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2 . Lachlan Andrew et al.

1. INTRODUCTION

Product form stationary distributions arise in many modefstelecommunications sys-
tems. These models include the multi-clagsG/k/k queues which model the traditional
circuit switched telephone networks with fixed routing. ¥laso include cellular networks
with frequency-reuse constraints [Boucherie and Mandj@88, Everitt and Macfadyen,
1983, Pallant and Taylor, 1995]; packet switched networikis fixed routing and effective
bandwidth admission control [Berger and Whitt, 1998, Ke1§91] or with marking-based
admission control [Kelly, Key, and Zachary, 2000]; and liigent networks in which con-
nections require a particular set of services for the domadf the call [Jordan, 1995]. Many
other models with product form stationary distributions bsted in [Mitra and Morrison,
1994]. In particular, closed Baskett-Chandy-Muntz-Pala¢BCMP) networks [Baskett
etal., 1975, Chao, Mayazawa, and Pinedo, 1999], which nmmatKet switched networks
with sliding window or token-based flow control [Reiser, 99Yazquez-Abad and Mason,
1999], have product form stationary distributions. Thevwek models to be considered in
this paper are presented in Section 2.

The importance of networks with product form stationaryribisitions has led to many
techniques for their analysis [Ross, 1995]. A number of mitmeeasures may be calcu-
lated to assess the performance of the networks. These rasastiude the blocking prob-
ability of circuit switched networks, and mean queue leagihd throughputs of packet
switched networks. Calculation of any such measure noyritalblves a normalising con-
stantG in the stationary distribution as defined in equation (3)e fibrmalising constant
G, with various levels of difficulty, may be calculated by cohwtional methods [Buzen,
1973, Coleman, Henderson, and Taylor, 1994], numericarsion of generating func-
tions [Choudhury, Leung, and Whitt, 1995] or by Monte Caritegration [Boucherie and
Mandjes, 1998, Ross, Tsang, and Wang, 1994].

As an alternative means which does not need to calcGlaMarkov chain Monte Carlo
(MCMC) simulation [Kendall, Wang, and Liang, 2005, Gamemaad Lopes, 2006, Neal,
2003] can be used to estimate the blocking probabilitiesadpct form networks [Lassila
and Virtamo, 1998a, Lassila and Virtamo, 1998b, Vazqubeadhand Andrew, 2000]. In
this paper we will investigate the performance of MCMC siatign in this estimation.
In an MCMC simulation actual samples can be generated fremsttitionary distribution;
thus they can be further used, say, for starting simulatiortslculate other performance
measures, as is done in [Conway and O’'Brien, 1993]. An oearaf MCMC simulation
and one of its most fundamental methods, the Gibbs samglerpie given in Section 3.

The Gibbs sampler traverses the state space by modifyingameonent of the state
vector at each step. As such it is not directly applicablelésed queueing networks, in
which the sum of the state components is fixed, yielding smigton a lower-dimensional
manifold. The traditional solution is to remove one compurfeom the state vector; but
updates to each single component of the reduced state veqtiicitly update the omitted
component as well. In Section 4 we will propose a more flex#gproach, the Setwise
Gibbs Sampler (SGS) in which a subset of multiple componargaupdated simultane-
ously at each step. We have obtained conditions on the chbmebsets in SGS updates
which ensure the convergence of MCMC simulation to the abtestribution.

In using simulated Gibbs samples to estimate performanesunes of a network sta-
tionary distribution, conditioning or filtering is a usefigichnique to reduce the variance
and improve the efficiency of various estimators. Conditigris a generic term indicating
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that unconditional expectations involved in a parameténtefrest, when being estimated,
are replaced by expectations conditional on statisticsluing sufficient information of
the parameter, rather than by the observed statisticstigiréithe filtered Gibbs sampler
(FGS) [Vazquez-Abad and Andrew, 2000, Andrew and Vazediead, 2002] to be pre-
sented in Section 5 is an enhancement to the standard Gilvipdesahat implements the
conditioning technique to the simulated estimates of ngtywerformance measures. No
thorough performance analysis of FGS has yet appeared itefsgure of MCMC simula-
tion of network stationary distributions. This will now berke numerically in Sections 5.2
and 5.3, where an expression is also derived for the maxinemefii relative to the stan-
dard Gibbs sampler under the assumption of low network Iblade that neither FGS nor
SGS is an improvement of the other; rather they are paralteecements to the standard
Gibbs sampler.

Under a typical termination criterion, a Monte Carlo simiga will be terminated once
a specified level confidence interval for the quantity beinguated is sufficiently short.
But a computed confidence interval can be incorrectly toatdiecause the variance in-
volved is usually underestimated by standard methodsijraatie simulation to terminate
prematurely. This problem affects many filtering and impode sampling techniques. In
Section 5.4 we will propose a more conservative variandmastr which allows simula-
tions to be terminated at the appropriate time.

2. NETWORK MODEL

Consider the general BCMP model for a queueing networkpdhiced in [Baskett et al.,
1975]. There areéV service stations that may have single or multiple serveidfaclasses
of customers (that may possess different service requitesheA customer of classthat
ends service at statiaris routed to statiory and given clasg with probabilityp; ). (;.q)
independently of the history of the process. Arrivals tovgerstatiory of class- customers
from outside the network follow independent Poisson preegs The network may be as
complicated as having some classes with zero externahégriso their behaviour is that
of a closed network, while other classes sharing the netnesiurces may have external
arrivals and departures. The general model therefore derssthe possibility that the
routing matrix

P =A{pir,Ga}t 1)

is not irreducible, but consists of irreducible transition kernels. In this paper, transi-
tions will not occur between classes, that#sconsists ofin = R submatrices, each of
them irreducible, corresponding to the subspaces of thiesstar) per customer class.
This is the model for closed multiple-chain networks. EaghspaceS, = {(i,r) :
t=1,....,N},r» = 1,..., R corresponds to either a closed or an open subsystem per
class. LetS = U S, denote the complete set of indicéisr). Because customers
never change class here, for each subsystemeffletive arrival rateis the solution,
{ejq:7=1,...,N;qg=1,...,R.}, of the linear equations:

€iq=Na+ Y, CirDimGa) =Nat D, €iaDiig).(a) (2)
(i,r)es (,q)€Sq

where )\ , is the external arrival rate to service statiprof classq customers. If the
subsystent, is closed, then\; , = 0 for j = 1,..., N and the above linear system is
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only defined up to a multiplicative constant. In that case mtez(m)esq ejq = land
the factors are interpreted as tiedative number of visits to statg, ¢).

Service stations can be of different types. Denot&dy. the service distribution of
stationi for classr. Theoccupancy vectoof the whole network will be denoted hy =
(niy:i=1,...,N;r = 1,..., R) indicating how many customers of each clasare
in each statiori. The aggregate occupancy of statiois n;e = Zf’:l n; ». Denote by
1/u;  the mean service time of classat service statior, and letp; , = e;,/u; , be
the utilization factorof the server/class paii, r). For single class networks or situations
where customer class does not have effect, the second gibsitr G; ., iy, €7y Air,
pir, N and other relevant quantities will be dropped for simpicit

Service stations must be of one of the following types:

Type 1. First-come-first-served (FCFS{;;, = G; ~ exp(ui(n;)) for all customer
classes (station may have one or several servers)

Type 2: Processor sharings; , arbitrary, single server
Type 3: Infinite number of parallel servers; ,. arbitrary
Type4: Last-come-first-served (LCFS}s; ,- arbitrary, single server.
THEOREM 1 BCMP. [Baskettetal., 1975] Leth; = (n; 1, ..., n; r) denote the occu-

pancy vector at station(implyingn = (n1,...,ny)). Then the stationary distribution of
the network occupancy has the product form:

w(n) =r(ny,...,ny) = Ed(ﬂ) Hgi(ni), (3)
=1
where:
1 nie R eflzw
—ifiis of type 1, them; (n;) = nia! ( —
if i is of type 1, them; (n;) = n; (M) Tl;[ln”!
R pT_li,r
—ifiis of type 2 or 4, thew; (n;) = n;.! H n;,7-' ,

R
—ifiis of type 3, thew; (n;) = H Pir _

Here Q2 denotes the state space of the occupancy vacta((?) is a function of the ex-
ternal arrival rates such thatl(©2) = 1 when the whole network is closed, a@dis the
normalising constanthosen so as to maRe, ., 7(n) = 1.

Note thatg;(n;) can be written as

i, r

pi,r
' 3
TG e

R
gi(ns) = ha(ni) [ | (4)
r=1
whereh;(n;e) = 1 if stations is of type 3 (which we will call IS — infinite server station),
andh;(ni.) = n;e! Otherwise.
For a single class closed network implying, = n; = n; = n;, a considerable
simplification follows: letl; be the subset of all stations that are of type 1, 2 or 4,78nd
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be the set of the (remaining) stations which are of type 3j:the

atn) = I T1(%). ©

€Ty 1€T>
2.1 Circuit switched networks

Circuit switched networks may be described by a BCMP modela kircuit switched
network, where for simplicity of presentation is assumetiécopen with type 3 servers
and have a single customer class, Meervice stations model distinct routes through the
network andr; is the number of calls currently using routelf the network can support
a particular combination of calls, then it can also suppoyt subset of those calls. Thus
for any feasible occupation vectar= (nq,...,ny) € Q, we have{n’ : n; < n;} C Q,
where <’ is taken componentwise.

The feasible regior), is often of the form

Q={neN':An' <C} (6)

(but [Jordan, 1995, Kind, Niessen, and Mathar, 1998] giveepiions). Hered = [a;;] €
{0,1}E*N (or more generallyN=*?) specifies the number of channels required by route
ionlinkj(i=1,---,N;j=1,---,L),andC = (C;) € N is a vector of the numbers
of channels available on each link.

Because the model corresponds to a single class open nebfvtyge 3 servers, the
form of the marginal densitieg (n;) in (3) is

= (5).

Let B be the network blocking probability. A feasible state|s a blocking state for route
1 if one more call on routéwould lead to an infeasible state. The set of blocking states
routei, i =1,...,N,Iis

B, = {n € Q:3j,a; + (An"); > CJ'} : (7)

Let B, = P(n € B;) be the blocking probability of route Writing A = Zf’:l \; for the
total external arrival rate gives

N

B:;(%) B;. (8)

2.2  Window flow control

In contrast to a circuit switched network, a packet switcb@hmunication network with
window flow control can be modelled by a closed BCMP queuegtgarks in the follow-
ing sense [Reiser, 1979]. Each connection on the commimicaetwork is regarded as
a class. And packets or acknowledgements in transit in theank are regarded as cus-
tomers. Customers can also be used to represent packetetebet not acknowledged,
or packets within the current transmit window which haveywitbeen transmitted. (With
greedy sources and fast receivers, the latter two caseaemoountered.) The number
of customers of each class is equal to the size of the winddighwis assumed constant.
Store-and-forward switches are represented as FCFS nodesponding to the service
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stations in the BCMP model, and transmission delays can liehed by IS nodes with
constant service times. The routing of customers througlytieueing network is the same
as that of packets through the communication network, ankisnpaper will be assumed
to be deterministic.

For these networks,

N
Q= {n : Zni,,. = C, forall r} ,

i=1

where(, is the constant number of customers (packets) on connegtiwhich is equal
to the window size for the corresponding connection.

Measures of interest in packet networks include overflovoabilities (the probabilities
that the buffer occupancies exceed a certain thresholdnmeeue lengths and through-
puts. In general the performance of the network will be offtren

N
B = Zwi Bi;
i=1

for some weight factors); and local performance functiord$; = E[b;(n)]. The sample

performance; is a local function of the occupancy of statigrand the expectation is with
respect tar. This is clearly the case for the three performance measueaesioned above,
with throughputs calculated by applying Little’s law to astimate of the idle time of each
queue.

3. MARKOV CHAIN MONTE CARLO SIMULATION

Evaluating blocking probabilities using (3) and (8) ditgds a difficult numerical prob-
lem even for networks with realistic sizes dfand R. Moreover, in many cases, it is not
sufficient to know the blocking probability, and it is dedilato sample from the distribu-
tion itself (see for example [Conway and O’Brien, 1993])[Wazquez-Abad and Andrew,
2000] a wavelength-division-multiplexing (WDM) networkaw studied. A typical WDM
backbone network may have over = 20 nodes and” = 32 or more wavelengths. The
simplest approach is to calculate the normalising factpwhere the sums are over the
spacef?, and then explicitly sum (3) over all states € B,. The number of routes is
N =m?/2+ o(m?), and for densely connected networks, the number of stat@&is").
Thus computing= directly takes of the order o™ /2 multiplications. For a modest
network ofm = 10 nodes withC' = 8 wavelengths, this requires aroutP ~ 104°
multiplications, takingl02* years on a 1 Tflops computer.

Monte Carlo techniques bridge the gap between exact digasifBuzen, 1973, Choud-
hury, Leung, and Whitt, 1995, Coleman, Henderson, and Ta¥@94] and approxima-
tions [Knessl and Tier, 1998, Mitra and Morrison, 1994, ljtMorrison, and Ramakrish-
nan, 1999]. They allow a quantifiable tradeoff between caetjmnal time and accuracy,
while being conceptually simple.

This section presents the construction of a “surrogate”Kéharchain {X; : k£ =
1,2,...} of the occupancy vectai with state spacé) whose steady state probabilities
are given exactly byt in (3). That is,

VneQ leH;O P(Xr =n) = 7(n). 9
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The methods underlying such construction are called Mackain Monte Carlo (MCMC)
(see [Brémaud, 1999]). TheB can be estimated frori’ samples generated from the
Markov chain ag’ (T') = (1/T) ZiTzl y(X;) for any functiony(-) with E[y(X)] = B.

Define the relative mean squared errowagY (7')]/ B2. An estimate of a given relative
mean square error can be obtained faster by either decgeh&rCPU time required to
evaluatey(X), or by using an estimatoy, of B with reduced variance and reducifig
This tradeoff is quantified by thelative efficiencygefined by

E(Y) = li e
R et CPUY (T)Var[Y (T)]’

wherecpPUY (T")] denotes the average CPU time of the simulation that prodiess
samples.

Note that it is not necessary for tfiereplications to be independent. However, if there
is significant positive correlation between them, thar[Y ()] may be very much larger
thanVar[Y (1)]/T", which would have resulted from independent samples. Tihudi-
tion to having the desired steady state distribution, a gaurtbgate process should have
a smaller (or slightly negative) correlation between sasiv@ states than the simple ar-
rival/departure process. This can reduce the varianceedfirtial estimate of the blocking
probability by orders of magnitude.

One of the frequently used MCMC methods is the Gibbs samBlé&npaud, 1999, Fish-
man, 1996, Ross, 1997]. Section 3.1 in the following dessrthe standard Gibbs sampler.
Sections 4 and 5 then present two enhancementsetindseGibbs sample, which extends
the range of networks which can be analysed, fiteted Gibbs sampler, which improves
the efficiency of the network performance estimator.

3.1 The standard Gibbs sampler

The Gibbs sampler applies to multi-dimensional state spadée key principle is that
each transition in the surrogate Markov chain updates amyammponent, selected either
deterministically or randomly, and the associated trasiprobability is proportional to
the readily derived stationary conditional probability foat component given the current
values of all other components. This is clearly ideallyelito product form distributions,
where each such conditional probability has a very simplfdt is the Gibbs sampler’s
ability to make large changes to each component, reducingdkrelation between sam-
ples generated, that leads to its greater efficiency thactéimulation of the arrival and
departure of calls.

To present the algorithms for generating statg ; from X, for the occupancy vector
n we introduce the following notation. First rewriteas X = (X (1),..., X (NR)) which
is a vector inN™. It is straightforward to see that . = X (N(r — 1) + i). Then define:

X(—i) = (X(1),...,X(i — 1), X(i +1),..., X(NR)),

which is a vector ilN"?~1 missing component A realization ofX is x € NV and
x(—1) is similarly defined as¥ (—¢). We also similarly defin&(;,(—i). Given anyx € Q
and an index < ¢ < NR, the notationr(-|z(—%)) is used for the stationary conditional
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probability of theith component given all the others:

m(ylz(—i)) = P(X(i) = y[ X (—i)= z(=1))
m(zi(y))
C*(z ’
oo ()
wherex;(y) denotes the vectar with the scalaw replacingz(i), andC;(z) is the state

dependent upper bound fof:) such that all states in the sum in the denominator li€.in
A Gibbs Updatss a rule for generating’;+; from Xy, of the form:

(1) Selecta coordinate, € {1,..., NR}, independent oXj.
(2 Seth_;,_l(—Uk) = Xk(—Uk) and takeXk+1(ak) ~ 7T(-|Xk+1(—0’k)).

For example, it are i.i.d. random variables th€X . } forms a Markov chain, while if
or = k(mod NR), then{ (X}, ox)} forms a Markov chain, as does evekth sample,
{Xnri}. The key property of Gibbs updates is thatX; is distributed according ta
(denotedX ~ w) thenX,1 ~ w. In other words, the target probability is stationary for
the Gibbs sampler.

Once a stationary Markov chaifnX, : k¥ = 1,...,T} has been constructed by the
Gibbs sampler, it can be used to estimate those networkrpesftce measures such as the
blocking probability etc.. We illustrate this by recallitfee model of the circuit-switched
network considered in Section 2.1, whéte= 1 andn (| X;+1 (—o)) is aone dimensional
Poisson distribution truncated by (6) whereorresponds t&X. For eachl < ¢ < N, let

9. d
Pl)= 2 g=12 .. (10)

N d!
d=0

Let Z;(X) = Cj — > ey, @jcX (c) be the number of free channels on lifkn stateX,,
whereL; = {i : a;; # 0} is the set of all routes being used on lifikAt every stepk, let
1 = o and let

Ci(Xp) = min (Z;(Xk)/aji + Xi(0)) (11)

N2 J

be the maximum allowable number of connections using row&en X;(—i). Then
the required conditional probability satisfiBéX 1 (i) < g) = Pi(g9)/FPi(Ci(Xk)), g =
0,...,Ci(Xk).

Since, ask — oo, X ~ m, it is possible to estimat&; by (1/7T) Zle 1ix, €8}
wherel;,y = 1if Ais true, 0 otherwise. However since updates to componerné'ro
i" only changel { x, ¢,; wheni andi’ share a link, evaluating this sum involves signif-
icant unnecessary computation at each &tépr all routes that do not share a link with
the current updated route. Having evaluat@&dX) and X1, it is easy to calculate
1ix, . e8,y = Lix, (i)=ci(x,)} for the componentwhich is updated at iteratioh. Thus
B, can be estimated by

T
1
Yi(T) = —— (X)) Lig —i 12
(T) T(i);y(z@){k} (12)
wherey;(Xx) = 1ix,,,e8,}, andT (i) = > 1,,—; counts the number of iterations
whereo;, = i. Thesdocal estimategonverge taB; at rateO(T*l/Q) asT increases.
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4. SETWISE GIBBS SAMPLER

For a distribution on a manifold, it is often impossible tadage one coordinate at a time.
For example, in a closed network such as a window flow cowtlgtlacket switched net-
work, if only one occupation numbet,, is to be updated, the requirement that the number
of customers of each class in the network remains constaamsritbat the next state must
equal the previous state. The next state still satisfigs; ~ =, sinceX; ~ m, but the
process is no longer ergodic. We now proposedivise Gibbs sampléBGS), which
restores ergodicity. We consider only the closed netwarKedus our presentation. The
SGS algorithm can be seen as an efficient special case of ther&lised Gibbs Sampler
[Liu and Sabatti, 2000].

4.1 SGS algorithm

Recall the notatiors, = {(i,r),i = 1,..., N} defined in Section 2 which gives the
indices of the occupancy vectdf € 2 (another notation is € Q) corresponding to the
customersinclass(r = 1,..., R). Lets, = {(s1,7),...,(s;,7)},2 < j < N, denote a
subset of5,.. DefineX (—s,.) (orY(—s,)) to be a subvector ok € Q (Y € Q) removing
those components indexed By. We will consider a Gibbs-style update &f(s,.), those
components of indexed bys,., in constructing a Markov chaifXy, k = 1,2,...} for
X € Q. But first note that the constant occupancy constraint fagsse! says that the sum
Cr=n1,+ - +nny,= Zf;l X (N(r —1) +14) remains constant. Also fox,Y € Q
the statemenX (—s,.) = Y (—s,.) implies

(V) _ 7, (Y(sr) | X(=sr))

m(X) 7, (X(sp) [ X(=sp))’
wherers,_ is the conditional distribution of the occupancy subveatdexed bys, given
X(—s;).

The general scheme forZetwise Gibbs Updaie a pre-specified se§ = {s,. : s, C

Sr,r € (1,2,...,R)}, and a rule for generating ., from X, for X, of the form:

(13)

(1) Select anindex set”) € &, independent oK.
(2) Setiy(—si")=X,(—s*)) and takeXis1 (s1°)) ~ 7 o) (- Xiga (—s)).

The selection oﬁffc) may be deterministic or random, but eachsset & is assumed
to be selected an infinite number of times with probabilitysk a— co. Also assume that
eachsS, can be covered by a sequencespfin &. This ensures that all the components
of X (S,) for eachr communicate. Further, note that SGS becomes a standard Gibb
sampler when in the definition ofs,. equals 1.

To further illustrate the SGS we now take on a case where edsh s G is of the form
s, = {(s1,7), (s2,7)}. Rather than prohibiting an update, the occupancy constnaw
helps by substituting the generation of a two-dimensioaatiom variable with that of a
one-dimensional one. This gives updates of the fagm. = X(N(r—1)+s1) = @ and

Nsyr = X(N(r—1) 4+ 52) = Cr = 325 1ygs, Tir — @ denete o o — Q whereQ is a
random variable having the distribution determinedy(- | X (—s,.)). For a closed class
of a BCMP network, it can be derived from (3) and (4) that

h’Sl (nlslo + Q) h52 (nISQo =+ CT-,Sr - Q) (ps1,7-)q
O( b
q! (Crs. —q)!
ACM Journal Name, Vol. V, No. N, Month 20YY.
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wheren, , = > .. ns ;andng,, = > ., n,, ;. Note that if nodes (stations) and
sy are both single-class nodes(, = n},, = 0) of a type other than type 3 (IS), then
the distribution oft) becomes a truncated geometric distribution. If one of trenades
is instead of type 3 (IS), then a truncated Poisson distdbutesults. And if both of the
nodes are of type 3 (IS), then a binomial distribution ressukll these distributions can
be efficiently generated using standard random number géngmprograms with minor
modifications. In principle, SGS can be applied to any gdiMP network model; and
the associated transitional distribution in step 2 in SGShmaderived from (3). However,
the derivation can sometimes be analytically very compida In these situations, other
more feasible MCMC algorithms are expected to be developednall not be pursued
here.

The SGS updates are closely related to the true network dgsaimstead of customers
moving from one queue to the next one at a time, groups of mest® move in batches
between queues on their route which need not be consecititiieextra flexibility reduces
the correlation between successive estimates of the duaritinterest (such as queue
length or link utilisation), which improves the efficiencftbe estimation.

THEOREM 2. Consider a setwise Gibbs sampler for simulating a Markovirtha
{Xi,k = 1,2,...} for occupancy vector in a closed BCMP network model. Assume
all components of the occupancy vector indexedhy.e. customer class, communicate
in SGS updates. Also assume the network routing ma&tex {p; . ;s } is irreducible
when restricted to any customer classThen the Markov chaifiXy, k = 1,2, ...} simu-
lated by the SGS converges to the occupancy stationarytdisom defined in Theorem 1.

This will be proved with the help of the following lemma.

LeEmMA 1. Consider an occupancy vectar € 2 in a closed BCMP network model.
Let{F,V} be a partition ofS,, the index subset corresponding to customer classich
that V' can be covered by a route of elements@fand the cardinalitiegF| > 0 and
|[V| > 2. Assume all components nfindexed byS,, communicate. Then for anysuch
that(j,7) € V, and target value; € {0,...,Cr} with Cr = Cr — 32, .y cp Tk, 1LIS
possible under the randomized setwise Gibbs sampler tnatatate,m from n, where
the occupancy components not indexed/bwill be unchangedm(—V) = n(-V), and
where the occupancy components indexe(ljby) equals the target valuer; » = t;.

PrRoOF Call the occupancy components indexed Wy“variable” and those byF
“fixed”. Consider an arbitrary, # j satisfying(i1,r) € V. Note that;, ,+n;, < Cris
always true. Ifn;1 » +nj, = t;, then the setwise Gibbs sampler has a positive probability
to reach the target state in one step, which chooses andeh#mgyoccupancies @, )
and(j, r) so that statiory has exactly; customers of classby moving all components at
(il, 7’).

Next consider the case that no suglexists, but that; , < t; < Cr. we now argue
that SGS has a positive probability to transfer n; , customers from variable compo-
nents into the component indexed B@yr) in a finite number of steps. First, with positive
probability SGS updates will select in a finite number of step> 2 components indexed
by {(i1,7), ..., (ix,7)} C V,suchthaf(iy,r),..., (ix,r)} can be covered by a subset of
elements of5 and

Ny, o T N e <tjy o My + 00 N e + NG 2 5
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Because all occupancy components indexe®lommunicate, again with positive prob-
ability the SGS updates will transfer al], ,. customers of classat station; to i, without
changing any other occupancy components, will then tramdffe:;, , + n,, , customers
ati, to i3, and so on until transfer afl;, , + --- + n;,_, » customers at;_; to i, and
transfer onlyt; —n; . customers af, to station;. Eventuallyt; —n; . customers of class

in the variable components can, with positive probabibtytransferred to the component
indexed by(j, ) with no change in the fixed components.

Finally, if n; . > t;, then there exists ai such that(i;,r) € V and{(i1,r), (j,r)} €
S. It can be seen that the SGS updates have positive progabilittansfern;, — t;
customers of classat stationy to stationi, so that exactly,; customers of classare left
at stationj. This establishes the lemma. <

PROOF OF THEOREM2. LetP(s) = (pm,n(s)) be the transition kernel if2 when all,
but only, those coordinates indexeddy & are updated according to the Gibbs sampling
strategy:

Pmn(s) = Ts(n(s) | m(=8))1(n(—s)=m(—s)}:

It is easily shown [Fishman, 1996, sec. 5.15, 16] that thgetadistributionr is stationary
for P(s), thatis,mP(s) = w. Indeed, for anyn € Q, from (13)

> m(m)pmn(s)

meq

Y m(m)ms(n(s) | m(=8))1 {m(—s)=n(-s))

me
7(n)
= m(m) (| ——= | ms(m(s) [ m(—s))L{m(-s)=n(-s
n;) <7T(m)> {m(—s)=n(-s)}
= 7(n) Z ms(m(s) [ m(—8))1{m(—s)=n(-s)}-
meQ

Foranyn € €, > ms(m(s) |m(—s))1m—s)=n(—s)} = 1 because the conditional
probability satisfies the law of total probability on the sétcoordinates. Son(n) =
> meo T(M)pm n(s), as required.

Becauser is stationary underP(s) for all s € &, it suffices now to ensure that
the successive iterations of a Gibbs sampler will producergodic chain, that is, one
for which all states are reachable, so that the limit digtidn will be the target one:
limg_,o0 P(X; = n) = 7(n) foralln € Q. For this, it is sufficient to show that, from any
state,n, which is recurrent under true process, any statereachable in one step under
true process is reachable under the SGS.

According to the definition of SGS and the condition Bnthe (two) components in
which m andn differ must be in the same irreducible block of the routingtiina P.
Without loss of generality, label the components in the metisuch irreducible block
as(1,r),...,(NV,r). By hypothesis, all occupancy components in this irrededitock
communicate in SGS updates. We show now that starting ficimere is a path of the
randomized setwise Gibbs sampler that has positive prbtyadind reachesn in finite
time. That is, we will show how to perform a series of positirebability Gibbs updates
that will change the occupancy from , tom, , foralli =1,..., N.

First, from Lemma 1 it is always possible to construct an tpdhat reaches with
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positive probability a state with the target occupamey; , of classr at the last sta-
tion, by changing one or several of the other occupancieb@fsame class. Next,
reach a state where this occupanay; , remains the same but statigvi — 1 reaches
the target valueny_; , of classr. By continuing in this fashion it is straightforward
thatm, = (miy,,...,mn,) is reachable from, = (ni,,...,ny,) using the set-
wise Gibbs sampler, by Lemma 1. Thus reachability of the whathte space follows
from the randomisation in the updates: the Gibbs sampldrcvdose the next class
to update at random, and then chooses ong,set & for the update, also at random.
N

COROLLARY 1. Lemma 1 and Theorem 2 also hold for SGS with updates in a deter-
ministic order.

PrROOF With non-zero probability, intervening updates have npaut. <

As with the analysis of the circuit switched model (wherer¢his a single customer
class), itis possible to estimai& consistently using the fact that the chain satisfies (9), so
that

1 T
Bi:Tlilgc?Zbi(Xk), i=1,2,...,N.
k=1
Clearly, for the mean queue length whégén) = R~! Zf‘:l n; r, if coordinateN (r —
1) + 7 is not updated at iteratioh then Xy (N(r — 1) +14) = X1 (N(r — 1) + 9)
and it contributes nothing to the estimate to add this sampighe contrary, it increases
computational effort. Thus, similarly to (12), we use irgtéhe localised estimator &f;:

1 T
E(T) = m ; bZ(Xk)l{zHr s.t. (i,r)essk)}’

whereT (i) = ZZZI I{HT ot (”)ESW}.
If the variance of the occupancy of either comporiént) or (j, r) is very small, then the

state will usually not change significantly whelfy) = {(i,7), (4,7)}. In BCMP networks,
this typically occurs when the expected occupancy is lowmc&ihe resulting correlation
in performance estimates will reduce the efficiency, it igisable to group components
together with others of similar expected occupancy.

Each component can be grouped with arbitrarily many otheypzments. In the extreme
case, one component could be selected and grouped with ety component of the
same class, giving updates a star topology. This can be gi@seonverting the closed
network into an open network with one fewer dimension, aed tsing the standard Gibbs
sampler, as mentioned in Section 1. However, if the selecbadponent has very little
variance, then consecutive estimates can be very hightgleded, as noted in the previous
paragraph. Additionally, the original problem may have somathematical symmetry
which can be exploited to simplify the implementation of 8ampler; singling out one
component to be grouped with every other component may ltheglsymmetry.

4.2 An application of SGS

The setwise Gibbs sampler will be demonstrated by invetstigghe impact of delay on
the utilisation of a window flow control network. To understizthis model, consider the
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b
! ‘
]

Fig. 1. Two connections for three store-and-forward nodedt: the system. Right: the closed network model;
the circles denote FCFS queues (packet buffers) and thengdes denote IS queues with deterministic service
times (transmission delays)

case illustrated in Figure 1 to the left, where two possilllenections are depicted, one
sending packets from node 1 to node 3 via node 2, and the otteeorly from node 1

to 2. Consider, for example, the class representing thecfinstection (going to node 3).
Packets are processed at node 1 at a certain service rat tedl“transmission rate”, after
which they are sent to node 2 along the link, which takes a faradunt of time known

as the “propagation delay. Next, they receive service at node 2 and are routed towards
node 3, where they arrive aftérunits of time. Once serviced at node 3 they are released,
and an acknowledgement is sent back along the same routpasit@direction, following
transmission and propagation delays until they arrive tzidke originating node of the
connection (this path is shown in dashed arrows in the figuted left).

A simplified model of the transmission control protocol (T)der flow control estab-
lishes a window siz&V,., » = 1,2 for each connection, and works as follows. Packets at
node 1 are sent while there are less tfiein packets sent for which no acknowledgment
has yet been received. As soon as therel@reunacknowledged packets the source is
stopped until an acknowledgement is received. While theneotion is active, there are
always packets to be sent, and it is straightforward to sateafiter an initial transient, the
number of packets plus the number of acknowledgementsmiitiei system at any given
time is always exactly¥;. This is why a connection can be modelled as a closed sub-
network. The closed network model associated with the elaisplepicted to the right of
Figure 1. Each station (linkj, in the model corresponds to either a store and forward node
(FCFS) with iid serivce times following distributiofi;, or a propagation delay (IS) where
the server is of type 3 with deterministic service tinieg he two classes of customers in
the network correspond to the two connections of the example

The data rate of any given connection is the inverse of themaservice rate along the
(closed) path, which corresponds to the maximum transamissite. The window size for
a connection is set at four times the number of hops in the pimg a fixed window size,
W,., this models a situation where the window uses the maximufertspace allowed by
the receiver, and cannot increase as the propagation deles g

The standard ARPA2 topology, with 21 nodes and 26 links, waiun our experi-
ments. For this network the transmission rate of all FCF8asts is assumed constant
and it is expressed in units @f/¢. Studying the impact of delay in network utilization
is equivalent to studying the proportion of idle time as action of the transmission rate
(in units of reciprocal propagation time). Application bEtSGS matches similar queues
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Fig. 2. Fraction of time queues are idle in ARPA2 network asrecfion of data rate, expressed as mean propa-
gation time normalised by transmission time. This netwdrk©FS and IS queues requires a technique such as
SGS for its analysis.

in the pairss € &, that is, consecutive updates consider pairs of IS-IS or§~EEFS
gueues in the network. For each path, at least one IS-FCEanpdbne FCFS-IS are also
included in& to ensure SGS updates corresponding to each irreducilitk bfdhe rout-
ing matrix P communicate. Because this network consists of a mixtureGffS-and IS
nodes, these results, shown in Figure 2, could not be gextkbst for example, Buzen's
algorithm [Buzen, 1973].

5. FILTERED GIBBS SAMPLER
Consider a Markov chaifiX, } and an estimator

T
_ 1
Br = 7 ;b(Xk),

for a sample performande The method ofiltered Monte Carlds based on conditioning
at each stage [Ross, 1997, sec. 8.3]:

T

_1

Br = D EB(Xpr1)| X3).
k=1

It is expected that conditioning would reduce estimatoesiance, i.e,Var[B}] <
Var[Br]. Filtered Monte Carlo is closely related to “inverse comtimn” [Lassila and
Virtamo, 2000].
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The Filtered Gibbs Sample(FGS) combines the filtering with the distribution of the
estimation via the local estimates as follows.

Consider a network model with a single class of customerpp8se the Gibbs updates
of the corresponding Markov chainX;} use the set of components;,}, with a deter-
ministic assignment of perioglthat updates every coordinate at least ongeiterations.
The FGS estimator based 6iis of the form:

) N 1 &L )
Pr) =300 = 353 () (30, (15)
=1 k=1

1=1 k=

el

wherey; r(x) = E[b(Xp41) | X&]1{s,—iy andv(i) > 0 is the number of times that coor-
dinated is updated in one period. Sin@&i)/T — v(i)/p asT — oo whereT (i) is the
number of times coordinateis updated in the chaiiX;,k = 1,...,T}, it follows that
under the FGSY (T')) — B = E(Br) [Vazquez-Abad and Andrew, 2000].

Applying this approach to the circuit switched network, w8 is assumed to be the
network blocking probability, it requires evaluation oétbonditional probabilities:

Pi(Ci(Xy)) — Pi(Ci(Xk) — 1)
Pi(Ci(Xk))
= g(Ci(Xx); pi) (16)

where P;(-) are given in (10) and’;(X}) is given in (11). When it is feasible to pre-
computey(+; -), calculation of the probabilities is as simple as readinat@et This is the
case when there is a small number of distinct loags,in the network. Following this
discussion, an FGS estimator of the blocking probabilitis

P(Xkt1 € Bi| Xi)=

T
Y(T) = %Z (A—;f) Yor, (X&), (17)
k=1

wherey; p(z) = g(Ci(z); pi) = P(Xp+1 € Bi| Xy = ).

Note that in addition to estimating blocking probabilitieéth a suitable choice of func-
tion g, other performance statistics may be estimated, such as queaie size.

Unlike most exact techniques whose complexit$)ig”) when the number of channels
on each link is a constant and the numbers of routes and links are fixed, the complexity
per iteration of the FGS i©(1) as the capacity per link increases, assuming the time to
generate a single random number is independefit ¢fowever, its primary strength is that
itis O(N max; |L;|) as the numbers of routes and links increase, wiigiie the number
of links used by routé, andN is the number of routes. The complexity of all known exact
methods is exponential in the number of links.

5.1 Networks used for testing FGS

The performance of FGS will be presented in Sections 5.2 a®dwhere it is tested on
the following circuit switched network topologies:

(a) Mesh-torus: a rectangular grid with each node conneotéalir neighbours, wrap-
ping at the edges. Components of the state vactare the numbers of current calls on
a route. In the experiments, the load on all routes was ed@iatic shortest path routing
ensured a constant number of routes used each link.

ACM Journal Name, Vol. V, No. N, Month 20YY.



16 . Lachlan Andrew et al.

(b) Cellular: Spatial reuse constraints in cellular netearith dynamic channel assign-
ment produce “cliques” of cells with a maximum aggregate bernof calls [Everitt and
Macfadyen, 1983]. These cliques are analogous to linkdeveeils correspond to routes.
The networks considered here employ a hexagonal grid of,cafld cliques consist of
groups of three mutually adjacent cells.

In addition to these, FGS was tested on closed BCMP netwarkls as the packet
switched networks with window flow control, where it was simote cause minimal im-
provement. We recommend the use of SGS but not FGS for sualorest; and so the
specific numerical results have been omitted for brevity.

5.2 Correlation

For a single random variabl¥ar[Y] = Var[E[Y'| Z]] + E[Var[Y'|Z]], and conditioning al-
ways entails a variance reduction. However, it is not alwthagscase for Markov chains
that conditioning always reduces the variance of the estimdue to the correlation struc-
ture [Ross, 1997, sec. 8.3]. Explicitly, for the estimatBrs and B/ at the beginning of
Section 5,

!

T-1

—J

Var[Br| = %Var[b(Xg)] + % Cov[b(X;), (X +r)] (18)
j=1 k=1
Var[By] = %Var[E{b(X2)|X1}]
+% z_: > CovE{D(X 1)1 X} E{D(Xjhrs )1 X}l (19)
j=1 k=1

Although the first term in the righthand side of (19) is snmatlean the corresponding
term in (18), the second term in the righthand size of (19) belarger than that in (18).
Consequently, it may not always be true that[B}] < Var[Br].

The variancé/ar[ B/ can be estimated using batch means (grouping ruis sdmples
to obtain approximately independent estimates (e.g. [@gexilos and Seila, 1998])). The
impact of the correlation can be quantified by the ratio&/ef{ B/.] to Var[b(X;)]/T, the
variance estimated by treating individual samples as iedéent.

Figure 3 shows the results of using batches of gize- 3 x 10° (10000 for each of the
300 routes) in & x 5 mesh-torus, for both the FGS and the standard Gibbs saniidtze
that these only show the impact of correlation, and do notpammthe actual variances
of FGS and the standard Gibbs sampler.) These results stadvihilh covariance term
has minimal impact except when blocking is very high. Thiifies ignoring its effect
in arguing that filtering should reduce the variance of thereged blocking probability.
However, when blocking is high, the variance of the final klog estimator using FGS
is up to an order of magnitude higher than would be predictedrdating samples as
independent. Since this does not occur without filtering,linefit due to filtering would
be overestimated in the case of high blocking if batch measrewot used. This effect
is greatest for networks with many channels per link, as tiae a higher occupancy per
channel for a given blocking probability, due to increagedking efficiency.

Figure 3 suggests that, for high blocking, the true variaritke standard Gibbs sampler
is actually less than would be predicted by treating sangdeéadependent. This indicates
a negative correlation between samples, but the reasohifastunclear.
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Fig. 3. Ratio of variance of a 4-hop route estimated by bateams, K = 3 x 10°, divided byVar[b(X1)]/T.
5 x 5 mesh-torus network, 4 to 4096 channels per link.

5.3

Numerical results show that filtering causes negligibleéase in efficiency for closed
BCMP networks. However the gains can be quite significanMg@(= / k/k networks, such
as the circuit switched networks described in Section 2hls Will now be quantified.

Consider a single link of” channels, used by routes of loag each, and assume that
the blocking probabilityB, is low. As was demonstrated in Section 5.2, for low blocking
the variance of FGS is dominated by the variance of each apddher than the covariance
introduced by the Markov structure. Let

Improvement due to filtering

C
Da=)_ A/j!
j=0

and note that foB << 1 (small A or largeC), D4 ~ e. Denote the Erlang loss function
by

P/ k!
Z?:o Pj/j!
The blocking probability of the link isB = E¢(Np), and the variance of the Gibbs
sampler estimator i — B2.

For low B, the occupancy of th& routes is well approximated by independent Poisson
variables. Each FGS update will see the link filled with thgragate of theV — 1 other

Ex(p) =
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routes, which is Poisson with ra& — 1)p. Thus with probability
(N =1)p)“7/(C —j)!

)

D(n-1)p
the FGS estimate i8;(p). Thus
Var[FGS] + B*
c Cc—j N J /4l 2
-y (N=Dp)" /(€= /]!
0 Dv-1, TP k)
and
Var[FGS] + B2
Var[GS| + B2

_ _Dny i Ct (N-1)7 p /5!

D(Nfl)ﬂj:o (C -l NC (Zi:opk/k!)Q

(5 () ) o~ 2o

k=0
c
— (%) asp — 0. (22)

This analysis extends easily to unequal loads.

Figure 4 shows the increase in the relative efficiency of tB&Eompared to a standard
Gibbs sampler fof x 5 and200 x 200 cellular networks y = 3) and5 x 5 and7 x 7
mesh-torus networks\ = 15,42). The improvements are very similar for both cellular
networks, while the improvements differ for the two meshstonetworks. This is because
cellular networks havé&V = 3 cells per clique, while the values &f differ greatly for the
mesh-tori.

Since CPU time is approximately unchanged by filtering, #tioof relative efficiencies
is given byVar[FGS]/Var|GS], which is bounded between 1 and the expression in (20).
As suggested by (20), the gain in relative efficiency due taddoning increases as the
capacity of the links increases. Itis a minimum in the ranfg@acking probabilities which
are of greatest interest, arouh@—2 to 10~2. However, even in this range the gains are
substantial for networks with many channels per link.

5.4 Confidence intervals

It is important to know when to terminate a simulation. A tedicriterion is achieving a
sufficiently small confidence interval, based on the estahatariance of the probability
estimator. Traditional Monte Carlo techniques yield Bedlimutcomes for probability
estimates. If the probability to be estimated is so small tita“successes” have been
observed, the variance estimate is zero. This invalidaesdsulting confidence interval,
but such vanishing confidence intervals are easily idedtdied discarded, allowing the
simulation to continue.

In contrast, techniques such as importance sampling arfel@eproduce samples from
an unknown and highly skewed distribution. This makes itsfime to underestimate the
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variance of the estimator by orders of magnitude if inswfitisamples are taken, causing
premature termination of the simulation. Figure 5 showsestimate of blocking after
each iteration, and also the value (“traditional upper”jahtis usually used as the upper
limit of a confidence interval, i.e., the estimated mean plise the estimated standard
deviation. After a small number of samples, th2s" upper limit is below the true mean
value for much more than 2.5% of the time (which it would behie Gaussian case), and
is ineffective as a confidence bound.
To see why this occurs, consider the terms in

Bi:Zg(j;pi)P(Ci(X):j), (22)

with ¢(j; p;) defined by (16). Without filteringy; (X) = 1 if C;(X) = X (i) and O
otherwise. If at least one non-zero sample is generatedtfi@evariance estimator would,
with high probability, be of the correct order of magnitudfeall samples are 0, it is clear
that the sample variance (zero) is not a true indication@gttor. However, this is not the
case for highly skewed continuous distributions. Theremaa@y non-zero terms in (22)
which have a high probability, but make very little conttiion to the sum due to small
values ofg(j; p;). Thus if the sample size is too small, the sample mean andnaican
be very much smaller than the ensemble values, without dirtate zeros to indicate their
unreliability. For the FGS to be of practical value, it is assary to be able to detect when
an estimate is statistically unreliable.

For a better indication of the accuracy of the result, coersilde individual terms (“par-
tial expectations”) of (22). Figure 6 plots these terms agfgthe cumulative probability for
a 37-cell cellular network with 64 channels and 12 Erlangsp#, as studied in [Vazquez-
Abad, Andrew, and Everitt, 2002]. (A3(C; < j) is monotonic inj, the horizontal axis is
simply a non-linear scale fgr.)

Sinceg(j; p;) is known, it suffices to estimate(C;(X) = j), or those for which
g(7; pi)P(C;(X) = j) is a significant fraction oB. Because these terms decay rapidly for
J < argmax(g(j; pi)P(j)), as seen in Figure 6, it is possible to determine by inspectio
when all “significant” terms have been estimated with sdfiticonfidence.

To quantify this, assume that the sample contains enoughiptm capture the peak of
the probability distribution, which requires orders of magde less data than capturing
the peak of the partial expectation. (Note the differentescén Figure 6.) Letn be
the smallest value such thB{C; = m) can be reliably estimated from the sample, and
for j > m, letp, ; be the sample estimate 8{C; = j). Forj < m, conservatively
approximate the tail aB(C; = j) ~ p; ; = piymA{’m, whereA; is fitted to the sample
data. In this paper,

h—1
Zj:o Pi,m+j

h
Ai= h—1
Zj:o Dim+h+j

)

wherem is estimated by the smallest value ©f(X) observed more than once in the
simulation, and: is such thain + 2 is the fourth smallest such value.
Ignoring correlations (Section 5.2), the variances of ttémates; ; based orl” sam-
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ples, andVar[Y;(T')] can then be approximated by

Vi(j) = pij(1 —pij)/T,
C
> (90 p0)) Vi) (23)

=0

Vi

The curve “conservative” in Figure 5 plof$ + 2v/V where3 = Y/(T) is a weighted
sum of Y;(T')'s andV is the estimated variance &f usingV;’s. It is clearly overly con-
servative for very small sample sizes, singg, j < m, are very conservative. However,
if the sample is large enough fét to be suitably accurate, then the bound becomes usably
tight.

6. CONCLUDING REMARKS

The Gibbs sampler has been applied to the broad class of BOQMBeing networks,
including both closed queueing networks aby G/k/k networks as important special
cases. For closed BCMP networks, the setwise Gibbs san§E&8) has been proposed,
and the Markov chain generated by SGS for simulating the oréttaccupancies has been
proved to converge to the network stationary distributiéor M /G/k/k networks, the
filtered Gibbs sampler (FGS) is used which not only outpenfothe standard Gibbs sam-
pler, but also has its relative efficiency grow with problemesand improve under heavy
load. However, filtering in FGS provides relatively littleduction in variance for closed
BCMP networks using window flow control, when the load perteds very low.
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