
Online Optimization with Switching Cost

Minghong Lin Adam Wierman
CMS, California Institute of Technology

Alan Roytman Adam Meyerson
Dept. of Computer Science, UCLA

Lachlan L.H. Andrew
Faculty of ICT, Swinburne University of Technology

ABSTRACT
We consider algorithms for “smoothed online convex op-
timization (SOCO)” problems. SOCO is a variant of the
class of “online convex optimization (OCO)” problems that
is strongly related to the class of “metrical task systems”,
each of which have been studied extensively. Prior literature
on these problems has focused on two performance metrics:
regret and competitive ratio. There exist known algorithms
with sublinear regret and known algorithms with constant
competitive ratios; however no known algorithms achieve
both. In this paper, we show that this is due to a fun-
damental incompatibility between regret and the competi-
tive ratio – no algorithm (deterministic or randomized) can
achieve sublinear regret and a constant competitive ratio,
even in the case when the objective functions are linear.

1. INTRODUCTION
In an online convex optimization (OCO) problem, a learner

interacts with an environment in a sequence of rounds. Dur-
ing each round t: (i) the learner must choose an action xt

from a convex decision space F ; (ii) the environment reveals
a cost convex function ct, and (iii) the learner experiences
cost ct(xt).1 The goal is to design learning algorithms that
minimize the cost experiences over a (long) horizon of T
rounds. OCO has a wide array of applications, e.g., portfo-
lio management [1] and network routing [2]; and a significant
literature of work developing and analyzing algorithms that
can effectively learn in this environment, e.g., [3–5].

In this paper, we study a generalization of online convex
optimization that we term Smoothed Online Convex Opti-
mization (SOCO). The only change in a smoothed online
convex optimization compared to an online convex opti-
mization is that the cost experienced by the learner is now
ct(xt) + ‖xt − xt−1‖, where ‖ · ‖ is an arbitrary norm. That
is, the learner experiences an additional “smoothing cost”
or “switching cost” associated with changing the action.

By adding switching costs to online convex optimization,
SOCO captures a wide variety of important applications. In
fact, a strong motivation to study SOCO is the recent devel-
opment in dynamic control algorithms for data centers [6,7],
where the goal is to dynamically control the number and
placement of active servers (xt) in order to minimize a com-

1Depending on the setting, (i) may happen before (ii), or
vice versa.

Copyright is held by author/owner(s).

bination of the delay and energy costs (captured by ct) and
the switch costs involved in cycling servers into power saving
modes and migrating data (‖xt−xt−1‖). Other applications
of recent interest include video streaming [8], where the en-
coding quality of a video needs (xt) to change dynamically in
response to network congestion but where large changes in
encoding quality (‖xt−xt−1‖) are visually annoying to users,
optical networking, in which there is a cost to reestablishing
a light path [9], and the dynamic dispatching of electricity
generators, where in addition to the time-varying operat-
ing costs of the generators there are significant ‘setup’ and
’ramping’ costs associated with changing the electricity out-
put (xt) [10].

More traditionally, within the learning community, many
applications typically modeled using OCO have, in reality,
some cost associated with a change of action; and so may
be better modeled using SOCO than OCO. For example,
OCO encodes the so-called ‘k-expert’ problem, which has
many applications where switching costs can be important,
e.g., in stock portfolio management there is a cost associated
with adjusting the stock portfolio owned. In fact, ‘switching
costs’ have long been considered important in related learn-
ing problems, such as the k-armed bandit problem which
has a considerable literature studying algorithms that can
learn effectively despite switching costs [11, 12]. Thus, it is
quite natural to also consider the addition of switching costs
to OCO.

2. SMOOTHED ONLINE CONVEX OPTI-
MIZATION

Though the smoothed online convex optimization prob-
lems, precisely, have not been studied previously (to the
best of our knowledge), there are two large literatures that
have studied formulations that are very related to SOCO: (i)
the online convex optimization (OCO) literature within the
online learning community, e.g., [4, 5], and (ii) the metrical
task system (MTS) literature within the online algorithms
community, e.g., [13, 14].

Online convex optimization (OCO) is very similar to SOCO
except that the cost incurred by the learner does not include
a switching cost. In particular, during each round t the
following happen in order: (i) the learner must choose an
action xt from a convex decision space F ; (ii) the environ-
ment reveals a convex cost function ct, and (iii) the learner
experiences cost ct(xt). The goal is to design learning al-
gorithms that minimize the cost experiences over a (long)
horizon of T rounds. Following the treatment of [4, 5], we
assume that the decision space F is non-empty, bounded and

closed, and that the Euclidean norm of gradients ‖Oct(·)‖2
are also bounded.

Now let us consider SOCO in the OCO setting. We have
the following sequence of environment revelations and learner
decisions: x1, c1, x2, c2, . . . , i.e., round t consists of xt fol-
lowed by ct, the learner incurs cost ct(xt) + ‖xt − xt−1‖,
where ‖ · ‖ is a norm on Rn. We define the cost of an algo-
rithm A in a SOCO under OCO setting as

Cost1(A) = E

[
T∑

t=1

ct(xt) + ‖xt − xt−1‖

]
.

where x1, . . . , xt are the decisions of the algorithm, x0 = 0
without loss of generality, and the expectation is over any
randomness used by the algorithm.

In the OCO setting, the goal of the learning algorithm is
usually to minimize the regret, which is the difference be-
tween the cost of the algorithm and the cost of the offline
optimal static solution. Formally, Algorithm A has regret
γ(T) if for any sequence of cost functions c1, . . . , cT ,

Cost1(A)−min
x̂∈F

T∑
t=1

ct(x̂) ≤ γ(T) (1)

A number of algorithms have been shown to provide sub-
linear regret for OCO. An important example of a sublinear
regret learning algorithms is online gradient descent (OGD),
which is parameterized by learning rates ηt. OGD works as
follows.

Algorithm 1 (Online Gradient Descent, OGD).
Select arbitrary x1 ∈ F . In time step t ≥ 1, select xt+1 =
P (xt− ηtOct(xt)), where P (y) = arg minx∈F ‖x− y‖2 is the
projection under the Euclidean norm.

By choosing the learning rates ηt carefully, OGD is able
to achieve sub-linear regret for OCO. In particular, the vari-
ation in [4] uses ηt = Θ(1/

√
t) and obtains O(

√
T)-regret.

Other variations are also possible. For example, [5] achieves
a tighter regret bound of O(log T) by choosing ηt = Θ(1/t)
under additional assumptions.

To extend the literature discussed above from OCO to
SOCO, we need to track the switching costs incurred by the
algorithms. Interestingly, the choices of ηt used by the algo-
rithms designed for OCO also turn out to be good choices to
control the switching costs of the algorithms. In particular,
all of the classical gradient decent learning algorithms are
still sub-linear regret for SOCO.

Corollary 1. Consider an online gradient decent algo-
rithm A with learning rates such that

∑T
t=1 ηt = O(γ1(T)).

If Regret(A) = O(γ2(T)) for online convex optimization
problems, then Regret(A) = O(γ1(T) +γ2(T)) for smoothed
online convex optimization problems.

An immediate consequence of Corollary 1 is that the on-
line gradient decent algorithms in [4,5], which use ηt = 1/

√
t

and ηt = Θ(1/t), are still O(
√
T)-regret and O(log T)-regret

respectively under SOCO.
Now let us consider metrical task system (MTS). A MTS

is a more general variant of a SOCO, with a few slight
changes. In particular, during each round the following
happen in order: (i) the environment reveals a cost func-
tion ct−1, (i) the learner must choose an action xt from
a decision space F ; and (iii) the learner experiences cost

ct−1(xt) + d(xt−1, xt) for some metric d(·). The key dif-
ferences with the class of OCO problems are (a) the envi-
ronment reveals the cost function before the learner choose
action, (b) the cost functions ct are usually not assumed to
be convex, (c) the decision space is typically assumed to be
discrete, and (d) a switching cost metric is included in the
cost incurred by the learner.

In the MTS setting, i.e., round t consists of ct−1 followed
by xt, the learner then incurs cost ct−1(xt) + ‖xt − xt−1‖.
We define the cost of an algorithm A in a SOCO under MTS
setting as

Cost2(A) = E

[
T∑

t=1

ct−1(xt) + ‖xt − xt−1‖

]
.

where x0 = 0, c0(·) = 0 without loss of generality.
The learning problem seems “easier” under MTS setting

in the sense that the cost function for a round are known be-
fore the action must be decided. However, the performance
metric studied in the MTS literature is much “stronger”
than regret. In particular, algorithms are evaluated based on
their competitive ratio, which is the ratio between the cost of
the algorithm and the cost of the offline optimal (dynamic)
solution. Formally, an algorithm A is α(T)-competitive, if
for any sequence of cost functions c1, . . . , cT ,

Cost2(A) ≤ αmin
x̂t

T∑
t=1

(
ct−1(x̂t) + ‖x̂t − x̂t−1‖

)
+O(1) (2)

For the classical MTS problem, i.e., discrete decision space
without convexity assumption, most results tend to be “neg-
ative”. In particular, it has been proven that, given an
arbitrary metric space, any deterministic algorithm must
be Ω(n)-competitive [13], where n is the number of states
in the decision space. Further, any randomized algorithm
must be Ω(

√
logn/ log log n)-competitive [15]. However, re-

cently, results have shown that positive results are possible
in SOCO setting with L1 normed space. Specifically, in the
case when xt is scalar, there exists an algorithm termed Lazy
Capacity Provisioning (LCP) that is 3-competitive [6]. More
generally, when xt is not scalar an algorithm termed Aver-
aging Fixed Horizon Control (AFHC) is 1 + O(‖1‖∞/w)-
competitive [7], using exact predictions of the cost functions
in the next w rounds.

3. THE INCOMPATIBILITY OF REGRET
AND THE COMPETITIVE RATIO

To this point, we have discussed regret and the competi-
tive ratio independently. However, it is clear that one would
ideally want to have online learning algorithms for SOCO
with strong guarantees on both metrics. Specifically, we
want an algorithm that is as good as the optimal static pol-
icy and nearly as good as the optimal dynamic policy.

Interestingly, it is easy to see that none of the algorithms
we have discussed to this point achieve both goals. For ex-
ample, though online gradient descent has sub-linear regret,
its competitive ratio is infinite. Similarly, though LCP is
3-competitive, it has linear regret.

It turns out that this is no accident. We show below that
the two metrics are incompatible. That is, any algorithm
that has sub-linear regret necessarily has an infinite com-
petitive ratio; and any algorithm that has a constant com-
petitive ratio necessarily has linear regret. More formally,

we have the following:

Theorem 2. Given an online algorithm A and an arbi-
trary constant γ > 0, there exists a sequence of cost func-
tions defining a smoothed convex optimization problem on
which CR(A) +Regret(A)/T ≥ γ.

The impact of this result can be stark. For example,
consider an application where static control is currently be-
ing used. To justify the use of dynamic control, one would
want an algorithm that is guaranteed to perform better than
the best static algorithm, i.e., a sublinear regret algorithm.
However, given that one is using dynamic control, one would
want an algorithm that is always close to the optimal, i.e.,
has a constant competitive ratio.

An important remark about Theorem 2 is that the proof
uses linear cost functions and a one-dimensional decision
space. This highlights, that the incompatibility does not re-
sult from complexity in the cost functions or decision space,
rather it is fundamental to the performance metrics.

4. BALANCING REGRET AND THE COM-
PETITIVE RATIO

Given the incompatibility of regret and the competitive
ratio highlighted by Theorem 2, it is necessary to reevalu-
ate the goals for algorithm design. For example, it may be
enough to ensure εT -regret for arbitrarily small constant ε
considered good though it is not sub-linear regret. Or, it
may be enough to ensure that the algorithm is log log T -
competitive even though this is not a constant guarantee.

In this section, we present an algorithm named Random
Bias Greedy (RBG), which is motivated by an algorithm
in [16], that can allow such tradeoffs between regret and the
competitive ratio in the case when the decision space F is
one-dimensional.

RBG works as follows:

Algorithm 2 (Random Bias Greedy (RBG)). Define
w0(x) = 0 for all x and wt(x) = miny{wt−1(y) + ct(y) +
‖x − y‖}. Generate a random number r ∈ (−‖1‖, ‖1‖).
For each time step t, go to the state xt which minimizes
Y t(xt) = wt(xt) + rxt.

Note that the algorithm makes use of randomness, but
only in a very limited way – it parameterizes its “bias” using
a random number r. Given this bias, the algorithm works
by choosing actions to minimize its “work function” wt(x).

As stated above, RBG performs well for the competitive
ratio, but not for regret. In particular, it is 2-competitive
but has linear regret. However, one can achieve a balance
between regret and the competitive ratio by parametizing
the algorithm with the “wrong” norm. More specifically, re-
call that, the absolute value is the “only” norm on R in the
sense that for every norm ‖ ·‖ on R, ‖x‖ = ‖1‖|x|. However,
the the norms differ in magnitude depending on the value of
‖1‖. We take advantage of this to use different parameteri-
zations of ‖1‖ to “weigh” the switching cost differently. In
particular, the performance of the algorithm can be bounded
as follows.

Theorem 3. Given a smoothed convex optimization prob-
lem over a one-dimensional normed space with ‖1‖a. Run-
ning RBG using a one-dimensional normed space with ‖1‖b ≥
‖1‖a, achieves a competitive ratio of (1 + ‖1‖b/‖1‖a) and
O(max{T/‖1‖b, ‖1‖b}) regret.

Note that if ‖1‖b = ‖1‖a then we obtain that RBG is 2-
competitive and has linear regret. However, if one wishes to
obtain εT -regret, for an arbitrarily small ε, one can choose
‖1‖b = 1/ε. Similarly, if one wishes to obtain sublinear re-
gret, choosing ‖1‖b = g(T) for some slowly increasing func-
tion achieves an O(g(T)) competitive ratio and a regret of
O(T/g(T)). Note that because of the max operator, the op-

timal regret achievable by RBG is O(
√
T), which is equal to

the optimal regret in online learning setting [4].

5. REFERENCES
[1] T. M. Cover, “Universal portfolios,” Mathematical

Finance, vol. 1, no. 1, pp. 1–29, 1991.
[2] N. Bansal, A. Blum, S. Chawla, and A. Meyerson,

“Online oblivious routing,” in Proceedings of ACM
symposium on Parallel algorithms and architectures
(SPAA). ACM, 2003.

[3] A. Kalai and S. Vempala, “Efficient algorithms for
universal portfolios,” in Proceedings of the 41st
Annual Symposium on Foundations of Computer
Science (FOCS), 2000.

[4] M. Zinkevich, “Online convex programming and
generalized infinitesimal gradient ascent,” 2003.

[5] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic
regret algorithms for online convex optimization,”
Mach. Learn., vol. 69, pp. 169–192, December 2007.

[6] M. Lin, A. Wierman, L. L. H. Andrew, and
E. Thereska, “Dynamic right-sizing for
power-proportional data centers,” in Proc.
INFOCOM, 2011.

[7] M. Lin, Z. Liu, A. Wierman, and L. L. Andrew,
“Online algorithms for geographical load balancing,”
in International Green Computing Conference(IGCC),
2012.

[8] V. Joseph and G. de Veciana, “Variability aware
network utility maximization,” CoRR, vol.
abs/1111.3728, 2011.

[9] Y. Zhang, M. Murata, H. Takagi, and Y. Ji,
“Traffic-based reconfiguration for logical topologies in
large-scale wdm optical networks,” Journal of
lightwave technology, vol. 23, no. 10, p. 2854, 2005.

[10] S. Kaplan, “Power plants: Characteristics and costs,”
Congressional Research Service, 2008.

[11] M. Asawa and D. Teneketzis, “Multi-armed bandits
with switching penalties,” Automatic Control, IEEE
Transactions on, vol. 41, no. 3, pp. 328 –348, mar
1996.

[12] S. Guha and K. Munagala, “Multi-armed bandits with
metric switching costs,” in Automata, Languages and
Programming, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2009, vol.
5556, pp. 496–507.

[13] A. Borodin, N. Linial, and M. Saks, “An optimal
on-line algorithm for metrical task system,” J. ACM,
vol. 39, no. 4, pp. 745–763, 1992.

[14] M. Manasse, L. McGeoch, and D. Sleator,
“Competitive algorithms for on-line problems,” in
Proc. ACM symposium on Theory of computing
(STOC), 1988, pp. 322–333.

[15] A. Blum, H. Karloff, Y. Rabani, and M. Saks, “A
decomposition theorem and bounds for randomized
server problems,” in Foundations of Computer
Science, 1992. Proceedings., 33rd Annual Symposium
on, oct 1992, pp. 197 –207.

[16] A. Coté, A. Meyerson, and L. Poplawski,
“Randomized k-server on hierarchical binary trees,” in
Proceedings of the 40th annual ACM Symposium on
Theory of Computing (STOC), 2008.

