamic speed scaling. However, dynamic speed
scaling which allocates a higher speed when more jobs are
present significantly improves robustness to bursty traffic and
mis-estimation of workload parameters.

I. INTRODUCTION

Two threats to the growth of the internet have their roots in
power consumption. The most pressing is that Moore’s law has
increased the thermal density of electronics to such an extent
that cooling is a major concern, and has halted the previously
inexorable increase in clock speeds. The longer term threat
is that the need to reduce fossil fuel consumption requires all
aspects of society to conserve energy, while aggregate internet
energy consumption is a significant and growing fraction of the
energy consumption of developed countries [1]. As a result,
all modern system designs must consider the tradeoff between
energy use and other performance metrics.

Power can often be saved simply by running devices more
slowly. Dynamic speed scaling, which selectively reduces the
speed when the load is light, reduces energy consumption with
minimal impact on performance. It is widely implemented
in current processors, in the form of Intel’s SpeedStep and
AMD’s PowerNow.

Much of the theory of dynamic speed scaling [2]–[6]
considers worst-case bounds. While such worst-case results
are important for temperature management [7], or when the
energy to a specific computer is constrained [8], [9], global
energy consumption is affected by the average case, rather than
the worst case. Consequently, this paper studies the average
performance in a stochastic setting.

In particular, this paper seeks to minimize a weighted sum
of the mean response time and the energy use per job. This
performance metric has been studied both theoretically [10]–
[12] and in implementations [13].

Algorithms are known [12] for finding the speeds which
optimize this objective in a stochastic M/M/1/FCFS setting.
However, these are highly recursive, and provide little insight.
The goal of this paper is to identify simple structural properties
of the optimal solutions, and to use them to compare the gain
of unconstrained speed scaling with that of an optimized static
design. The paper makes three main contributions.

First, the paper provides bounds on the performance of
dynamic speed scaling (Section IV-A). Surprisingly, these
bounds show that even an idealized version of dynamic speed
scaling improves performance only marginally compared to
a simple scheme where the server uses a static speed when
busy and runs at speed 0 when idle – at most a factor of 2 for
typical parameters and often less (see Section V).

Second, the paper provides bounds and asymptotics for the
speeds used by the optimal dynamic speed scaling scheme
(Sections IV-B and IV-C). These results provide insight into
how the speeds scale with the arriving load, the queue length,
and the relative cost of energy.

Third, the paper illustrates through analytic results and
numerical experiments that, though dynamic speed scaling
provides limited performance gains, it dramatically improves
robustness to mis-estimation of workload parameters and
bursty traffic (Section VI).

Note that many proofs are omitted from this document; all
proofs can be found in [14].

II. MODEL AND NOTATION

In order to study the performance of dynamic speed scaling,
we focus on a simple model: an M/GI/1 PS queue with
controllable service rates, dependent on the queue length. In
this model, jobs arrive to the server as a Poisson process with
rate λ, have intrinsic sizes with mean 1/µ, and depart at rate
snµ when there are n jobs in the system. Under static schemes,
the (constant) service rate is denoted by s. Define the “load”
as ρ = λ/µ, and note that the ρ is not the fraction of time the
server is busy.

The performance metric we consider is E[T ] + E[E]/β′,
where T is the response time of a job, E is the energy
expended on a job, and β′ represents how delay-averse the
design is. It is often convenient to work with the expected
cost per unit time, instead of per job, which by Little’s law
can be written as z = E[N ] + λE[f(s)]/β′, where N is the
number of jobs in the system and f(s) determines the power
used when running at speed s.

The remaining piece of the model is to define the form of
f(s). The dynamic power of a circuit is typically a low-order
polynomial in the speed [15]. As a result, we will model the
power used by running at speed s by

λ
f(s)
β′

=
sα

β
(1)

where α > 1 and β takes the role of β′, but has dimension
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(time)−α. The cost per unit time then becomes

z = E[N ] +
sα

β
. (2)

We will often focus on the case of α = 2 to provide intuition.
The impact of the workload parameters ρ, β, and α can

often be captured by γ = ρ/β1/α, which is a dimensionless
measure. Also, it will often be convenient to use the a natural
dimensionless unit of speed s/β1/α.

III. POWER-AWARE SPEED SELECTION

This paper considers two natural forms of speed scaling:
(i) Gated static speed: The server “gates” its clock (setting

s = 0) if no jobs are present, and if jobs are present it
works at a constant rate chosen to balance energy usage
and response time.

(ii) Dynamic speed scaling: The server adapts its speed to
the current number of requests present in the system.

The goal of this paper is to understand how to choose
optimal speeds in each of these scenarios and to contrast the
relative merits of each scheme. Clearly the expected cost is
reduced each time the server is allowed to adjust its speed
more dynamically. This must be traded against the costs of
switching, such as a delay of up to tens of microseconds to
change speeds [16]. The important question is “What is the
magnitude of improvement at each level?” For our comparison,
we will use idealized versions of each scheme. In particular,
in each case we will assume that the server can be run at any
desired speed in [0,∞) and ignore switching costs.

In this section, we will derive expressions for the optimal
speeds in case (i). For case (ii), we will describe a numerical
approach for calculating the optimal speeds which is due to
George and Harrison [12]. Though this numerical approach
is efficient, it provides little insight into the structure of the
dynamic speeds or the overall performance. Providing such
results will be the focus of Section IV.

A. The optimal static speed for a gated system
In the simplest dynamic speed scaling, a server either runs

at a constant rate, or has its clock gated using zero dynamic
power when the system is empty. We call this policy the
“gated-static” policy, and denote its cost zgs.

Since the server can gate its clock, the energy cost is only
incurred ρ/s of the time, when the server is busy. Thus

z =
ρ

s− ρ
+ ρ

sα−1

β
.

The optimum occurs when s > ρ and

(α− 1)sα−2(s− ρ)2 = β. (3)

When α = 2, sgs = ρ+
√
β. In general, define

G(γ;α) = σ s.t. σ > γ

(α− 1)σα(1− γ/σ)2 = 1. (4)

The “gated-static” speed is sgs = β1/αG(γ;α).
The following lemma bounds G.

Lemma 1. For α ≥ 2,

γ +

√
γ2−α

α− 1
≤ G(γ;α) ≤ (α− 1)−1/α +

2
α
γ (5)

and the inequalities are reversed for α ≤ 2.

B. Optimal dynamic speed scaling

A popular alternative to static power management is to allow
the speed to adjust dynamically to the number of requests in
the system. The task of designing an optimal dynamic speed
scaling scheme in our model can be viewed as a stochastic
control problem.

We start the analysis by noting that we can simplify
the problem dramatically with the following observation. An
M/GI/1 PS system is well-known to be insensitive to the
job size distribution. This still holds when the service rate is
queue-length dependent since the policy still falls into the class
of symmetric policies introduced by Kelly [17]. As a result,
the mean response time and entire queue length distribution
are affected by the service distribution through only its mean.
Thus, we can consider an M/M/1 PS system. Further, the
mean response time and entire queue length distribution are
equivalent under all non-size based service distributions in the
M/M/1 queue [17]. Thus, to determine the optimal dynamic
speed scaling scheme for an M/GI/1 PS queue we need only
consider an M/M/1 FCFS queue.

The “service rate control” problem in the M/M/1 FCFS
queue has been studied extensively [12], [18], [19]. In partic-
ular, George and Harrison [12] provide an elegant solution to
the problem of selecting the state-dependent processing speeds
to minimize a weighted sum of an arbitrary “holding” cost
with a “processing speed” cost. Specifically, the optimal state-
dependent processing speeds can be framed as the solution
to a stochastic dynamic program, to which [12] provides an
efficient numerical solution. In the remainder of this section,
we will provide an overview of this numerical approach. The
core of this approach will form the basis of our derivation of
bounds on the optimal speeds in Section IV.

We will describe the algorithm of [12] specialized to the
case considered in this paper, where the holding cost in state
n is simply n. Further, we will generalize the description to
allow arbitrary arrival rates, λ. The solution starts with an
estimate z of the minimal cost per unit time, including both the
occupancy cost and the energy cost. As in [12], [19], [20], the
minimum cost of returning from state n to the empty system
is given by the dynamic program

vn = inf
s∈A

{
1

λ+ µs

[
λ
sα

β
+ n− z

]
+

µs

λ+ µs
vn−1 +

λ

λ+ µs
vn+1

}
where A is the set of available speeds. We will usually assume
A = R+∪{0}. With the substitution un = λ(vn−vn−1), this
can be written as [12], [20]

un+1 = sup
s∈A

{
z − n+ λ

sα

β
+
sun
ρ

}
. (6)



3

Two additional functions are defined. First,

φ(u) = sup
x∈A
{ux/ρ−λxα/β} = (α− 1)

(
u

αγ

)α/(α−1)

. (7)

Second, the minimum value of x which achieves this supre-
mum, normalized to be dimensionless, is

ψ(u) =
1

β1/α
min

{
x :

ux

ρ
− λxα

β
= φ(u)

}
=
(
u

αγ

)1/(α−1)

.

(8)
Given the estimate of z, un satisfy

u1 = z (9a)
un+1 = φ(un)− n+ z. (9b)

The optimal value of z can be found as the minimum value
such that (un)∞n=1 is an increasing sequence. This allows z to
be found by an efficient binary search, after which un can in
principle be found recursively.

The optimal speed in state n is then given by

s∗n
β1/α

= ψ(un). (10)

This highlights the fact that γ = ρ/β1/α provides the appro-
priate scaling of the workload information because the cost z,
normalized speed sβ−1/α and variables un depend on λ, µ
and β only through γ.

IV. BOUNDS ON OPTIMAL DYNAMIC SPEED SCALING

In the prior section, we presented the optimal designs for
gated-static and dynamic speed scaling. In the first case, the
optimal speed was presented more-or-less explicitly, however
in the third case we presented only a recursive numerical
algorithm for determining the optimal dynamic speed scaling.
In this section, we provide results exhibiting the structure of
the optimal dynamic speeds and the performance they achieve.

The main results of this section are summarized in Table I.
The bounds on z for arbitrary α are essentially tight (i.e.,
agree to leading order) in the limits of small or large γ. Due
to the complicated form of the general results, we illustrate the
bounds for the specific case of α = 2 to provide insight. In
particular, it is easy to see the behavior of sn and z as a func-
tion of γ and n in the case of α = 2. This leads to interesting
observations. For example, it illustrates a connection between
the optimal stochastic policy and policies analyzed in the
worst-case model. In particular, Bansal, Pruhs and Stein [11]
showed that, when nothing is known about future arrivals, a
policy that gives speeds of the form sn = (n/(α − 1))1/α

is constant-competitive, i.e., in the worst case the total cost
is within a constant of optimal. This matches the asymptotic
behavior of the bounds for α = 2 for large n. This behavior
can also be observed for general α (Lemma 7 and Theorem 4).

A. Bounds on cost

We start the analysis by providing bounds on z in this
subsection, and then using the bounds on z to bound s∗n above
and below (Sections IV-B and IV-C).

Recall that zgs is the total cost under gated-static.

Theorem 2.

max
(
γα, γα(α− 1)(1/α)−1

)
≤ z ≤ zgs =

γ

G(γ;α)− γ
+ γG(γ;α)α−1

Proof: The optimal cost z is bounded above by the cost
of the gated-static policy, which is simply

zgs =
γ

G(γ;α)− γ
+ γG(γ;α)α−1. (15)

Two lower bounds can be obtained as follows.
In order to maintain stability, the time-average speed must

satisfy E[s] ≥ ρ. But z > E[sα]/β ≥ (E[s])α/β by Jensen’s
inequality and the convexity of (·)α. Thus

z >
E[sα]
β
≥ ρα

β
= γα. (16)

For small loads, this bound is quite loose. Another bound
comes from considering the minimum cost of processing a
single job of size X , with no waiting time or processor sharing.
It is optimal to serve the job at a constant rate [2]. Thus

z

λ
≥ EX

[
min
s

(
X

s
+
sα

β

X

s

)]
.

The right hand side is minimized for s = (β/(α − 1))1/α

independent of X , giving z ≥ ρβ−1/αα(α− 1)(1/α)−1. Thus

z ≥ max
(
γα, γα(α− 1)(1/α)−1

)
. (17)

The form of the bounds on z are complicated, so it is useful
to look at the particular case of α = 2.

Corollary 3. For α = 2, gated-static has cost within a factor
of 2 of optimal. Specifically,

max(γ2, 2γ) ≤ z ≤ zgs = γ2 + 2γ. (18)

It is perhaps surprising that such an idealized version of
dynamic speed scaling provides such a small magnitude of
improvement over a simplistic policy such as gated-static. In
fact, the bound of 2 is very loose when γ is large or small.
Further, empirically, the maximum ratios for typical α are
below 1.1 (see Figure 2). Thus there is little to be gained by
dynamic scaling in terms of mean cost. However, Section VI
shows that dynamic scaling dramatically improves robustness.

A second interesting observation about Corollary 3 is that
the expected response time under these power aware schemes
remains bounded as the arrival rate λ grows. Specifically,
by (16),

E[T ] =
z

λ
− E[s2/β]

λ
≤ 2
µ
√
β
.

This is a marked contrast to the standard M/GI/1 queue.
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TABLE I
BOUNDS ON TOTAL COSTS AND SPEED AS A FUNCTION OF THE NUMBER n ≥ 1 OF JOBS IN THE SYSTEM.

For any α,

max
(
γα, γα(α− 1)(1/α)−1

)
≤ z ≤

γ

G(γ;α)− γ
+ γG(γ;α)α−1 Theorem 2 (11)

σn ≤
s∗n
β1/α

≤
(

1

α
min
σ>0

(
n+ σα − γα

(σ − γ)
+

γ

(σ − γ)2

))1/(α−1)

Theorems 8 and 4 (12)

where σn satisfies σα−1
n ((α− 1)σn − αγ) ≥ n− (γ/(G(γ;α)− γ) + γG(γ;α)α−1

For α = 2,
max

(
γ2, 2γ

)
≤ z ≤ γ2 + 2γ Corollary 3 (13)

γ +
√
n− 2γ ≤

s∗n√
β
≤ γ +

√
n+ min

(
γ

2n
,

3

2

(γ
4

)1/3
)

Corollaries 9 and 5 (14)

For α = 2 and n < 2γ, a lower bound on sn results from linear interpolation between max(γ/2, 1) at n = 1 and γ at n = 2γ.

B. Upper bounds on the optimal dynamic speeds

We now move to providing upper bounds on the optimal
dynamic speed scaling scheme.

Theorem 4. For all n and α,

un ≤ γ
n+ σα − γα

σ − γ
+

γ2

(σ − γ)2
(19)

for all σ > 0, whence

s∗n
β1/α

≤
(

1
α

min
σ>0

(
n+ σα − γα

(σ − γ)
+

γ

(σ − γ)2

))1/(α−1)

. (20)

In particular, for σ = γ + n1/α,

un ≤ n(α−1)/α γ (1 + (1 + γ)α) + γ2 (21)

which is concave in n.

Proof: As explained in [20], (6) can be rewritten as

un = ρmin
sn

[
sαn/β + n+ un+1 − z

sn

]
. (22)

Unrolling the dynamic program (22) gives a joint minimization
over all sn

un = ρmin
sn

1
sn

[
sαn/β + n− z

+ ρmin
sn+1

1
sn+1

[
sαn+1/β + (n+ 1)− z + un+2

] ]

= min
si,i≥n

∞∑
i=n

 i∏
j=n

ρ

sj

 (sαi /β + i− z) . (23)

An upper bound can be found by taking any (possibly
suboptimal) choice of sn+i for i ≥ 1, and bounding the
optimal z. Taking si = σβ1/α > 0 for all i ≥ n gives

un ≤ min
σ>0

γ

σ

∞∑
j=0

(γ
σ

)j
(σα + (n+ j)− z)

= γmin
σ>0

[
n+ σα − z
σ − γ

+
γ

(σ − γ)2

]
.

Since z ≥ γα from (17), equation (19) follows. With (10),
this establishes (20).

For n = 0, (21) holds since u0 = 0. Otherwise, it follows
from the inequality σα = n(1 + γn−1/α)α ≤ n(1 + γ)α and
the fact that n−2/α ≤ 1.

By specializing to the case when α = 2, we can provide
some intuition for the upper bound on the speeds. Factoring
the difference of squares in the first term of (19) yeilds one
increasing term and two decreasing terms. Minimizing pairs
of these terms gives the following upper bounds on un.

Corollary 5. For α = 2,

s∗n
β1/α

≤
√
n+ γ + min

(
γ

2n
,

3
2

(γ
4

)1/3
)
. (24)

C. Lower bounds on the optimal dynamic speeds

Finally, we prove lower bounds on the dynamic speed
scaling scheme. We begin by bounding the speed used when
there is one job in the system. The following result is an
immediate consequence of Corollary 3 and (9a).

Corollary 6. For α = 2,

max
(γ

2
, 1
)
≤ s∗1√

β
≤ γ

2
+ 1. (25)

Observe that the bounds in (25), like those in Corollary 3,
are essentially tight for both large and small γ, but loose for
γ near 1, especially the lower bound.

In conjunction with (21) and (10), the following lemma
shows that speeds chosen to perform well in the worst-case are
asymptotically optimal (for large n) in the stochastic model.

Lemma 7. For sufficiently large n,

s∗n
β1/α

>

(
n

α− 1

)1/α

. (26)

The following tighter bound on the optimal speeds is
obtained by using un ≤ un+1 and (15).

Theorem 8. The scaled speed σn = s∗n/β
1/α satisfies

σα−1
n

(
(α− 1)σn − αγ

)
≥ n− γ

G(γ;α)− γ
− γG(γ;α)α−1.
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Fig. 1. Rate vs n, for α = 2 and different energy-aware-load, γ.

For α = 2, this becomes:

Corollary 9. For α = 2 and any n ≥ 2γ,

s∗n
β1/α

≥ γ +
√
n− 2γ. (27)

This proves that the mode n = minn{s∗n ≥ ρ} satisfies
n ≤ 2γ.

By the following lemma, linear interpolation between
max(γ/2, 1) and γ gives a lower bound on s∗n for n < 2γ.

Lemma 10. The sequence un is strictly concave increasing.

V. COMPARING STATIC AND DYNAMIC SCHEMES

To this point, we have only provided analytic results. We
now use numerical experiments to contrast static and dynamic
schemes. In addition, these experiments will illustrate the
tightness of the bounds proven in Section IV on the optimal
dynamic speed scaling scheme.

We will start by contrasting the optimal speeds under each
of the schemes. Figure 1 compares the optimal dynamic speeds
with the optimal static speeds. Note that the bounds on the
dynamic speeds are quite tight, especially when the number
of jobs in the system, n, is large. For reference, the modes
of the occupancy distributions are about 1 and 5, close to the
points at which the optimal speed matches the static speeds.
Note also that the optimal rate grows only slowly for n much
larger than the typical occupancy. This is important since the
range over which DVS is possible is limited [15].

Although the speed of the optimal scheme differs signif-
icantly from that of gated-static, the actual costs are very
similar, as predicted by the remark after Corollary 3. This is
shown in Figure 2. The bounds on the optimal speed are also
very tight, both for large and small γ. Part (a) shows that the
lower bound is loosest for intermediate γ, where the weights
given to power and response time are comparable. Part (b)
shows that gated-static (i.e., the upper bound) has very close
to the optimal cost.

In addition to comparing the total cost of the schemes, it is
important to contrast the mean response time and mean energy
usage. Figure 3 shows the breakdown. A reference load of
ρ = 3 with delay-aversion β = 1 and power scaling α = 2
was compared against changing ρ for fixed γ, changing β for
fixed ρ and changing α. Note γ = 3 was chosen to maximize
the ratio of zgs/z. The second scenario shows that when γ
is held fixed, but the load ρ is reduced and delay-aversion
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Fig. 2. Cost z vs energy-aware-load γ.

is reduced commensurately, the energy consumption becomes
negligible.

VI. ROBUST POWER-AWARE DESIGN

We have seen both analytically and numerically that (ide-
alized) dynamic speed scaling only marginally reduces the
cost compared to the simple gated-static. This raises the
question of whether dynamic scaling is worth the complexity.
This section illustrates one reason: robustness. Specifically,
dynamic schemes provide significantly better performance in
the face of bursty traffic and mis-estimation of workload.

We focus on robustness with respect to the load, ρ. The
optimal speeds are sensitive to ρ, but in reality this parameter
must be estimated, and will be time-varying.

It is easy to see the problems mis-estimation of ρ causes for
static speed designs. If the load is not known, then the selected
speed must be satisfactory for all possible anticipated loads.
Consider the case that it is only known that ρ ∈ [ρ, ρ̄]. Let
z(ρ1|ρ2) denote the expected cost per unit time if the arrival
rate is ρ1, but the speed was optimized for ρ2. Then, the robust
design problem is to select the speed ρ′ such that

min
ρ′

max
ρ∈[ρ,ρ̄]

z(ρ|ρ′).

The optimal design is to provision for the highest foreseen
load, i.e., maxρ∈[ρ,ρ̄] z(ρ|ρ′) = z(ρ̄|ρ′). However, this is
wasteful in the typical case that the load is less than ρ̄. The
fragility of static speed designs is illustrated in Figure 4,
which shows that when speed is underprovisioned, the server is
unstable, and when it is overprovisioned the design is wasteful.

Optimal dynamic scaling is not immune to mis-estimation
of ρ, since s∗n is highly dependent on ρ. However, because
the speed adapts to the queue length, dynamic scaling is more
robust. Figure 4 shows this improvement.

Though the optimal dynamic scheme is more robust than a
static scheme, robustness can be improved further. Specifically,
consider the following speed scaling scheme that we term
“linear”. It scales the server speed in proportion to the queue
length, i.e., sn/β1/α = n. Figure 4 shows that the linear
scaling provides significantly improved robustness when com-
pared with the optimal dynamic scheme; indeed, the “optimal”
scheme is only optimal for designs with ρ ∈ [7, 14]. Further,
when ρ is in this region, the linear scaling provides only
slightly higher cost than the optimal scaling. The price that lin-
ear scaling pays is that it requires very high processing speed
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when the occupancy is high, which may not be supported by
the hardware.

In addition to the numerical illustrations above, we can
compare robustness analytically in the case of α = 2. Theorem
11 shows that the cost of the linear scheme is exactly the same
as the cost of the gated-static scheme when ρ is known exactly.
Thus, the cost of the linear scheme is within a factor of 2 of
optimal, even without using information about ρ.

Theorem 11. When α = 2, zgs = zlin. Thus, zlin ≤ 2z.

Theorem 12. Consider a system designed for target load ρ′

that is operating at load ρ. When α = 2,

zlin =
ρ2

β
+ 2

ρ√
β

(28)

zss = zlin +
ρ

β

(
ε2√
β + ε

)
. (29)

VII. CONCLUDING REMARKS

Speed scaling is an important method for reducing energy
consumption in computer communication systems. Intrinsi-
cally, it trades off the mean response time and the mean energy
consumption, and this paper provides insight into this tradeoff
using a stochastic analysis.

Specifically, in the M/GI/1 PS model, both bounds and
asymptotics for the optimal speed scaling scheme are provided.
These bounds are tight for small and large γ and provide
a number of insights, e.g., that the mean response time is
bounded as the load grows under the optimal dynamic speed
scaling and that the optimal dynamic speeds in the stochastic
model match (for large n) dynamic speed scalings that have
been shown to have good worst-case performance.

Surprisingly, the bounds also illustrate that a simple scheme
which runs at speed 0 when the system is idle and uses a static
rate while the system is busy provides performance within a
factor of 2 of the optimal dynamic speed scaling. However,
the value of dynamic speed scaling is also illustrated –
dynamic speed scaling schemes provide significantly improved
robustness to bursty traffic and mis-estimation of workload
parameters. Interestingly, the dynamic scheme that optimizes
the mean cost is no longer optimal when robustness is consid-
ered. In particular, a scheme that scales speeds linearly with n
can provide significantly improved robustness while increasing
cost only slightly.
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