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1. INTRODUCTION
We consider algorithms for “smoothed online convex op-

timization” (SOCO) problems, which are a hybrid between
online convex optimization (OCO) and metrical task sys-
tem (MTS) problems. Historically, the performance metric
for OCO was regret and that for MTS was competitive ratio
(CR). There are algorithms with either sublinear regret or
constant CR, but no known algorithm achieves both simul-
taneously. We show that this is a fundamental limitation
– no algorithm (deterministic or randomized) can achieve
sublinear regret and a constant CR, even when the objec-
tive functions are linear and the decision space is one di-
mensional. However, we present an algorithm that, for the
important one dimensional case, provides sublinear regret
and a CR that grows arbitrarily slowly.

A SOCO problem is defined as follows. There is a convex
decision/action space F ⊆ (R+)n and a sequence of cost
functions {c1, c2, . . . }, where each ct : F → R

+. At each
time t, a learner/algorithm chooses an action vector xt ∈
F and the environment chooses a cost function ct. The
algorithm is then evaluated on the cost function and pays a
switching cost corresponding to the difference between the
actions.

The main difference between regret and CR is that the for-
mer compares the performance of an algorithm to that of the
static optimal solution, while the latter compares with the
dynamic optimal solution. It is desirable for an algorithm
to perform well relative to both benchmarks. For example,
in machine learning, the former is appropriate if the concept
being learned is static, while the latter is appropriate if the
concept is dynamic; if it is not known a priori whether the
concept is static or dynamic, then it is important to have an
algorithm that performs well in both cases.

OCO and MTS were connected in [1], which studies the
special case of fixed and constant switching costs. It shows
how to translate bounds on regret into bounds on the CR,
and vice versa. Later, [2] used a primal-dual approach to
develop an algorithm for the “α-unfair competitive ratio,” a
hybrid of the CR and regret defined below. The algorithm
allows a tradeoff, but does not simultaneously perform well
for regret and CR. There is also work achieving simultaneous
guarantees with respect to the static and dynamic optimal
solutions in other settings, e.g., [3], and there have been
some attempts to use algorithmic approaches from machine
learning in the context of MTSs [4,5].
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We consider several measures of cost. All are special cases
of the α-penalized cost with lookahead i,

Cα
i (A) = E

[

T
∑

t=1

ct(xt+i) + α‖xt+i − xt+i−1‖
]

.

When α is omitted, it is assumed to be 1.
Within the OCO literature, the typical benchmark that is

compared against is the optimal offline static action, i.e.,

OPTs := min
x∈F

T
∑

t=1

ct(x).

The regret of an online learning algorithm is defined as the
(additive) difference between its cost and the cost of the
optimal static action vector. Specifically, the regret of Algo-
rithm A on instances C, R0(A), is less than ρ(T ) if for any
sequence of cost functions (c1, . . . , cT ) ∈ C,

C0
0(A) − OPTs ≤ ρ(T ) (1)

In this traditional definition of regret, there is no switching
costs or lookahead. A natural generalization is Ri(A) for
which C0

0(A) is replaced by C1
i (A) in (1).

Within the MTS literature, the typical benchmark that is
compared against is the optimal offline (dynamic) solution:

OPTd := min
x∈F T

T
∑

t=1

ct(xt) + ‖xt − xt−1‖.

Note that the minimal cost is the same regardless of looka-
head since the cost functions are fixed.

The competitive ratio compares the cost of an algorithm
to that of the offline optimal. The cost typically consid-
ered is C1(A), but more generally the competitive ratio with
lookahead i, denoted by CRi(A), is ρ(T ) if for any sequence
of cost functions (c1, . . . , cT ) ∈ C

Ci(A) ≤ ρ(T )OPTd + O(1). (2)

The case of i = 1 corresponds to the typical CR studied in
the MTS literature.

There are a variety of options for bridging the use of OPTs

by regret and of OPTd by CR. For example, Adaptive-
Regret [6] is defined as the maximum regret over any in-
terval, where the “static” optimum can differ for different
intervals, and Internal regret [7] compares the online policy
against a simple perturbation of that policy. The metric we
use is the α-unfair competitive ratio [1, 2, 8], and we de-
note it with CRα

i (A) in the case of i-lookahead. Formally,
CRα

i (A) is defined exactly the same as the competitive ratio



except that the benchmark for comparison is

OPT α
d = min

x∈F T

T
∑

t=1

ct(xt) + α‖xt − xt−1‖,

where α ≥ 1. Specifically, CRα
i (A) is ρ(T ) if (2) holds

with OPTd replaced by OPT α
d . Note that OPT α

d transitions
between the dynamic optimal (when α = 1) and the static
optimal (for large enough α).

2. INCOMPATIBILITY
It is natural to seek algorithms that perform well with re-

spect to both regret (i.e., a static benchmark) and CR (i.e.,
a dynamic benchmark). However, to date no algorithm has
achieved this. For example, online gradient descent [9] has

a regret of O(
√

T ), or even O(log T ) when the cost func-
tion has minimal curvature [10], but has infinite CR. Con-
versely, algorithms for general MTS problems typically have
CR O(n) for a decision space of size n (i.e., O(1) with re-
spect to the number of tasks T ) but have linear regret, even
for the special case of a one dimensional decision space with
convex costs [11].

This is due to a fundamental incompatibility:

Theorem 1. Consider an arbitrary seminorm ‖ · ‖ on
R

n, constants γ > 0, α > 0 and i ∈ N.
There is a C containing a single sequence of cost functions

such that, for large enough T , for all deterministic and ran-
domized algorithms A,

CRα
i+1(A) +

Ri(A)

T
≥ γ, (3)

Moreover, for any deterministic or randomized online al-
gorithm A, there is a C consisting of two cost functions such
that for large enough T ,

CRα
0 (A) +

R0(A)

T
≥ γ (4)

The incompatibility (3), which applies to the traditional no-
tions of regret (R0

0) and competitive ratio (CR1
1) in the OCO

and MTS communities, arises since CRα
i+1 and Ri require

xt to minimize ct−i and ct−i−1 simultaneously.
The proof of (4) uses linear costs ct(x) = a(1 − x) + b

for E
[

xt
]

≤ 1/2 and ct(x) = ax + b otherwise, on decision

space [0, 1], where xt is the (random) choice of the algo-
rithm at round t. Here, a and b are fixed constants and
the expectation is taken over the marginal distribution of xt

conditioned on c1, . . . , ct−1, averaging out the dependence
on the realizations of x1, . . . , xt−1.

3. TRADEOFF
To circumvent the incompatibility in Theorem 1, we

present an algorithm“Random Bias Greedy” (RBG) for one-
dimensional decision spaces that is O(1) (α-unfair) compet-
itive and has ǫT regret for arbitrarily small ǫ.

The algorithm takes a norm N as its input:

Algorithm 1 (Random Bias Greedy, RBG(N)).
Given a norm N , define w0(x) = N(x) for all x and
wt(x) = miny{wt−1(y) + ct(y) + N(x − y)}. Generate a
random number r ∈ (−1, 1). For each time step t, go to the
state xt which minimizes Y t(xt) = wt−1(xt) + rN(xt).

Theorem 2. For a SOCO problem in a one-dimensional
normed space ‖·‖, running RBG(N) with a one-dimensional
norm having N(1) = γ‖1‖ as input (where γ ≥ 1) attains an
α-unfair competitive ratio CRα

1 of (1 + γ)/min{γ, α} and a
regret R0 of O(max{T/γ, γ}) with probability 1.

To prove Theorem 2, let c(A) :=
∑T

t=1
ct(xt+1), let

s(A) :=
∑T

t=1
‖xt+1 − xt‖ and let OPTN be the dynamic

optimum under norm N with N(1) = γ‖1‖ (γ ≥ 1). Theo-
rem 2 follows from the following lemmas.

Lemma 3. Consider a one-dimensional SOCO problem
with norm ‖ · ‖ and an online algorithm A which, when run
with norm N , satisfies c(A(N)) ≤ OPTN + O(1) along with
s(A(N)) ≤ βOPTN + O(1) with β = O(1). Fix a norm
N such that N(1) = γ‖1‖ with γ ≥ 1. Then A(N) has α-
unfair competitive ratio CRα

1 (A(N)) = (1 + β)max{ γ

α
, 1}

and regret R0(A(N)) = O(max{βT, (1 + β)γ}) for the orig-
inal SOCO problem with norm ‖ · ‖.

Lemma 4. Given a one-dimensional SOCO problem
with norm ‖ · ‖,

E [c(RBG(N))] ≤ OPTN

E [s(RBG(N))] ≤ OPTN/γ.
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