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Abstract— This paper presents an optimal strategy for uti-
lizing superimposed pilots for OFDM channel estimation using
Wiener filtering. An algorithm is formulated to determine the
optimal rectangular set of time-frequency samples for channel
estimation for a given complexity. The proposed scheme shows
an improved performance at high Doppler frequencies. Moreover,
the separable implementation of the 2D Wiener filter leads to a
significant reduction in complexity with negligible degradation in
channel estimation performance. The sensitivity of the proposed
technique to channel statistical mismatches is also analyzed.
Numerical results demonstrate the superior performance of the
proposed technique compared to conventional selection of square
set of time-frequency samples for Wiener-filter based channel
estimation.

I. I NTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
spectrally efficient modulation scheme for high-bit-rate wire-
less communication over multipath fading channels. It is
expected that OFDM will play a major role in next generation
(B3G and 4G) mobile wireless systems [1]. For coherent mod-
ulation schemes estimation of the wideband OFDM channel
consisting of large number of subcarriers is important for
receiver equalization and data detection. Specifically when
the mobility of the receivers is high (high Doppler channels)
channel estimation becomes a challenging task.

The conventional channel estimation techniques for OFDM
use known symbols or pilots. In these techniques pilots and
information symbols are multiplexed in time and/or frequency.
As an alternative technique, arithmetically adding pilot sym-
bols to information symbols (superimposing the pilot sym-
bols to the information symbols) has recently attracted wide
attention [2][3][4]. Though this technique ofsuperimposed
pilots was first proposed for single-carrier systems [2], it
has also been used for channel estimation in multicarrier
systems such as OFDM systems [4][5]. The main advantage
of superimposed pilot scheme is that the information symbols
can be transmitted over all time-frequency slots, hence saving
the bandwidth compared to time-multiplexed pilot scheme.
In addition to this, in the OFDM context, none of the sub-
carriers need to be dedicated completely or partially for the
pilots. In rapidly varying channels (in time or in frequency)
superimposed pilots have an advantage in terms of improved
channel tracking performance [6]. In [4], the potential of the
superimposed pilot scheme for high data rate transmission has
been demonstrated.

One of the channel estimation techniques that has been pro-
posed for OFDM systems is two dimensional (time/frequency)

Wiener filtering [7]. Wiener filters have been studied for
channel estimation and interpolation with time-multiplexed
pilot scheme in OFDM systems [8][9]. Minimum mean
square estimation (MMSE) channel estimation technique using
Wiener filtering and superimposed pilot training was proposed
in [4][5]. However in [4], after the Fast Fourier Transform
(FFT) operation, the time-frequency samples are taken for
channel estimation from a region chosen arbitrarily, without
considering the fading statistics. For instance [4] chooses a
square region on the time-frequency plane.

In contrast, this paper proposes an optimum rectangular
region for time-frequency sample selection along with its
performance. To reduce the complexity of two dimensional
Wiener filtering, we propose combining separable Wiener
filters [8] with superimposed training. Since the performance
of optimal time-frequency sample selection scheme as well as
channel estimation scheme depends on the channel’s fading
statistics (Doppler frequency and delay spread), an analysis is
presented to study the sensitivity of the proposed schemes to
statistical mismatches.

II. SYSTEM MODEL

A. Channel Model

The complex baseband model of a wireless time-varying
finite impulse response channel can be given as

z(t, τ) =
L−1∑

i=0

Ai(t)δ(τ − τi) (1)

whereAi(t) is the time-varying amplitude of theith path,τi is
the delay of theith path andL is number of propagation paths.
The amplitude of each path is assumed to be a Rayleigh fading
process and the power delay profile of the channel is taken as
exponentially decaying. The Fourier transform ofz(t, τ) with
respect to the delayτ is hc(t, f). Under these conditions the
joint time-frequency correlation function ofhc(t, f) becomes
[8]

Φ(∆t;∆f) = Φt(∆t)Φf (∆f) (2)

Φt(∆t) = J0(2πfd∆t) (3)

Φf (∆f) =
1− e(−Tcp(1/τrms+j2π∆f))

(1− e(−Tcp/τrms))(1 + j2π∆fτrms)
(4)

where∆f and ∆t are the separation in frequency and time
over which the correlation is measured. The Doppler freuqncy
and the cyclic prefix (CP) length of the OFDM symbols
are given byfd and Tcp, respectively. Root mean square



(RMS) value of the delay spread is given byτrms. OFDM
symbol length without cyclic prefix is defined asTs and
the total symbol interval including cyclic prefix is defined as
T = Ts + Tcp. Inter subcarrier frequency spacing is defined
asFs. N is the number of subcarriers andNg is the number
of samples in cyclic prefix.

B. Signal Model

Consider an OFDM system with superimposed pilots, where
pilots symbols are arithmetically added to the information
symbols at all time-frequency indices before IFFT-operation
at the transmitter. The received symboly(m,n) after FFT
operation at a time-frequency grid point(m,n) can be given
as

y(m,n) = h(m,n)[s(m,n) + c(m,n)] + w(m,n) (5)

where h(m,n) = hc(mT, nFs), s(m,n) is the information
symbol,c(m,n) is the superimposed pilot andw(m,n) is the
noise sample. The time and frequency index can be in the
range0 ≤ m ≤ M−1 and0 ≤ n ≤ N−1. Channel estimation
in this context is studied using Wiener filtering in the next
section.

III. C HANNEL ESTIMATION

A. Two Dimensional Wiener Filter

Optimal channel estimate in the Linear MMSE (LMMSE)
sense can be obtained using a two dimensional Wiener filter.
The least squares (LS) estimate of the channel is obtained
in the first step and these estimates are filtered using a
two dimensional Wiener filter to obtain a better channel
estimate. Without losing generality we consider estimation
of the channel,h(m,n), at an arbitrary time-frequency index
(m,n), where0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1. Here N
represents the number of subcarriers in the OFDM system,
whereasM can take a value till infinity if an infinite time
transmission is assumed. The LS estimate of the channel,
h̃(m,n), is obtained by dividing the received symbol after the
FFT operation,y(m,n) expressed in (5), by the superimposed
pilot c(m,n) as [5]

h̃(m,n) = h(m,n) + h(m,n)s′(m, n) + w′(m,n) (6)

where s′(m,n) = s(m,n)/c(m,n) and w′(m,n) =
w(m,n)/c(m, n). The second and third terms in (6) show
the noise introduced by the information symbols and channel
noise. To filter out this noise a two dimensional Wiener filter is
applied and the channel estimate isĥ(m,n) = w∗

2D(m,n)h̃,
where h̃ is a MN × 1 vector containing all the elements
h̃(m,n), 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1 andw2D(m, n) is

w2D(m,n) =
[
Chh + (σ2

s′ + σ2
w′)I

]−1
Chh(m,n) (7)

whereChh is the channel autocorrelation function of dimen-
sionMN ×MN andChh(m,n) is the cross-covariance vector
of dimensionMN × 1 obtained from (2)[5]. The symbolσ2

represents the variance of the corresponding variable.
To reduce the complexity and to alleviate edge effect to

a great extend, we consider a subset of{y(m, n)|0 ≤ m ≤
M−1, 0 ≤ n ≤ N−1} for channel estimation. Given a subset

of the complete set of time-frequency samples, we can pre-
compute the time-frequency invariant weighting vector.For
a given complexity (or for a given number of time-frequency
samples in the subset), how can we choose the optimal subset
of samples that minimizes the channel estimation error?This
question is addressed in the next section.

B. Optimal Selection of Time-Frequency Samples

Considering the estimation of channel at(m,n), according
to MMSE theory, estimation error is minimized by selecting
the neighborhood consisting of points with maximum correla-
tion to the point(m,n). We can see that the most correlated
sample points tõh(m, n) would minimize the MMSE of
channel estimation. Thus the optimal region that encompasses
the highly correlated samples is a contour of channel time-
frequency correlation function surfaceΦ(∆t,∆f). The algo-
rithm to selectCmax highly correlated samples is presented as
follows:

• ComputeΦ = {Φ(i, j)} for all combinations of−N ≤
i ≤ N,−M ≤ j ≤ M

• Select set of indicesI = {(i, j)} corresponding toCmax

number of largest values inΦ.

This method of selection of sample points is used as the
benchmark for performance in Section IV.

We propose to use anoptimal rectangular regionto ap-
proximate the optimal region considering following reasons.
(i) The performance in terms of MMSE channel estimation
(presented in Section IV) using a rectangular region is very
close to that of optimal region at low as well as high Doppler
frequencies. (ii) It is possible to compute a low complexity
separable Wiener filter as discussed in Section III-C. Thus
the objective is to choose a rectangular region encompassing
the most highly correlated time-frequency samples such that
the number of samples within the rectangle satisfies the
complexity requirement. The complexity requirement specifies
the finite number of time-frequency samples that can be used
for channel estimation.

We initially analyze the problem of determining the optimal
rectangular time-frequency region for channel estimation in
continuous domain and then convert to discrete domain for
further analysis. Without losing generality a rectangular region
encompassing the time-frequency sample(m,n) is calculated
as follows. Let the height of the rectangle be2f0 in frequency
direction and the width be2t0 in time direction. The total
accumulated correlation in this rectangle is

ΦC(t0, f0) =
∫ f0

−f0

∫ t0

−t0

|Φ(∆t,∆f)|d∆td∆f, (8)

whereΦ(∆t,∆f) is time-frequency channel correlation func-
tion as given in (2). Since time and frequency correlation
functions are separableΦ(∆t,∆f) = Φt(∆t)Φf (∆f), the
complexity constrain, and using the inter-carrier and inter-time
slot spacing, gives

4f0t0
FsT

≤ Cmax. (9)



Let FsTCmax = K. Applying (9) and separability of
Φ(∆t, ∆f), (8) can be modified as

ΦC(f0) =
∫ f0

−f0

|Φf (∆f)|d∆f

∫ K/f0

−K/f0

|Φt(∆t)|d∆t. (10)

The objective is to findf0 that maximizesΦC(f0). The
time correlation functionΦt(∆t) = J0(2πfd∆t) can be
approximated as a polynomial function, which is given as [10]

J0(2πfd∆t) '
n∑

m=0

cn,m(2πfd∆t)2m, 0 ≤ 2πfd∆t ≤ 2n, (11)

where cn,m is given by cn,m = ((−1)mn1−2m(n + m −
1)!)/(22m(n−m)!(m!)2). AssumingTcp to be large compared
to the channel delay spreadτrms, the frequency correla-
tion function can be approximated asΦf (∆f) = 1/(1 +
j2π∆fτrms). Using the above expressions forΦt(∆t) and
Φf (∆f), total correlation functionΦC(f0) is obtained as

ΦC(f0) =
2
b

n∑
m=0

cn,m(2πfd)2mK2m+1

(2m + 1)f2m+1
0

.

ln |bf0 +
√

b2f2
0 + 1|, (12)

whereb = 2πτrms. Forn = 1, the approximation (12) becomes

ΦC(f0) =
[

2K

πτrmsf0
− 2πf2

dK3

3τrmsf3
0

]
ln |bf0 +

√
b2f2

0 + 1|. (13)

For maximization of (13) numerically, it is beneficial to
convert f0 from continuous domain to discrete domain as
f0 = ηFs, 1 ≤ η ≤ N , where Fs is subcarrier spacing
and η is subcarrier index. The terms in (13)τrmsf0 can be
modified asτrmsf0 = τrmsηFs = τrmsη/Ts = τ̃rmsη/N , where
τ̃rms is the RMS delay spread normalized by sampling period,
Ts/N . Similarly the termfd/f0 in (13) can be modified as
fd/f0 = fd/ηFs = fdTs/η = f̃d/ηε, where f̃d = fdT is
normalized Doppler frequency andε = (1 + Ng/N). The
discrete expression for total correlation functionΦC(ηFs) =
Φ′C(η) is

Φ′C(η) =
(

A

η
− B

η3

)
ln |cη +

√
c2η2 + 1|, (14)

where A = 2KN/πτ̃rms, B = 2πK3f̃2
dN/3τ̃rmsε

2 and c =
2πτ̃rms/N . The steps to be executed to obtain the optimal
rectangle is as follows:

1) Computeηmax = arg maxη Φ′C(η), η = 1, 2, . . . N
2) ComputeM ′ = bCmax/ηmax + 0.5c, whereM ′ is the

discrete dimension of the rectangle in terms of number
of OFDM symbols in time direction andbxc denotes the
largest integer not exceedingx.

3) Calculate N ′ = bCmax/M
′c, where N ′ is discrete

dimension of the rectangle in terms of number of sub-
carriers.

The performance of optimal time-frequency sample selection
is demonstrated in Section IV.

C. Separable Wiener Filter

The complexity of the two dimensional Wiener filter
can be significantly reduced by incorporating two one
dimensional Wiener filters with minor sacrifice in the channel
estimation performance. The idea is to obtain channel
estimates in frequency direction first, utilizing frequency
correlation function and then smooth the channel estimates
using a second Wiener filter in time direction utilizing time
correlation function [8]. Here we are utilizing the separability
of the time-frequency channel correlation function given in
(2). Considering stationarity of the channel, both the filters
are time and frequency invariant. The separable Wiener filter
algorithm has the following two steps:

Step 1
Construct a vector of LS channel estimates from samples in
frequency direction, centered at time indexk and frequency
index n.

h̃(k, n) =
[
h̃(k, n + n′) | −N1 ≤ n′ ≤ N2

]
(15)

where N1 = N2 = bN ′/2c if N ′ is odd andN1 = N ′/2
and N2 = N ′/2 − 1 if N ′ is even. N ′ is the height
of the rectangle in frequency direction obtained from the
optimization procedure in Section III-B. Obtain the channel
estimatêh1(k, n) using Wiener filter as

ĥ1(k, n) = w∗
1h̃(k, n) (16)

wherew1 is of the form

w1 =
[
Cf

h(k,n)h(k,n) + σ2I
]−1

Cf
h(k,n)h(k,n) (17)

and

h(k, n) = [h(k, n + n′) | −N1 ≤ n′ ≤ N2] (18)

The correlation functionsCf
h(k,n)h(k,n) andCf

h(k,n)h(k,n) are
independent of the specific channel realization, and can be
precomputed from the channel frequency correlation function
in (4) andσ2 = σ2

s′ + σ2
w′ .

Step 2
Construct a vector of channel estimates from (16) in time
direction centered around the time indexm and frequency
index n.

ĥ1(m,n) =
[
ĥ(m + m′, n) | −M1 ≤ m′ ≤ M2

]
(19)

whereM1 = M2 = bM ′/2c if M ′ is odd andM1 = M ′/2
and M2 = M ′/2 − 1 if M ′ is even.M ′ is the length of the
optimal rectangle in time direction obtained in Section III-B.
Estimateĥ(m,n) from ĥ1(m,n) using a Wiener smoothing
filter

ĥ(m,n) = w∗
2ĥ1(m, n) (20)

where w∗
2 = Ch(m,n)ĥ1(m,n).C

−1

ĥ1(m,n)ĥ1(m,n)
. The (i, j)th

element of the auto-correlation matrixCĥ1(m,n)ĥ1(m,n) is
given by (21).Ct

h(i,n)h(j,n)(i, j) is the (i, j)th element of

the time correlation function obtained using (3) andCf
hh of



Cĥ1(m,n)ĥ1(m,n)(i, j) = w∗
1

[
Ct

h(i,n)h(j,n)(i, j)C
f
hh + σ2I(i, j)

]
w1. (21)

dimensionN ′ × N ′ is obtained using the frequency correla-
tion function (4). Theith element of cross-covariance vector
Ch(m,n)ĥ1(m,n) is obtained as

Ch(m,n)ĥ1(m,n)(i) = Ct
h(m,n)h(i,n)C

f
h(m,n)h(i,n)w1 (22)

whereCt
h(m,n)h(i,n) andCf

h(m,n)h(i,n) are computed from (3)
and (4). In (21),σ2(i, j) = σ2

s′ + σ2
w′ when i = j otherwise

σ2(i, j) = σ2
s′ . The channel estimation error (MMSE)E for

the separable Wiener filter case can be given as

E = Chh −Chĥ1
C−1

ĥ1ĥ1
Cĥ1h (23)

whereh = h(m,n) andĥ1 = ĥ1(m,n). The individual terms
in (23) are obtained using expressions given in Step 2. The
above MMSE expression is used for performance evaluation
in Section IV.

D. Complexity Reduction With Separable Wiener Filter

Assuming that the channel correlation functions in time and
frequency are available, the Wiener filter coefficients can be
computed offline. In a separable filter, calculations to estimate
the channel at a particular(m,n) can be reused to estimate
channel at its neighboring points. This reduces the number of
multiplications required to estimate a single channel gain for
the separable Wiener filter toM ′ + N ′. For the 2D Wiener
filter the number of multiplications per channel gain estimation
is M ′N ′. Thus, using two one dimensional Wiener filters
provides a complexity reduction factor of(M ′ + N ′)/M ′N ′.
Numerical performance comparison of separable Wiener filter
with two dimensional Wiener filter is presented in Section IV.

E. Effect of Errors in Channel Statistics

Optimal sample selection in Section III-B and channel
estimation techniques presented in Section III-C depends on
the statistics of the channel (Doppler frequency and RMS
delay-spread). Two possible situations can be analyzed in this
context. First we assume that there is estimators to estimate
Doppler frequency and RMS delay-spread at the receiver,
hence estimation error is assumed to be at low range. Second,
receiver is working at a fixed̃fd andτ̃rms, which are decided at
design time. Hence these statistical parameters can be far away
from reality. In both these cases it is important to see how the
channel estimation performance is affected by the statistical
errors. The channel estimation error (MMSE) for this case is
given by

E ′ = Chh − Chhw− w∗Chh − w∗Chhw (24)

wherew is the channel estimator constructed with inaccurate
channel statistics. Results on channel estimation error in
presence and absence of statistical error are given in Section
IV-C.

IV. N UMERICAL RESULTS

This section provides numerical results based on analytical
expressions derived in previous sections, demonstrating the
benefits of the proposed optimal pilot selection for channel
estimation. We consider an OFDM system withN = 64 sub-
carriers and cyclic prefix length is6 samples. The channel is
assumed to be Rayleigh fading with exponentially decreasing
power delay profile. The channel has normalized RMS delay
spread (̃τrms) of 0.5. Normalized Doppler frequency,̃fd, is
considered in the range0.001− 0.4. The normalized Doppler
frequency is chosen in this range to model high mobility in
future mobile networks. Average channel SNR is assumed to
be 20 dB and the optimal power allocation for superimposed
pilot for this channel SNR is20% of the total power [11].

A. Performance of Optimal Time-Frequency Sample Selection

Performance of optimal time-frequency sample selection is
compared in Fig 1. This compares the mean square channel
estimation error versus normalized Doppler frequency while
selecting pilots from an optimal region, optimal rectangular
region and a square region. The number of samples selected
for channel estimation is up to a maximum ofCmax = 100.
As given in Fig. 1, at low Doppler frequency performance of
all the three schemes are similar. However at high Doppler
frequencies the performance of rectangular window and op-
timal window becomes better than the square window. The
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Fig. 1. Performance comparison of optimal sample selection with rectangular
and square approximations.

dimensions of the optimal rectangular regions are given in
Table I.

B. Comparison of 2D Filter and Separable Filter

In this section the performance of the two dimensional
Wiener filter is compared with the separable Wiener filter.
For the same time-frequency sample region channel estimation
error performance of 2D Wiener filter is compared with
the performance of separable Wiener filter. The number of
samples used for channel estimation is up to a maximum



TABLE I

PROPOSED DIMENSIONS OF RECTANGULAR REGIONS FOR DIFFERENT

NORMALIZED DOPPLER FREQUENCIES.

f̃d 0.001 0.005 0.007 0.01 0.02 0.04 0.1 0.4
N ′ 3 5 7 9 10 20 33 50
M ′ 33 20 14 11 10 5 3 2

of Cmax = 100. For both the schemes height and width
of the rectangle encompassing the time-frequency samples
were optimized using the method proposed in Section III-
B. Fig 2 plots the minimum mean square channel estimation
error against normalized Doppler frequency. The performance
graph shows that both schemes perform similarly when the
number of samples used for channel estimation is the same.
However the complexity of the separable Wiener filter is just
(M ′ + N ′)/M ′N ′ times that of the 2D Wiener filter.
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Fig. 2. Performance of two dimensional Wiener filter versus separable Wiener
filter.

C. Performance in Presence of Statistical Mismatch

Statistical mismatch occurs when the receiver uses a wrong
estimate of the Doppler frequency. We assume that the RMS
delay-spread is obtained with no error. The over estimate of the
Doppler frequency is assumed to be known with percentage
errors20% and 150%, where20% is considered as a worst
case bound on the error in estimating Doppler frequency.
The large150% error is considered for the case where an
assumption is made on the Doppler frequency at the receiver
design stage which can be far out from the actual value.
Both these scenarios are possible in reality. The number
of time-frequency samples used for channel estimation is
up to a maximum ofCmax = 100. Fig 3 shows channel
estimation error vs Doppler frequency for different errors in
obtaining Doppler frequency. The optimal rectangular region
for selecting time-frequency samples shows lesser sensitivity
to statistical mismatch, whereas the scheme using the square
region for sample selection shows much higher sensitivity
(larger performance degradation) to statistical mismatch.

V. CONCLUSION

In the context of superimposed pilots, the proposed rect-
angular approximation to the optimal time-frequency sample
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Fig. 3. Performance comparison of optimal rectangular sample selection
with square approximation under Doppler frequency mismatches.

selection is reasonable with only small reduction in perfor-
mance. Rectangular approximation leads to the separable im-
plementation of the Wiener filter, thus reducing the complexity
significantly. A square region of samples is not an effective
choice at high Doppler frequencies as the channel estimation
performance is reduced compared to the optimal selection
as well as the rectangular approximation. The rectangular
approximation of sample selection region has the additional
benefit being less sensitive to channel statistical mismatch.
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