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ABSTRACT

Energy expenditure has become a significant fraction of data
center operating costs. Recently, “geographical load balanc-
ing” has been suggested to reduce energy cost by exploiting
the electricity price differences across regions. However, this
reduction of cost can paradoxically increase total energy use.
This paper explores whether the geographical diversity of
Internet-scale systems can additionally be used to provide
environmental gains. Specifically, we explore whether geo-
graphical load balancing can encourage use of “green” renew-
able energy and reduce use of “brown” fossil fuel energy. We
make two contributions. First, we derive two distributed al-
gorithms for achieving optimal geographical load balancing.
Second, we show that if electricity is dynamically priced in
proportion to the instantaneous fraction of the total energy
that is brown, then geographical load balancing provides sig-
nificant reductions in brown energy use. However, the ben-
efits depend strongly on the degree to which systems accept
dynamic energy pricing and the form of pricing used.
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1. INTRODUCTION

Increasingly, web services are provided by massive, geo-
graphically diverse “Internet-scale” distributed systems, some
having several data centers each with hundreds of thousands
of servers. Such data centers require many megawatts of
electricity and so companies like Google and Microsoft pay
tens of millions of dollars annually for electricity [31].

The enormous, and growing energy demands of data cen-
ters have motivated research both in academia and industry
on reducing energy usage, for both economic and environ-
mental reasons. Engineering advances in cooling, virtualiza-
tion, multi-core servers, DC power, etc. have led to signifi-
cant improvements in the Power Usage Effectiveness (PUE)
of data centers; see [6, 37, 19, 21]. Such work focuses on re-
ducing the energy use of data centers and their components.
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A different stream of research has focused on exploiting
the geographical diversity of Internet-scale systems to re-
duce the energy cost. Specifically, a system with clusters at
tens or hundreds of locations around the world can dynam-
ically route requests/jobs to clusters based on proximity to
the user, load, and local electricity price. Thus, dynamic ge-
ographical load balancing can balance the revenue lost due to
increased delay against the electricity costs at each location.

In recent years, many papers have illustrated the poten-
tial of geographical load balancing to provide significant cost
savings for data centers, e.g., [24, 28, 31, 32, 34, 39] and the
references therein. The goal of the current paper is differ-
ent. Our goal is to explore the social impact of geographical
load balancing systems. In particular, geographical load bal-
ancing aims to reduce energy costs, but this can come at the
expense of increased total energy usage: by routing to a data
center farther from the request source to use cheaper energy,
the data center may need to complete the job faster, and
S0 use more service capacity, and thus energy, than if the
request was served closer to the source.

In contrast to this negative consequence, geographical load
balancing also provides a huge opportunity for environmental
benefit as the penetration of green, renewable energy sources
increases. Specifically, an enormous challenge facing the elec-
tric grid is that of incorporating intermittent, unpredictable
renewable sources such as wind and solar. Because genera-
tion supplied to the grid must be balanced by demand (i) in-
stantaneously and (ii) locally (due to transmission losses),
renewable sources pose a significant challenge. A key tech-
nique for handling the unpredictability of renewable sources
is demand-response, which entails the grid adjusting the de-
mand by changing the electricity price [2]. However, demand
response entails a local customer curtailing use. In contrast,
the demand of Internet-scale systems is flexible geographi-
cally; thus traffic can be routed to different regions to “follow
the renewables”, providing demand-response without service
interruption. Since data centers represent a significant and
growing fraction of total electricity consumption, and the I'T
infrastructure is already in place, geographical load balanc-
ing has the potential to provide an extremely inexpensive
approach for enabling large scale, global demand-response.

The key to realizing the environmental benefits above is for
data centers to move from the fixed price contracts that are
now typical toward some degree of dynamic pricing, with
lower prices when green energy is available. The demand
response markets currently in place provide a natural way
for this transition to occur, and there is already evidence of
some data centers participating in such markets [2].

The contribution of this paper is twofold. (1) We develop
distributed algorithms for geographical load balancing with
provable optimality guarantees. (2) We use the proposed al-
gorithms to explore the feasibility and consequences of using
geographical load balancing for demand response in the grid.



Contribution (1): To derive distributed geographical
load balancing algorithms we use a simple but general model,
described in detail in Section 2. In it, each data center mini-
mizes its cost, which is a linear combination of an energy cost
and the lost revenue due to the delay of requests (which in-
cludes both network propagation delay and load-dependent
queueing delay within a data center). The geographical load
balancing algorithm must then dynamically define both how
requests should be routed to data centers and how to allo-
cate capacity in each data center (i.e., how many servers are
kept in active/energy-saving states).

In Section 3, we characterize the optimal geographical load
balancing solutions and show that they have practically ap-
pealing properties, such as sparse routing tables. Then, in
Section 4, we use the previous characterization to give two
distributed algorithms which provably compute the optimal
routing and provisioning decisions, and which require differ-
ent types of coordination of computation. Finally, we eval-
uate the distributed algorithms in a trace-driven numeric
simulation of a realistic, distributed, Internet-scale system
(Section 5). The results show that a cost saving of over 40%
during light-traffic periods is possible.

Contribution (2): In Section 6 we evaluate the feasibility
and benefits of using geographical load balancing to facilitate
the integration of renewable sources into the grid. We do
this using a trace-driven numeric simulation of a realistic,
distributed Internet-scale system in combination with models
for the availability of wind and solar energy over time.

When the data center incentive is aligned with the social
objective or reducing brown energy by dynamically pricing
electricity proportionally to the fraction of the total energy
coming from brown sources, we show that “follow the renew-
ables” routing ensues (see Figure 5), causing significant social
benefit. In contrast, we also determine the wasted brown en-
ergy when prices are static, or are dynamic but do not align
data center and social objectives.

2. MODEL AND NOTATION

We now introduce the workload and data center models,
followed by the geographical load balancing problem.

2.1 Theworkload model

We consider a discrete-time model whose timeslot matches
the timescale at which routing decisions and capacity provi-
sioning decisions can be updated. There is a (possibly long)
interval of interest ¢ € {1,...,T}. There are |J| geographi-
cally concentrated sources of requests, i.e., “cities”, and the
mean arrival rate from source j at time ¢ is L;(t). Job inter-
arrival times are assumed to be much shorter than a timeslot,
so that provisioning can be based on the average arrival rate
during a slot. In practice, T' could be a month and a slot
length could be 1 hour. Our analytic results make no as-
sumptions on L;(t); however to provide realistic estimates
we use real-world traces to define L;(t) in Sections 5 and 6.

2.2 Thedata center cost model

We model an Internet-scale system as a collection of |N|
geographically diverse data centers, where data center i is
modeled as a collection of M; homogeneous servers. The
model focuses on two key control decisions of geographical
load balancing: (i) determining \;;(t), the amount of traffic
routed from source j to data center ¢; and (ii) determining
mi(t) € {0,...,M;}, the number of active servers at data
center 7. The system seeks to choose Ai;(t) and m;(¢) in order
to minimize cost during [1,7]. Depending on the system
design these decisions may be centralized or decentralized.
Algorithms for these decisions are the focus of Section 4.

Our model for data center costs focuses on the server costs
of the data center." We model costs by combining the energy
cost and the delay cost (in terms of lost revenue). Note that,
to simplify the model, we do not include the switching costs
associated with cycling servers in and out of power-saving
modes; however the approach of [24] provides a natural way
to incorporate such costs if desired.

Energy cost. To capture the geographic diversity and
variation over time of energy costs, we let g;(t,m;, \;) de-
note the energy cost for data center ¢ during timeslot ¢ given
m; active servers and arrival rate \;. For every fixed t, we as-
sume that g;(¢,mi, \;) is continuously differentiable in both
m; and \;, strictly increasing in m;, non-decreasing in \;,
and convex in m;. This formulation is quite general, and
captures, for example, the common charging plan of a fixed
price per kWh plus an additional “demand charge” for the
peak of the average power used over a sliding 15 minute win-
dow [27]. Additionally, it can capture a wide range of models
for server power consumption, e.g., energy costs as an affine
function of the load, see [14], or as a polynomial function of
the speed, see [40, 5].

Defining \i(t) = >, ; Aij(t), the total energy cost of data
center ¢ during timeslot ¢, &;(t), is simply

Ei(t) = gi(t, mi(t), Ai(t))- (1)

Delay cost. The delay cost captures the lost revenue
incurred because of the delay experienced by the requests.
To model this, we define r(d) as the lost revenue associated
with a job experiencing delay d. We assume that r(d) is
strictly increasing and convex in d.

To model the delay, we consider its two components: the
network delay experienced while the request is outside of the
data center and the queueing delay experienced while the
request is at the data center.

To model the network delay, we let d;;(t) denote the net-
work delay experienced by a request from source j to data
center ¢ during timeslot . We make no requirements on the
structure of the d;(t).

To model the queueing delay, we let fi(ms, ;) denote the
queueing delay at data center ¢ given m; active servers and
an arrival rate of \;. We assume that f; is strictly decreasing
in m;, strictly increasing in \;, and strictly convex in both
m; and A\;. Further, for stability, we must have that \; = 0 or
Ai < miui, where p; is the service rate of a server at data cen-
ter 4. Thus, we define f;(mi, \i) = oo for A; > mip;. Else-
where, we assume f; is finite, continuous and differentiable.
Note that these assumptions are satisfied by most standard
queueing formulae, e.g., the mean delay under M/GI/1 Pro-
cessor Sharing (PS) queue and the 95th percentile of delay
under the M/M/1. Further, the convexity of f; in m; models
the law of diminishing returns for parallelism.

Combining the above gives the following model for the
total delay cost D;(t) at data center ¢ during timeslot ¢:

Di(t) = Zje] Aij (O)r (filmi(t), Ai(t)) +di (@) . (2)
2.3 The geographical load balancing problem

Given the cost models above, the goal of geographical load
balancing is to choose the routing policy A;;(t) and the num-
ber of active servers in each data center m;(t) at each time
t in order minimize the total cost during [1,7]. This is cap-
tured by the following optimization problem:

m(rtr;%g(t) Zt:l ZiEN (Sl(t) + D; (t)) (33)

!'Minimizing server energy consumption also reduces cooling
and power distribution costs.




s.t. ZiEN Nij(t) = L;(t), vieJ  (3b)
Aij (1) >0, Vie NNViedJ  (3c)
0< ml(t) < Mi7 Vie N (3d)
m;(t) € N, Vie N (3e)

To simplify (3), note that Internet data centers typically con-
tain thousands of active servers. So, we can relax the integer
constraint in (3) and round the resulting solution with min-
imal increase in cost. Also, because this model neglects the
cost of turning servers on or off, the optimization decouples
into independent sub-problems for each timeslot ¢. For the
analysis we consider only a single interval and omit the ex-
plicit time dependence.> Thus (3) becomes

min Z gi(mi, Ai) + Z Z Aijr(dij + fi(mi, Ai))  (4a)

mA TN iEN jeT
s.t. ZZ_EN Nij = Lj, VieJ (4b)
Xij >0, Vie N,VjeJ (4c)
0 <m; <M, Vi € N, (4d)

We refer to this formulation as GLB. Note that GLB is
jointly convex in A;; and m; and can be efficiently solved
centrally. However, a distributed solution algorithm is usu-
ally required, such as those derived in Section 4.

In contrast to prior work studying geographical load bal-
ancing, it is important to observe that this paper is the first,
to our knowledge, to incorporate jointly optimizing the total
energy cost and the end-to-end user delay with consideration
of both price diversity and network delay diversity.

GLB provides a general framework for studying geographi-
cal load balancing. However, the model ignores many aspects
of data center design, e.g., reliability and availability, which
are central to data center service level agreements. Such is-
sues are beyond the scope of this paper; however our designs
merge nicely with proposals such as [36] for these goals.

The GLB model is too broad for some of our analytic re-
sults and thus we often use two restricted versions.

Linear lost revenue. This model uses a lost revenue
function r(d) = Bd, for constant 3. Though it is difficult
to choose a “universal” form for the lost revenue associated
with delay, there is evidence that it is linear within the range
of interest for sites such as Google, Bing, and Shopzilla [13].
GLB then simplifies to

{13713 Z gi(mi, A3 (Z i fi(ma, \i) +Z Z dij,\m) (5)

i€EN i€EN i€EN jEJ

subject to (4b)—(4d). We call this optimization GLB-LIN.

Queueing-based delay. We occasionally specify the form
of f and g using queueing models. This provides increased
intuition about the distributed algorithms presented.

If the workload is perfectly parallelizable, and arrivals are
Poisson, then fi(mq, Ai) is the average delay of m; paral-
lel queues, each with arrival rate \;/m;. Moreover, if each
queue is an M/GI/1 Processor Sharing (PS) queue, then
filmi, Ai) = 1/(ui — Ai/ms). We also assume g;(mq, Ai) =
pim;, which implies that the increase in energy cost per
timeslot for being in an active state, rather than a low-power
state, is m; regardless of ;.

Under these restrictions, the GLB formulation becomes:

12%2 Z pim; + ﬁz Z Aij (W + dij) (6a)

ieEN JjEJIEN

2Time-dependence of Lj and prices is re-introduced for, and
central to, the numeric results in Sections 5 and 6.

subject to (4b)—(4d) and the additional constraint
Vie N. (6b)

We refer to this optimization as GLB-Q.

Additional Notation. Throughout the paper we use |S|
to denote the cardinality of a set S and bold symbols to de-
note vectors or tuples. In particular, A; = (\;;)ien denotes
the tuple of Ai; from source j, and A_; = (Air)ien,kes\ {5}
denotes the tuples of the remaining \;x, which forms a ma-
trix. Similarly m = (m;)ien and A = (Aij)ien,je-

We also need the following in discussing the algorithms.
Define Fi(mi, \i) = gi(mi, \i) + BXifi(ms, Ai), and define
,F(lfl’l7 A) = ZieN Fi(mi7 )\z) + Eij)\ijdij. Further, let mz()\l)
be the unconstrained optimal m; at data center ¢ given fixed
i, i.e., the unique solution to dF;(ms, A;)/0m; = 0.

Ai < mip

2.4 Practical considerations

Our model assumes there exist mechanisms for dynami-
cally (i) provisioning capacity of data centers, and (ii) adapt-
ing the routing of requests from sources to data centers.

With respect to (i), many dynamic server provisioning
techniques are being explored by both academics and indus-
try, e.g., [4, 11, 16, 38]. With respect to (ii), there are also a
variety of protocol-level mechanisms employed for data cen-
ter selection today. They include, (a) dynamically generated
DNS responses, (b) HTTP redirection, and (c) using per-
sistent HT'TP proxies to tunnel requests. Each of these has
been evaluated thoroughly, e.g., [12, 25, 30], and though DNS
has drawbacks it remains the preferred mechanism for many
industry leaders such as Akamai, possibly due to the added
latency due to HTTP redirection and tunneling [29]. Within
the GLB model, we have implicitly assumed that there exists
a proxy/DNS server co-located with each source.

Our model also assumes that the network delays, d;; can
be estimated, which has been studied extensively, including
work on reducing the overhead of such measurements, e.g.,
[35], and mapping and synthetic coordinate approaches, e.g.,
(22, 26]. We discuss the sensitivity of our algorithms to error
in these estimates in Section 5.

3. CHARACTERIZING THE OPTIMA

We now provide characterizations of the optimal solutions
to GLB, which are important for proving convergence of the
distributed algorithms of Section 4. They are also necessary
because, a priori, one might worry that the optimal solu-
tion requires a very complex routing structure, which would
be impractical; or that the set of optimal solutions is very
fragmented, which would slow convergence in practice. The
results here show that such worries are unwarranted.

Uniqueness of optimal solution.

To begin, note that GLB has at least one optimal solu-
tion. This can be seen by applying Weierstrass theorem [7],
since the objective function is continuous and the feasible set
is compact subset of R™. Although the optimal solution is
generally not unique, there are natural aggregate quantities
unique over the set of optimal solutions, which is a convex
set. These are the focus of this section.

A first result is that for the GLB-LIN formulation, under
weak conditions on f; and g;, we have that \; is common
across all optimal solutions. Thus, the input to the data
center provisioning optimization is unique.

Theorem 1. Consider the GLB-LIN formulation. Sup-
pose that for all i, F;(ms, A;) is jointly convex in \; and mg,
and continuously differentiable in ;. Further, suppose that
mi(Aq) is strictly convex. Then, for each i, \; is common for
all optimal solutions.



The proof is in the Appendix. Theorem 1 implies that
the server arrival rates at each data center, i.e., \;/m;, are
common among all optimal solutions.

Though the conditions on F; and m; are weak, they do
not hold for GLB-Q. In that case, ri2;(A;) is linear, and thus
not strictly convex. Although the \; are not common across
all optimal solutions in this setting, the server arrival rates
remain common across all optimal solutions.

Theorem 2. For each data center i, the server arrival
rates, A\i/mi, are common across all optimal solutions to
GLB-Q.

Sparsity of routing.

It would be impractical if the optimal solutions to GLB
required that traffic from each source was divided up among
(nearly) all of the data centers. In general, each \;; could be
non-zero, yielding |N| x |J| flows of traffic from sources to
data centers, which would lead to significant scaling issues.
Luckily, there is guaranteed to exist an optimal solution with
extremely sparse routing. Specifically:

Theorem 3. There exists an optimal solution to GLB
with at most (|N| 4 |J| — 1) of the Ai; strictly positive.

Though Theorem 3 does not guarantee that every optimal
solution is sparse, the proof is constructive. Thus, it pro-
vides an approach which allows one to transform an optimal
solution into a sparse optimal solution.

The following result further highlights the sparsity of the
routing: any source will route to at most one data center that
is not fully active, i.e., where there exists at least a server in
power-saving mode.

Theorem 4. Consider GLB-Q where power costs p; are
drawn from an arbitrary continuous distribution. If any source
j € J has its traffic split between multiple data centers N' C
N in an optimal solution, then, with probability 1, at most
one data center i € N' has m; < M;.

4. ALGORITHMS

We now focus on GLB-Q and present two distributed al-
gorithms that solve it, and prove their convergence.

Since GLB-Q is convex, it can be efficiently solved cen-
trally if all necessary information can be collected at a single
point, as may be possible if all the proxies and data cen-
ters were owned by the same system. However there is a
strong case for Internet-scale systems to outsource route se-
lection [39]. To meet this need, the algorithms presented be-
low are decentralized and allow each data center and proxy
to optimize based on partial information.

These algorithms seek to fill a notable hole in the grow-
ing literature on algorithms for geographical load balancing.
Specifically, they have provable optimality guarantees for a
performance objective that includes both energy and delay,
where route decisions are made using both energy price and
network propagation delay information. The most closely re-
lated work [32] investigates the total electricity cost for data
centers in a multi-electricity-market environment. It con-
strains the queueing delay inside the data center (assumed
to be an M/M/1 queue) but neglects the end-to-end user
delay. Conversely, [39] uses a simple, efficient algorithm to
coordinate the “replica-selection” decisions, but assumes the
capacity at each data center is fixed. Other related works,
e.g., [32, 34, 28], either do not provide provable guarantees
or ignore diverse network delays and/or prices.

Algorithm 1. Gauss-Seidel iteration

Algorithm 1 is motivated by the observation that GLB-Q
is separable in m;, and, less obviously, also separable in

Aj = (Xij,7 € N). This allows all data centers as a group
and each proxy j to iteratively solve for optimal m and A;
in a distributed manner, and communicate their intermedi-
ate results to each other. Though distributed, Algorithm 1
requires each proxy to solve an optimization problem.

To highlight the separation between data centers and prox-
ies, we reformulate GLB-Q as:

; . B )
i+ = Agdiy (7
iy iy, 52 (D) £ 8 ey ()
M = [0,M;] Ay o= {N A 20, Ay =1L} (8)
ieEN

Since the objective and constraints M; and A; are separable,
this can be solved separately by data centers ¢ and proxies j.
The iterations of the algorithm are indexed by 7, and are
assumed to be fast relative to the timeslots ¢. Each iteration
7 is divided into |J| 4 1 phases. In phase 0, all data centers i
concurrently calculate m;(7 + 1) based on their own arrival
rates A;(7), by minimizing (7) over their own variables m;:

BAi(T) )

() ©)

ml;réljle/ll (plmz +
In phase j of iteration 7, proxy j minimizes (7) over its own
variable by setting A;(7+1) as the best response to m(r+1)
and the most recent values of A_; := (g, k # j). This works
because proxy j depends on A_; only through their aggregate
arrival rates at the data centers:

Xi(r,5) =D Aa(r+1)+ ) Xalr) (10)

1<j 1>

To compute Ai(7,7), proxy j need not obtain individual
Xit(T) or Ay (7 + 1) from other proxies . Instead, every data
center i measures its local arrival rate \;(7,7) + Ai;(7) in
every phase j of the iteration 7 and sends this to proxy j at
the beginning of phase j. Then proxy j obtains A\;(7,j) by
subtracting its own A;;(7) from the value received from data
center i. When there are fewer data centers than proxies,
this has less overhead than direct messaging.

In summary, the algorithm is as follows (noting that the
minimization (9) has a closed form). Here, [z]* := min{z, a}.

Algorithm 1. Starting from a feasible initial allocation
A(0) and the associated m(X(0)), let

M;
mi(t +1) := 1+# . M (11)
pi/B Hi
. Ai(T,9) + Nij
Aj(T+ 1) :=arg min -
37+ 1) =erg &N 5 i — (Nl 5) + Aig) (T + 1)
+ ZiEN )\ijdij- (12)

Since GLB-Q generally has multiple optimal A}, Algo-
rithm 1 is not guaranteed to converge to one optimal so-
lution, i.e., for each proxy j, the allocation \;;(7) of job j
to data centers ¢ may oscillate among multiple optimal al-
locations. However, both the optimal cost and the optimal
per-server arrival rates to data centers will converge.

Theorem 5. Let (m(7), (7)) be a sequence generated by
Algorithm 1 when applied to GLB-Q. Then

(i) Every limit point of (m(7),A(7)) is optimal.
(i) F(m(7), (7)) converges to the optimal value.

(i3i) The per-server arrival rates (Xi(T7)/mi(7),i € N) to
data centers converge to their unique optimal values.



The proof of Theorem 5 follows from the fact that Algo-
rithm 1 is a modified Gauss-Seidel iteration. This is also the
reason for the requirement that the proxies update sequen-
tially. The details of the proof are in Appendix B.

Algorithm 1 assumes that there is a common clock to syn-
chronize all actions. In practice, updates will likely be asyn-
chronous, with data centers and proxies updating with dif-
ferent frequencies using possibly outdated information. The
algorithm generalizes easily to this setting, though the con-
vergence proof is more difficult.

The convergence rate of Algorithm 1 in a realistic scenario
is illustrated numerically in Section 5.

Algorithm 2: Distributed gradient projection

Algorithm 2 reduces the computational load on the proxies.
In each iteration, instead of each proxy solving a constrained
minimization (12) as in Algorithm 1, Algorithm 2 takes a sin-
gle step in a descent direction. Also, while the proxies com-
pute their A;(7+1) sequentially in |J| phases in Algorithm 1,
they perform their updates all at once in Algorithm 2.

To achieve this, rewrite GLB-Q as

min Y Fj(A) (13)
jeJ

XjER; £
where F'(\) is the result of minimization of (7) over m; € M;

given \;. As explained in the definition of Algorithm 1, this
minimization is easy: if we denote the solution by (cf. (11)):

<1+ ! )A_
pi/B ) Hi

SN (g ¢ P "
POV = 3 (im0 4 e ) 49 e

i€N

M;

mz()\l) = (14)

We now sketch the two key ideas behind Algorithm 2. The
first is the standard gradient projection idea: move in the
steepest descent direction

VE(A) = (aF A . oF (A))

My Oy

and then project the new point into the feasible set Hj Aj.
The standard gradient projection algorithm will converge if
VF(A) is Lipschitz over our feasible set J[; A;. This condi-
tion, however, does not hold for our F' because of the term
BXi/ (i — Ai/ms). The second idea is to construct a com-
pact and convex subset A of the feasible set J[; A; with the
following properties: (i) if the algorithm starts in A, it stays
in A; (ii) A contains all optimal allocations; (iii) VF(X) is
Lipschitz over A. The algorithm then projects into A in each
iteration instead of [] ; Aj. This guarantees convergence.
Specifically, fix a feasible initial allocation A(0) € J[; A;
and let ¢ := F(X(0)) be the initial objective value. Define

_ OM;pu; .
)\Zéiqb—i—ﬁMz—’VZ}' (15)

A= A(¢) := HAj N {)\

Even though the A defined in (15) indeed has the desired
properties (see Appendix B), the projection into A requires
coordination of all proxies and is thus impractical. In order
for each proxy j to perform its update in a decentralized
manner, we define proxy j’s own constraint subset:

Aj(r):=A; 0 {Aj

. OM; i .
i(7,—7) + Aij £ ——++,
Ai(T, =) + Aij 51 B, Vi

where \i (7, —j) := >_,_; Au(7) is the arrival rate to data cen-

ter i, excluding arrivals from proxy j. Even though Aj ()
involves \;(7, —j) for all 4, proxy j can easily calculate these
quantities from the measured arrival rates A;(7) it is told by
data centers 7, as done in Algorithm 1 (cf. (10) and the dis-
cussion thereafter), and does not need to communicate with
other proxies. Hence, given \;(7,—j) from data centers i,

each proxy can project into A;(7) to compute the next it-
erate Aj(7 4+ 1) without the need to coordinate with other
proxies.® Moreover, if A(0) € A then A(7) € A for all itera-
tions 7. In summary, Algorithm 2 is as follows.

Algorithm 2. Starting from a feasible initial allocation
A(0) and the associated m(X(0)), each prozy j computes, in
each iteration T:

27 +1) = (1) =% (VEA)s, ) (16)
ML 1
~ [

where v; > 0 is a stepsize and VF;(X(T)) is given by

OF(X(1)) _ N i
o B <d” - (i — )\i(T)/mi()\i(T)))Q) ‘

Implicit in the description is the requirement that all data
centers i compute m;(\;(7)) according to (14) in each iter-
ation 7. Each data center ¢ measures the local arrival rate
Xi(7), calculates m;(A:(7)), and broadcasts these values to
all proxies at the beginning of iteration 7+ 1 for the proxies
to compute their A;j(r 4 1).

Algorithm 2 has the same convergence property as Algo-
rithm 1, provided the stepsize is small enough.

Aj(t+1): Ai(T) + z;(T+1) (17)

Theorem 6. Let (m(7),A(7)) be a sequence generated by
Algorithm 2 when applied to GLB-Q. If, for all j, 0 < v; <
mingen 620 Mt /(||(6 + BM:)?), then

(i) Every limit point of (m(7),A(7)) is optimal.

(i) F(m(7), (7)) converges to the optimal value.
(#ii) The per-server arrival rates (X\i(7)/mi(7),i € N) to
data centers converge to their unique optimal values.

Theorem 6 is proved in Appendix B. The key novelty
of the proof is (i) handling the fact that the objective is not
Lipshitz and (ii) allowing distributed computation of the pro-
jection. The bound on v, in Theorem 6 is more conservative
than necessary for large systems. Hence, a larger stepsize
can be choosen to accelerate convergence. The convergence
rate is illustrated in a realistic setting in Section 5.

5. CASE STUDY

The remainder of the paper evaluates the algorithms pre-
sented in the previous section under a realistic workload.
This section considers the data center perspective (i.e., cost
minimization) and Section 6 considers the social perspective
(i.e., brown energy usage).

5.1 Experimental setup

We aim to use realistic parameters in the experimental
setup and provide conservative estimates of the cost sav-
ings resulting from optimal geographical load balancing. The
setup models an Internet-scale system such as Google within
the United States.

3The projection to the nearest point in A;j(7) is defined by
Ala, ry o= argming ey o [y — Al
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Workload description.

To build our workload, we start with a trace of traffic
from Hotmail, a large Internet service running on tens of
thousands of servers. The trace represents the I/O activity
from 8 servers over a 48-hour period, starting at midnight
(PDT) on August 4, 2008, averaged over 10 minute intervals.
The trace has strong diurnal behavior and has a fairly small
peak-to-mean ratio of 1.64. Results for this small peak-to-
mean ratio provide a lower bound on the cost savings under
workloads with larger peak-to-mean ratios. As illustrated in
Figure 1(a), the Hotmail trace contains significant nightly ac-
tivity due to maintenance processes; however the data center
is provisioned for the peak foreground traffic. This creates a
dilemma about whether to include the maintenance activity
or not. We have performed experiments with both, but re-
port only the results with the spike removed (as illustrated
in Figure 1(b)) because this leads to a more conservative
estimate of the cost savings.

Building on this trace, we construct our workload by plac-
ing a source at the geographical center of each mainland US
state, co-located with a proxy or DNS server (as described in
Section 2.4). The trace is shifted according to the time-zone
of each state, and scaled by the size of the population in the
state that has an Internet connection [1].

Data center description.

To model an Internet-scale system, we have 14 data cen-
ters, one at the geographic center of each state known to have
Google data centers [17]: California, Washington, Oregon,
Illinois, Georgia, Virginia, Texas, Florida, North Carolina,
and South Carolina.

We merge the data centers in each state and set M; propor-
tional to the number of data centers in that state, while keep-

ing ¥;e v M; p; twice the total peak workload, max: Xje.7L;(t).

The network delays, d;j, between sources and data centers
are taken to be proportional to the distances between the
centers of the two states and comparable to queueing delays.
This lower bound on the network delay ignores delay due to
congestion or indirect routes.

Cost function parameters.

To model the costs of the system, we use the GLB-Q for-
mulation. We set p; = 1 for all 4, so that the servers at each
location are equivalent. We assume the energy consumption
of an active server in one timeslot is normalized to 1. We
set constant electricity prices using the industrial electricity
price of each state in May 2010 [18]. Specifically, the price
(cents per kWh) is 10.41 in California; 3.73 in Washington;
5.87 in Oregon, 7.48 in Illinois; 5.86 in Georgia; 6.67 in Vir-
ginia; 6.44 in Texas; 8.60 in Florida; 6.03 in North Carolina;
and 5.49 in South Carolina. In this section, we set 3 = 1;
however Figure 3 illustrates the impact of varying .

Algorithm benchmarks.

To provide benchmarks for the performance of the algo-
rithms presented here, we consider three baselines, which are
approximations of common approaches used in Internet-scale
systems. They also allow implicit comparisons with prior
work such as [32]. The approaches use different amounts
of information to perform the cost minimization. Note that
each approach must use queueing delay (or capacity infor-
mation); otherwise the routing may lead to instability.

Baseline 1 uses network delays but ignores energy price
when minimizing its costs. This demonstrates the impact of
price-aware routing. It also shows the importance of dynamic
capacity provisioning, since without using energy cost in the
optimization, every data center will keep every server active.

Baseline 2 uses energy prices but ignores network delay.
This illustrates the impact of location aware routing on the
data center costs. Further, it allows us to understand the
performance improvement of Algorithms 1 and 2 compared
to those such as [32, 34] that neglect network delays in their
formulations.

Baseline 3 uses neither network delay information nor en-
ergy price information when performing its cost minimiza-
tion. Thus, the traffic is routed so as to balance the delays
within the data centers. Though naive, designs such as this
are still used by systems today; see [3].

5.2 Performance evaluation

The evaluation of our algorithms and the cost savings
due to optimal geographic load balancing will be organized
around the following topics.

Convergence.

We start by considering the convergence of each of the dis-
tributed algorithms. Figure 2(a) illustrates the convergence
of each of the algorithms in a static setting for t = 1lam,
where load and electricity prices are fixed and each phase in
Algorithm 1 is considered as an iteration. It validates the
convergence analysis for both algorithms. Note here Algo-
rithm 2 used a step size v = 10; this is much larger than that
used in the convergence analysis, which is quite conservative,
and there is no sign of causing lack of convergence.

To demonstrate the convergence in a dynamic setting, Fig-
ure 2(b) shows Algorithm 1’s response to the first day of the
Hotmail trace, with loads averaged over one-hour intervals
for brevity. One iteration (51 phases) is performed every 10
minutes. This figure shows that even the slower algorithm,
Algorithm 1, converges fast enough to provide near-optimal
cost. Hence, the remaining plots show only the optimal so-
lution.

Energy versus delay tradeoff.

The optimization objective we have chosen to model the
data center costs imposes a particular tradeoff between the
delay and the energy costs, 5. It is important to understand
the impact of this factor. Figure 3 illustrates how the delay
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and energy cost trade off under the optimal solution as (3
changes. Thus, the plot shows the Pareto frontier for the
GLB-Q formulation. The figure highlights that there is a
smooth convex frontier with a mild ‘knee’.

Cost savings.

To evaluate the cost savings of geographical load balanc-
ing, Figure 4 compares the optimal costs to those incurred
under the three baseline strategies described in the experi-
mental setup. The overall cost, shown in Figures 4(a) and
4(b), is significantly lower under the optimal solution than
all of the baselines (nearly 40% during times of light traffic).
Recall that Baseline 2 is the state of the art, studied in recent
papers such as [32, 34].

To understand where the benefits are coming from, let us
consider separately the two components of cost: delay and
energy. Figures 4(c) and 4(d) show that the optimal algo-
rithm performs well with respect to both delay and energy
costs individually. In particular, Baseline 1 provides a lower
bound on the achievable delay costs, and the optimal algo-
rithm nearly matches this lower bound. Similarly, Baseline 2
provides a natural bar for comparing the achievable energy
cost. At periods of light traffic the optimal algorithm pro-
vides nearly the same energy cost as this baseline, and (per-
haps surprisingly) during periods of heavy-traffic the optimal
algorithm provides significantly lower energy costs. The ex-
planation for this is that, when network delay is considered
by the optimal algorithm, if all the close data centers have
all servers active, a proxy might still route to them; how-
ever when network delay is not considered, a proxy is more
likely to route to a data center that is not yet running at full
capacity, thereby adding to the energy cost.

Sensitivity analysis.

Given that the algorithms all rely on estimates of the L;
and d;; it is important to perform a sensitivity analysis to
understand the impact of errors in these parameters on the
achieved cost. We have performed such a sensitivity analysis
but omit the details for brevity. The results show that even
when the algorithms have very poor estimates of d;; and L;
there is little effect on cost. Baseline 2 can be thought of
as applying the optimal algorithm to very poor estimates of
di; (namely d;; = 0), and so the Figure 4(a) provides some
illustration of the effect of estimation error.

6. SOCIAL IMPACT

We now shift focus from the cost savings of the data center
operator to the social impact of geographical load balancing.
We focus on the impact of geographical load balancing on
the usage of “brown” non-renewable energy by Internet-scale
systems, and how this impact depends on pricing.

Intuitively, geographical load balancing allows the traffic

to “follow the renewables”; thus providing increased usage of
green energy and decreased brown energy usage. However,
such benefits are only possible if data centers forgo static
energy contracts for dynamic energy pricing (either through
demand-response programs or real-time markets). The ex-
periments in this section show that if dynamic pricing is done
optimally, then geographical load balancing can provide sig-
nificant social benefits.

6.1 Experimental setup

To explore the social impact of geographical load balanc-
ing, we use the setup described in Section 5. However, we
add models for the availability of renewable energy, the pric-
ing of renewable energy, and the social objective.

The availability of renewable energy.

To model the availability of renewable energy we use stan-
dard models of wind and solar from [15, 20]. Though simple,
these models capture the average trends for both wind and
solar accurately. Since these models are smoother than ac-
tual intermittent renewable sources, especially wind, they
conservatively estimate the benefit due to following renew-
ables.

We consider two settings (i) high wind penetration, where
90% of renewable energy comes from wind and (ii) high so-
lar penetration, where 90% of renewable energy comes from
solar. The availability given by these models is shown in
Figure 5(a). Setting (i) is motivated by studies such as [18].
Setting (ii) is motivated by the possibility of on-site or locally
contracted solar, which is increasingly common.

Building on these availability models, for each location we
let cv; (t) denote the fraction of the energy that is from renew-
able sources at time ¢, and let @ = (|N|T)"' 37, D ien ilt)
be the “penetration” of renewable energy. We take & = 0.30,
which is on the progressive side of the renewable targets
among US states [10].

Finally, when measuring the brown/green energy usage of
a data center at time ¢, we use simply >, -\ ai(t)m;(t) as the
green energy usage and Y. (1 — a;(t))mi(t) as the brown
energy usage. This models the fact that the grid cannot
differentiate the source of the electricity provided.

Demand response and dynamic pricing.

Internet-scale systems have flexibility in energy usage that
is not available to traditional energy consumers; thus they
are well positioned to take advantage of demand-response
and real-time markets to reduce both their energy costs and
their brown energy consumption.

To provide a simple model of demand-response, we use
time-varying prices p;(¢) in each time-slot that depend on
the availability of renewable resources a;(t) in each location.

The way p;(t) is chosen as a function of a;(t) will be of
fundamental importance to the social impact of geographical
load balancing. To highlight this, we consider a parameter-
ized “differentiated pricing” model that uses a price p, for
brown energy and a price py for green energy. Specifically,

pi(t) = po(1 — @i(t)) + pgai(t).

Note that p, = py corresponds to static pricing, and we
show in the next section that p, = 0 corresponds to socially
optimal pricing. Our experiments vary pg € [0, pp).

The social objective.

To model the social impact of geographical load balanc-
ing we need to formulate a social objective. Like the GLB
formulation, this must include a tradeoff between the energy
usage and the delay users of the system experience, because
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purely minimizing brown energy use requires all m; = 0. The
key difference between the GLB formulation and the social
formulation is that the cost of energy is no longer relevant.
Instead, the environmental impact is important, and thus
the brown energy usage should be minimized. This leads to
the following simple model for the social objective:

((1 O (18)

t=14ieN

where D;(t) is the delay cost defined in (2), &;(¢) is the energy
cost defined in (1), and S is the relative valuation of delay
versus energy. Further, we have imposed that the energy
cost follows from the pricing of p;(t) cents/kWh in timeslot
t. Note that, though simple, our choice of D;(t) to model the
disutility of delay to users is reasonable because lost revenue
captures the lack of use as a function of increased delay.
An immediate observation about the above social objective
is that to align the data center and social goals, one needs

to set pi(t) = (1 — ai(t))/3, which corresponds to choosing

pp = 1/8 and py; = 0 in the differentiated pricing model
above. We refer to this as the “optimal” pricing model.

6.2 Theimportance of dynamic pricing

To begin our experiments, we illustrate that optimal pric-
ing can lead geographical load balancing to “follow the re-
newables.” Figure 5 shows this in the case of high solar
penetration and high wind penetration for 8 = 0.1. By
comparing Figures 5(b) and 5(c) to Figure 5(d), which uses
static pricing, the change in capacity provisioning, and thus
energy usage, is evident. For example, Figure 5(b) shows
a clear shift of service capacity from the east coast to the
west coast as solar energy becomes highly available and then
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Figure 6: Reduction in social cost from dynamic
pricing compared to static pricing as a function of
the weight for brown energy usage, 1/3, under (a)
high solar penetration and (b) high wind penetra-
tion.

back when solar energy is less available. Similarly, Figure
5(c) shows a shift, though much smaller, of service capacity
toward the evenings, when wind is more available. Though
not explicit in the figures, this “follow the renewables” rout-
ing has the benefit of significantly reducing the brown energy
usage since energy use is more correlated with the availabil-
ity of renewables. Thus, geographical load balancing pro-
vides the opportunity to aid the incorporation of renewables
into the grid.

Figure 5 assumed the optimal dynamic pricing, but cur-
rently data centers negotiate fixed price contracts. Although
there are many reasons why grid operators will encourage
data center operators to transfer to dynamic pricing over
the coming years, this is likely to be a slow process. Thus,
it is important to consider the impact of partial adoption of
dynamic pricing in addition to full, optimal dynamic pricing.



Figure 6 focuses on this issue. To model the partial adop-
tion of dynamic pricing, we can consider pg € [0, py]. Figure
6(a) shows that the benefits provided by dynamic pricing are
moderate but significant, even at partial adoption (high py),
when there is high solar penetration. Figure 6(b) suggests
that there would be much less benefit if renewable sources
were dominated by wind with only diurnal variation, because
the availability of solar energy is much more correlated with
the traffic peaks. Specifically, the three hour gap in time
zones means that solar on the west coast can still help with
the high traffic period of the east coast, but the peak average
wind energy is at night. However, wind is vastly more bursty
than this model predicts, and a system which responds to
these bursts will still benefit significantly.

Another interesting observation about the Figure 6 is that
the curves increase faster in the range when (3 is large, which
highlights that the social benefit of geographical load bal-
ancing becomes significant even when there is only moder-
ate importance placed on energy. When p, is higher than py,
which is common currently, the cost increases, but we omit
the results due to space constraints.

7. CONCLUDING REMARKS

This paper has focused on understanding algorithms for
and social impacts of geographical load balancing in Internet-
scaled systems. We have provided two distributed algorithms
that provably compute the optimal routing and provision-
ing decisions for Internet-scale systems and we have eval-
uated these algorithms using trace-based numerical simula-
tions. Further, we have studied the feasibility and benefits of
providing demand response for the grid via geographical load
balancing. Our experiments highlight that geographical load
balancing can provide an effective tool for demand-response:
when pricing is done carefully electricity providers can mo-
tivate Internet-scale systems to “follow the renewables” and
route to areas where green energy is available. This both
eases the incorporation of renewables into the grid and re-
duces brown energy consumption of Internet-scale systems.

There are a number of interesting directions for future
work that are motivated by the studies in this paper. With
respect to the design of distributed algorithms, one aspect
that our model has ignored is the switching cost (in terms of
delay and wear-and-tear) associated with switching servers
into and out of power-saving modes. Our model also ignores
issues related to reliability and availability, which are quite
important in practice. With respect to the social impact of
geographical load balancing, our results highlight the oppor-
tunity provided by geographical load balancing for demand
response; however there are many issues left to be consid-
ered. For example, which demand response market should
Internet-scale systems participate in to minimize costs? How
can policy decisions such as cap-and-trade be used to pro-
vide the proper incentives for Internet-scale systems, such as
[23]? Can Internet-scale systems use energy storage at data
centers in order to magnify cost reductions when participat-
ing in demand response markets? Answering these questions
will pave the way for greener geographic load balancing.
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APPENDI X
A. PROOFSFOR SECTION 3

We now prove the results from Section 3, beginning with
the illuminating Karush-Kuhn-Tucker (KKT) conditions.

A.1 Optimality conditions

As GLB-Q is convex and satisfies Slater’s condition, the
KKT conditions are necessary and sufficient for optimal-
ity [9]; for the other models they are merely necessary.

GLB-Q: Let w;, > 0 and w; > 0 be Lagrange multipliers
corresponding to (4d), and &;; > 0, v; and o; be those for
(4c), (4b) and (6b). The Lagrangian is then
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The KKT conditions of stationarity, primal and dual feasi-
bility and complementary slackness are:
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The conditions (19)—(22) determine the sources’ choice of
Aij, and we claim they imply that source j will only send
data to those data centers ¢ which have minimum marginal
cost dij + (14 /p:/B)*/ui, where p; = pi —w, +@;. To see
this, let A\; = \;/m;. By (23), the marginal queueing delay
of data centre ¢ with respect to load Ai; is pi/(ui — 5\1-)2 =
(14 /pt/B)?/1i. Thus, from (19), at the optimal point,

(1+ \/pf/ﬁ)z i vj +0; vj
=dij+ sz = > = (26)

i (i — Xi)? B B

with equality if A;; > 0 by (20), establishing the claim.
Note that the solution to (19)—(22) for source j depends
on Ak, k # j, only through m,;. Given \;, data center ¢
ﬁnds m; as the projection onto [0, M;] of the solution m; =

l—l—\/pZ wir/pi/B) of (23) with w; = w,; = 0.

B-LIN agaln decouples into data centers finding m;
glven Ai, and sources finding A;; given the m;. Feasibil-
ity and complementary slackness conditions (20), (22), (24)
and (25) are as for GLB-Q; the stationarity conditions are:

dij+

M+ﬁ(w+dij)—Uj—6ij:O(27)

O\; O

9gi(mi, Ai) Ofi(mi, Ai)
om; + B omg;

Note the feasibility constraint (6b) of GLB-Q is no longer re-
quired to ensure stability. In GLB-LIN, it is instead assumed
that f is infinite when the load exceeds capacity.

The objective function is strictly convex in data center i’s
decision variable m;, and so there is a unique solution 77;(\;)
to (28) for w; = w; = 0, and the optimal m; given A; is the
projection of this onto the interval [0, M;].

GLB in its general form has the same KKT conditions as
GLB-LIN, with the stationary conditions replaced by

+ @ —w,; = 0.(28)

897« 8fz
2 dl >\z [3 dl
ox T+ di +; b (fi+ da) 33t
—yj—(iij:O (29)
0g: + 3 A (i + diy) Of L oi—w =0  (30)
8 mi J J 8m =i

jeJ

where 7’ denotes the derivative of 7(-).

GLB again decouples, since it is convex because r(-) is
convex and increasing. However, now data center ¢’s problem
depends on all \;;, rather than simply A;.

A.2 Characterizing the optima

Lemma 7 will help prove the results of Section 3.

Lemma 7. Consider the GLB-LIN formulation. Suppose
that for all i, Fi(ms, Ai) is jointly convezr in \; and m;, and
differentiable in \; where it is finite. If, for some i, the dual
variable w; > 0 for an optimal solution, then m; = M; for
all optimal solutions. Conversely, if m; < M; for an optimal
solution, then w; = 0 for all optimal solutions.

PRroOF. Consider an optimal solution S with i € N such
that @; > 0 and hence m; = M;. Let S’ be some other
optimal solution.

Since the cost function is jointly convex in \;; and my,
any convex combination of S and S’ must also be optimal.
Let m;(s) denote the m; value of a given solution s. Since
m;i(S) = M;, we have A\; > 0 and so the optimality of S
implies f; is finite at S and hence differentiable. By (28) and
the continuity of the partial derivative [33, Corollary 25.51],
there is a neighborhood N of S within which all optimal
solutions have @; > 0, and hence m;(s) = M; for all s € N.



Since S+€(S’'—S) € N for sufficiently small €, the linearity of
m;(s) implies M; = m;(S+¢€(S" —9)) = mi(S) +e(m;(S) —
m;(S)). Thus m;(S") = m;(S) = M;. O

ProOF OF THEOREM 1. Consider first the case where there
exists an optimal solution with m; < M;. By Lemma 7,
@; = 0 for all optimal solutions. Recall that 1m;(A;), which
defines the optimal m;, is strictly convex. Thus, if different
optimal solutions have different values of A;, then a con-
vex combination of the two yielding (mj}, \;) would have
mi(\;) < mj, which contradicts the optimality of mj.

Next consider the case where all optimal solutions have
m; = M;. In this case, consider two solutions S and S’ that
both have m; = M;. If \; is the same under both S and $’,
we are done. Otherwise, let the set of convex combinations of
S and S” be denoted {s()\;)}, where we have made explicit
the parameterization by A;. The convexity of each Fj in
my, and Ay implies that F(s(\;)) — Fi(s(\;)) is also convex,
due to the fact that the parameterization is by definition
affine. Further, since F; is strictly convex in A;, this implies
F(s(A\s)) is strictly convex in A;, and hence has a unique
optimal A;. [

PrROOF OF THEOREM 2. The proof when m; = M, for all
optimal solutions is identical to that of Theorem 1. Other-
wise, when m; < M; in an optimal solution, the definition
of 1 gives \i = piv/pi/Bi/(\/pi/Bi + 1) for all optimal solu-
tions. [

PrOOF OF THEOREM 3. For each optimal solution S, con-
sider an undirected bipartite graph G with a vertex repre-
senting each source and each data center and with an edge
connecting ¢ and j when A;; > 0. We will show that at least
one of these graphs is acyclic. The theorem then follows since
an acyclic graph with K nodes has at most K — 1 edges.

To prove that there exists one optimal solution with acyclic
graph we will inductively reroute traffic in a way that re-
moves cycles while preserving optimality. Suppose G con-
tains a cycle. Let C' be a minimal cycle, i.e., no strict subset
of C is a cycle, and let C' be directed.

Form a new solution S(§) from S by adding £ to A if
(4,7) € C, and subtracting £ from \;; if (j,4) € C. Note that
this does not change the A;. To see that S(§) is maintains
the optimal cost, first note that the change in the objective
function of the GLB between S and S(&) is equal to

gl D0 rdi+ filma, X)) = > r(diy + fi(ma, A))| (31)

(4,9)eC (i,5)€C

Next note that the multiplier d;; = 0 since A\;; > 0 at S.
Further, the KKT condition (29) for stationarity in \;; can
be written as K; + r(dij + fi(mi, As)) — v; = 0, where K;
does not depend on the choice of j.

Since C' is minimal, for each (i,5) € C where ¢ € I and
j € J there is exactly one (j',4) with j' € J, and vice versa.
Thus,

0= Z (K +r(dij + fi(mi, i) — vj)

(Gi)ec
- Z (Ki +r(dij + fi(mi, \i)) —v;)
(i,5)eC
= rdis + filma, \) = D r(dig + fi(ma, M)
G.i)ec (i.5)eC

Hence, by (31) the objective of S(&) and S are the same.

To complete the proof, we let (i*,j*) = argming; jjec Aij-
Then S(Ai= ;) has A\j» j» = 0. Thus, S(Ai= ;=) has at least
one fewer cycle, since it has broken C. Further, by construc-
tion, it is still optimal. [

PROOF OF THEOREM 4. It is sufficient to show that, if
AkjAr/; > 0 then either my = My or my = M. Consider
a case when AgjAp; > 0.

For a generic i, define ¢; = (1 4+ 1/p:/3)*/u: as the marginal
cost (26) when the Lagrange multipliers @; = w, = 0. Since
the p; are chosen from a continuous distribution, we have
that with probability 1

Ci — Cg/ ;é dk’j — dkj. (32)
However, (26) holds with equality if A;; > 0, and so dx; +

1+ /pi/B)? /e = dirj + (1 + \/pi /B)? /1w . By the defi-
nition of ¢; and (32), this implies either p;, # pr or py, # Dk.
Hence at least one of the Lagrange multipliers w,,, Wk, w;,, or
Wy must be non-zero. However, w, > 0 would imply m; =0
whence \;; = 0 by (21), which is false by hypothesis, and so
either @y or @y is non-zero, giving the result by (24). [

B. PROOFSFOR SECTION 4
Algorithm 1

To prove Theorem 5 we apply a variant of Proposition 3.9 of
Ch 3 in [8], which gives that if

(i) F(m,A) is continuously differentiable and convex in the
convex feasible region (4b)—(4d);

(ii) Every limit point of the sequence is feasible;

(iii) Given the values of A_; and m, there is a unique min-
imizer of F' with respect to A\j, and given A there is a
unique minimizer of F' with respect to m.

Then, every limit point of (m(7), A(7))r=1,2,... is an optimal
solution of GLB-Q.

This differs slightly from [8] in that the requirement that
the feasible region be closed is replaced by the feasibility of
all limit points, and the requirement of strict convexity with
respect to each component is replaced by the existence of a
unique minimizer. However, the proof is unchanged.

PROOF OF THEOREM 5. To apply the above to prove The-
orem 5, we need to show that F'(m, A) satisfies the differen-
tiability and continuity constraints under the GLB-Q model.

GLB-Q is continuously differentiable and, as noted in Ap-
pendix A.1, a convex problem. To see that every limit point
is feasible, note that the only infeasible points in the clo-
sure of the feasible region are those with m;u; = ;. Since
the objective approaches co approaching that boundary, and
Gauss-Seidel iterations always reduce the objective [8], these
points cannot be limit points.

It remains to show the uniqueness of the minimum in m
and each Aj;. Since the cost is separable in the m;, it is
sufficient to show that this applies with respect to each m;
individually. If A\; = 0, then the unique minimizer is m; = 0.
Otherwise

O*F(m, A A2
( 2 ) = 2Bpi 7 33
om? (mipi — As)

which by (6b) is strictly positive. The Hessian of F'(m,\)
with respect to A; is diagonal with ith element

mg

—— >0
(mipi — Ai)3 -

20

which is positive definite except the points where some m; =
0. However, if m; = 0, the unique minimum is A\;; = 0. Note
we cannot have all m; = 0. Except these points, F'(m,\)
is strictly convex in A; given m and A_j;. Therefore A; is
unique given m.



Part (ii) of Theorem 5 follows from part (i) and the con-
tinuity of F(m, ). Part (iii) follows from part (i) and The-
orem 2, which provides the uniqueness of optimal per-server
arrival rates (\;(7)/mi(7),i € N). O

Algorithm 2

As discussed in the section on Algorithm 2, we will prove
Theorem 6 in three steps. First, we will show that, starting
from an initial feasible point A(0), Algorithm 2 generates
a sequence A(7) that lies in the set A := A(¢) defined in
(15), for 7 = 0,1,.... Moreover, VF(A) is Lipschitz over
A. Finally, this implies that F(A(7)) moves in a descent
direction that guarantees convergence.

Lemma 8. Given an initial point X(0) € [, A;, let ¢ :=
F(X(0)). Then

1. X(0) € A == A(¢);

2. If X* is optimal then X* € A;

3. If X(1) € A, then X(T+ 1) € A.

PrOOF. We claim F'(A) < ¢ implies A € A. This is true

B BA
because ¢ > F(A) > Sy Ak/rﬁmw 2 o 2
m,Vz Therefore \; < ¢+BM —2— M, pi, Vi. Consequently,
the intial point A(0) € A and the optimal point A* € A
because F(A*) < F(X). _

Next we show that A(7) € A implies Z7(7 + 1) € A,
where Z7 (1 + 1) is A(7) except A;(7) is replaced by z;(7).
This holds because Z] (7 + 1) = \ix(r) > 0,Vk # j,Vi
and 2,7, (1 + 1) = Zidik(r) = Li,Vk # j. From the
definiition of the projection on A;(7), ZJ (r —|— 1) > 0,V
SiZL(r+ 1) = Lj, and SeZ (7 + 1) g M i, Yi.
These together ensure Z’ (1 + 1) € A.

The update A\;(7+1) = ‘J‘b‘l)\ (1) +
alent to A(7+1) = %
A, we have A(1+1) e A. O

Let F(M, ) be the total cost when all data centers use
all servers, and VF(M, ) be the derivatives with respect
to A. To prove that VF(X) is Lipschitz over A, we need
the following intermediate result. We omit the proof due to
space constraint.

Lemma 9. For all A A° € A, we have

¢>+ﬁM

mzj (7),Vj is equiv-

. Then from the convexity of

HVF()\b) —VF(AY)

< HVF(M AY) = VF(M, A%)

‘ 2

Lemma 10. ||[VF(A") = VF(AY)||, < K A" = A%,
YAY AP € A, where K = |J| max; 2(¢ + BM;)3 /(62 M2u2).

Proor. Following Lemma 9, here we continue to show
[VE(M,A") = VE(M, A%, < K |A" = A%,

The Hessian V2F (M, A) of F(M, ) is given by

2B /M,

VzFij kl(My A) = { (Hi—Xi/M;)3 ifi=k
’ 0

otherwise.
Then HV2F(M7)\)H§ < VPFMMA)|| ([ VPEML )| =

HVQF(M7 )\)Hio The inequality is a property of norms and
the equality is from the symmetry of V2F (M, X). Finally,

= max {Zklszij,kl(My )‘)}
i

2(¢ + BM;)*
M

2PV, N

2Bui | M;
= _— <
m?X{|J| i )\i/Mi)B} < |J|m?x

OM;p;
o+BM;

is increasing in A\;. [

In the last step we substitute \; by because \; <

2u4 /M;
¢>+ﬁM M; i, ¥é and *MM/Mi)a

Lemma 11. When applying Algorithm 2 to GLB-Q,
(@) FA(T+1)) < (A1)~ (5 = 5) [A(T +1) = A(7)[[3,
where K = |J|max; 2(¢ + BM;)*/(5° M 1), vim = max; v;,
and 0 < ~; < min 32 M /(| T|(6 + BM:)*), V5.
(b) X1+ 1) = X(7) if and only if X(T) minimizes F(X)
over the set A.
(c) The mapping T(X(T)) = X(T + 1) is continuous.
PROOF. From the Lemma 10, we know

HVF(AI’) ~VF(AY)

e ox
2

VAT € A, VAP € A
2

where K = |J| max; 2(¢p + BM;)%/(B* M} 1i3).
Here Z7 (7 + 1) € A, X(T) € A, therefore we have

HVF(ZJ’(T+ 1)) — VF(A H <KHZJ 1) - A(r )H

9 .

From the convexity of F(A), we have

F(x (T+1)):F(M)
1

]
< S S F(Z (r + 1))

< s (o= (5 - ) e n-a0))

= F(A(r) - %, (% -5 |2+ |13|_ A5

<P - (-5 ) 2 12z R A5

where K = |J| max; 2(¢p + BM;)*/(B* M} 1i3).

The first line is from the update rule of A(). The second
line is from the convexity of F'(X). The third line is from
the property of gradient projection. The last line is from the
definition of ~,,.

Then from the convexity of ||-||3, we have

2

55|27 (r +1) = A(7)|; 25 (Z7 (1 +1) — (1))
] - 7] )
= [BZED | =iy -aee.
Therefore we have
FA(T+1)) S F(A(7)) - (%m - 5) AT +1) =AM

(b) A(7+1) = A(7) is equivalent to Z7 (7 +1) = X;(7), V.
Moreover, if Z7 (741) = X;(7), ¥, then from the definition of
each gradient projection, we know it is optimal. Conversely,
if A(7) minimizes F(A(7)) over the set A, then the gradient
projection always projects to the original point, hence Z? (74
1) = Aj(7), V5. See also [8, Ch 3 Prop. 3.3(b)] for reference.

(c) Since F(A) is continuously differentiable, the gradient
mapping is continuous. The projection mapping is also con-
tinuous. T is the composition of the two and is therefore
continuous. [J

PROOF OF THEOREM 6. Lemma 11 is parallel to that of
Proposition 3.3 in Ch 3 of [8], and Theorem 6 here is parallel
to Proposition 3.4 in Ch 3 of [8]. Therefore, the proof for
Proposition 3.4 immediately applies to Theorem 6. We also
have F'(A) is convex in A, which completes the proof. [



