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1. INTRODUCTION

Product form stationary distributions arise in many modelsfor telecommunications sys-
tems. These models include the multi-classM/G/k/k queues which model the traditional
circuit switched telephone networks with fixed routing. They also include cellular networks
with frequency-reuse constraints [Boucherie and Mandjes,1998, Everitt and Macfadyen,
1983, Pallant and Taylor, 1995]; packet switched networks with fixed routing and effective
bandwidth admission control [Berger and Whitt, 1998, Kelly, 1991] or with marking-based
admission control [Kelly, Key, and Zachary, 2000]; and intelligent networks in which con-
nections require a particular set of services for the duration of the call [Jordan, 1995]. Many
other models with product form stationary distributions are listed in [Mitra and Morrison,
1994]. In particular, closed Baskett-Chandy-Muntz-Palacios (BCMP) networks [Baskett
et al., 1975, Chao, Mayazawa, and Pinedo, 1999], which modelpacket switched networks
with sliding window or token-based flow control [Reiser, 1979, Vázquez-Abad and Mason,
1999], have product form stationary distributions. The network models to be considered in
this paper are presented in Section 2.

The importance of networks with product form stationary distributions has led to many
techniques for their analysis [Ross, 1995]. A number of numeric measures may be calcu-
lated to assess the performance of the networks. These measures include the blocking prob-
ability of circuit switched networks, and mean queue lengths and throughputs of packet
switched networks. Calculation of any such measure normally involves a normalising con-
stantG in the stationary distribution as defined in equation (3). The normalising constant
G, with various levels of difficulty, may be calculated by convolutional methods [Buzen,
1973, Coleman, Henderson, and Taylor, 1994], numerical inversion of generating func-
tions [Choudhury, Leung, and Whitt, 1995] or by Monte Carlo integration [Boucherie and
Mandjes, 1998, Ross, Tsang, and Wang, 1994].

As an alternative means which does not need to calculateG, Markov chain Monte Carlo
(MCMC) simulation [Kendall, Wang, and Liang, 2005, Gamerman and Lopes, 2006, Neal,
2003] can be used to estimate the blocking probabilities in product form networks [Lassila
and Virtamo, 1998a, Lassila and Virtamo, 1998b, Vázquez-Abad and Andrew, 2000]. In
this paper we will investigate the performance of MCMC simulation in this estimation.
In an MCMC simulation actual samples can be generated from the stationary distribution;
thus they can be further used, say, for starting simulationsto calculate other performance
measures, as is done in [Conway and O’Brien, 1993]. An overview of MCMC simulation
and one of its most fundamental methods, the Gibbs sampler, is to be given in Section 3.

The Gibbs sampler traverses the state space by modifying onecomponent of the state
vector at each step. As such it is not directly applicable to closed queueing networks, in
which the sum of the state components is fixed, yielding solutions on a lower-dimensional
manifold. The traditional solution is to remove one component from the state vector; but
updates to each single component of the reduced state vectorimplicitly update the omitted
component as well. In Section 4 we will propose a more flexibleapproach, the Setwise
Gibbs Sampler (SGS) in which a subset of multiple componentsare updated simultane-
ously at each step. We have obtained conditions on the choiceof subsets in SGS updates
which ensure the convergence of MCMC simulation to the correct distribution.

In using simulated Gibbs samples to estimate performance measures of a network sta-
tionary distribution, conditioning or filtering is a usefultechnique to reduce the variance
and improve the efficiency of various estimators. Conditioning is a generic term indicating
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that unconditional expectations involved in a parameter ofinterest, when being estimated,
are replaced by expectations conditional on statistics involving sufficient information of
the parameter, rather than by the observed statistics directly. The filtered Gibbs sampler
(FGS) [Vázquez-Abad and Andrew, 2000, Andrew and Vázquez-Abad, 2002] to be pre-
sented in Section 5 is an enhancement to the standard Gibbs sampler that implements the
conditioning technique to the simulated estimates of network performance measures. No
thorough performance analysis of FGS has yet appeared in theliterature of MCMC simula-
tion of network stationary distributions. This will now be done numerically in Sections 5.2
and 5.3, where an expression is also derived for the maximum benefit relative to the stan-
dard Gibbs sampler under the assumption of low network load.Note that neither FGS nor
SGS is an improvement of the other; rather they are parallel enhancements to the standard
Gibbs sampler.

Under a typical termination criterion, a Monte Carlo simulation will be terminated once
a specified level confidence interval for the quantity being simulated is sufficiently short.
But a computed confidence interval can be incorrectly too short because the variance in-
volved is usually underestimated by standard methods, causing the simulation to terminate
prematurely. This problem affects many filtering and importance sampling techniques. In
Section 5.4 we will propose a more conservative variance estimator which allows simula-
tions to be terminated at the appropriate time.

2. NETWORK MODEL

Consider the general BCMP model for a queueing network, introduced in [Baskett et al.,
1975]. There areN service stations that may have single or multiple servers, andR classes
of customers (that may possess different service requirements). A customer of classr that
ends service at stationi is routed to stationj and given classq with probabilityp(i,r),(j,q)

independently of the history of the process. Arrivals to service stationi of classr customers
from outside the network follow independent Poisson processes . The network may be as
complicated as having some classes with zero external arrivals, so their behaviour is that
of a closed network, while other classes sharing the networkresources may have external
arrivals and departures. The general model therefore considers the possibility that the
routing matrix

P = {p(i,r),(j,q)} (1)

is not irreducible, but consists ofm irreducible transition kernels. In this paper, transi-
tions will not occur between classes, that is,P consists ofm = R submatrices, each of
them irreducible, corresponding to the subspaces of the states (i, r) per customer class.
This is the model for closed multiple-chain networks. Each subspaceSr = {(i, r) :
i = 1, . . . , N}, r = 1, . . . , R corresponds to either a closed or an open subsystem per
class. LetS = ∪R

r=1Sr denote the complete set of indices(i, r). Because customers
never change class here, for each subsystem, theeffective arrival rateis the solution,
{ej,q : j = 1, . . . , N ; q = 1, . . . , R.}, of the linear equations:

ej,q = λj,q +
∑

(i,r)∈S

ei,rp(i,r),(j,q) = λj,q +
∑

(i,q)∈Sq

ei,qp(i,q),(j,q), (2)

whereλj,q is the external arrival rate to service stationj of classq customers. If the
subsystemSq is closed, thenλj,q = 0 for j = 1, . . . , N and the above linear system is
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only defined up to a multiplicative constant. In that case onesets
∑

(j,q)∈Sq
ej,q = 1 and

the factors are interpreted as therelative number of visits to state(j, q).
Service stations can be of different types. Denote byGi,r the service distribution of

stationi for classr. Theoccupancy vectorof the whole network will be denoted byn =
(ni,r : i = 1, . . . , N ; r = 1, . . . , R) indicating how many customers of each classr are
in each stationi. The aggregate occupancy of stationi is ni• =

∑R
r=1 ni,r. Denote by

1/µi,r the mean service time of classr at service stationi, and letρi,r = ei,r/µi,r be
theutilization factorof the server/class pair(i, r). For single class networks or situations
where customer class does not have effect, the second subscript r in Gi,r, µi,r, ei,r, λi,r,
ρi,r, ni,r and other relevant quantities will be dropped for simplicity.

Service stations must be of one of the following types:

Type 1: First-come-first-served (FCFS),Gi,r = Gi ∼ exp(µi(ni)) for all customer
classes (station may have one or several servers)

Type 2: Processor sharing,Gi,r arbitrary, single server

Type 3: Infinite number of parallel servers,Gi,r arbitrary

Type 4: Last-come-first-served (LCFS),Gi,r arbitrary, single server.

THEOREM 1 BCMP. [Baskett et al., 1975] Letni = (ni,1, . . . , ni,R) denote the occu-
pancy vector at stationi (implyingn = (n1, . . . ,nN )). Then the stationary distribution of
the network occupancy has the product form:

π(n) ≡ π(n1, . . . ,nN ) =
1

G
d(Ω)

N
∏

i=1

gi(ni), (3)

where:

—if i is of type 1, thengi(ni) = ni•!

(

1

µi

)ni• R
∏

r=1

e
ni,r

i,r

ni,r!
,

—if i is of type 2 or 4, thengi(ni) = ni•!

R
∏

r=1

ρ
ni,r

i,r

ni,r!
,

—if i is of type 3, thengi(ni) =

R
∏

r=1

ρ
ni,r

i,r

ni,r!
.

Here Ω denotes the state space of the occupancy vectorn, d(Ω) is a function of the ex-
ternal arrival rates such thatd(Ω) = 1 when the whole network is closed, andG is the
normalising constant, chosen so as to make

∑

n∈Ω π(n) = 1.

Note thatgi(ni) can be written as

gi(ni) = hi(ni•)

R
∏

r=1

ρ
ni,r

i,r

ni,r!
, (4)

wherehi(ni•) = 1 if stationi is of type 3 (which we will call IS — infinite server station),
andhi(ni•) = ni•! otherwise.

For a single class closed network implyingni,r ≡ ni ≡ ni = ni•, a considerable
simplification follows: letT1 be the subset of all stations that are of type 1, 2 or 4, andT2
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be the set of the (remaining) stations which are of type 3, then:

π(n) =
1

G

∏

i∈T1

ρni

i

∏

i∈T2

(

ρni

i

ni!

)

. (5)

2.1 Circuit switched networks

Circuit switched networks may be described by a BCMP model. In a circuit switched
network, where for simplicity of presentation is assumed tobe open with type 3 servers
and have a single customer class, theN service stations model distinct routes through the
network andni is the number of calls currently using routei. If the network can support
a particular combination of calls, then it can also support any subset of those calls. Thus
for any feasible occupation vectorn = (n1, . . . , nN ) ∈ Ω, we have{n′ : n′

i ≤ ni} ⊆ Ω,
where ‘≤’ is taken componentwise.

The feasible region,Ω, is often of the form

Ω = {n ∈ N
N : An

t ≤ C} (6)

(but [Jordan, 1995, Kind, Niessen, and Mathar, 1998] give exceptions). HereA = [aji] ∈
{0, 1}L×N (or more generallyNL×N ) specifies the number of channels required by route
i on link j (i = 1, · · · , N ; j = 1, · · · , L), andC = (Cj) ∈ N

L is a vector of the numbers
of channels available on each link.

Because the model corresponds to a single class open networkof type 3 servers, the
form of the marginal densitiesgi(ni) in (3) is

gi(ni) =

(

ρni

i

ni!

)

.

Let B be the network blocking probability. A feasible state,n, is a blocking state for route
i if one more call on routei would lead to an infeasible state. The set of blocking statesfor
routei, i = 1, . . . , N , is

Bi =
{

n ∈ Ω : ∃j, aji + (An
t)j > Cj

}

. (7)

Let Bi = P(n ∈ Bi) be the blocking probability of routei. Writing λ =
∑N

i=1 λi for the
total external arrival rate gives

B =

N
∑

i=1

(

λi

λ

)

Bi. (8)

2.2 Window flow control

In contrast to a circuit switched network, a packet switchedcommunication network with
window flow control can be modelled by a closed BCMP queueing networks in the follow-
ing sense [Reiser, 1979]. Each connection on the communication network is regarded as
a class. And packets or acknowledgements in transit in the network are regarded as cus-
tomers. Customers can also be used to represent packets received but not acknowledged,
or packets within the current transmit window which have notyet been transmitted. (With
greedy sources and fast receivers, the latter two cases are not encountered.) The number
of customers of each class is equal to the size of the window, which is assumed constant.
Store-and-forward switches are represented as FCFS nodes corresponding to the service
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stations in the BCMP model, and transmission delays can be modelled by IS nodes with
constant service times. The routing of customers through the queueing network is the same
as that of packets through the communication network, and inthis paper will be assumed
to be deterministic.

For these networks,

Ω =

{

n :

N
∑

i=1

ni,r = Cr for all r

}

,

whereCr is the constant number of customers (packets) on connectionr, which is equal
to the window size for the corresponding connection.

Measures of interest in packet networks include overflow probabilities (the probabilities
that the buffer occupancies exceed a certain threshold), mean queue lengths and through-
puts. In general the performance of the network will be of theform

B =

N
∑

i=1

wi Bi,

for some weight factorswi and local performance functionsBi = E[bi(n)]. The sample
performancebi is a local function of the occupancy of stationi, and the expectation is with
respect toπ. This is clearly the case for the three performance measuresmentioned above,
with throughputs calculated by applying Little’s law to an estimate of the idle time of each
queue.

3. MARKOV CHAIN MONTE CARLO SIMULATION

Evaluating blocking probabilities using (3) and (8) directly is a difficult numerical prob-
lem even for networks with realistic sizes ofN andR. Moreover, in many cases, it is not
sufficient to know the blocking probability, and it is desirable to sample from the distribu-
tion itself (see for example [Conway and O’Brien, 1993]). In[Vázquez-Abad and Andrew,
2000] a wavelength-division-multiplexing (WDM) network was studied. A typical WDM
backbone network may have overm = 20 nodes andC = 32 or more wavelengths. The
simplest approach is to calculate the normalising factorG, where the sums are over the
spaceΩ, and then explicitly sum (3) over all statesn ∈ Bi. The number of routes is
N = m2/2+ o(m2), and for densely connected networks, the number of states isO(CN ).
Thus computingG directly takes of the order ofCm2/2 multiplications. For a modest
network ofm = 10 nodes withC = 8 wavelengths, this requires around845 ≈ 1040

multiplications, taking1021 years on a 1 Tflops computer.
Monte Carlo techniques bridge the gap between exact algorithms [Buzen, 1973, Choud-

hury, Leung, and Whitt, 1995, Coleman, Henderson, and Taylor, 1994] and approxima-
tions [Knessl and Tier, 1998, Mitra and Morrison, 1994, Mitra, Morrison, and Ramakrish-
nan, 1999]. They allow a quantifiable tradeoff between computational time and accuracy,
while being conceptually simple.

This section presents the construction of a “surrogate” Markov chain{Xk : k =
1, 2, . . .} of the occupancy vectorn with state spaceΩ whose steady state probabilities
are given exactly byπ in (3). That is,

∀ n ∈ Ω lim
k→∞

P(Xk = n) = π(n). (9)
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The methods underlying such construction are called Markovchain Monte Carlo (MCMC)
(see [Brémaud, 1999]). ThenB can be estimated fromT samples generated from the
Markov chain aŝY (T ) = (1/T )

∑T
i=1 y(Xi) for any functiony(·) with E[y(X)] = B.

Define the relative mean squared error asVar[Ŷ (T )]/B2. An estimate of a given relative
mean square error can be obtained faster by either decreasing the CPU time required to
evaluatey(X), or by using an estimator,y, of B with reduced variance and reducingT .
This tradeoff is quantified by therelative efficiencydefined by

Er(Ŷ ) = lim
T→∞

B2

CPU[Ŷ (T )]Var[Ŷ (T )]
,

whereCPU[Ŷ (T )] denotes the average CPU time of the simulation that producesthe T
samples.

Note that it is not necessary for theT replications to be independent. However, if there
is significant positive correlation between them, thenVar[Ŷ (T )] may be very much larger
thanVar[Ŷ (1)]/T , which would have resulted from independent samples. Thus,in addi-
tion to having the desired steady state distribution, a goodsurrogate process should have
a smaller (or slightly negative) correlation between successive states than the simple ar-
rival/departure process. This can reduce the variance of the final estimate of the blocking
probability by orders of magnitude.

One of the frequently used MCMC methods is the Gibbs sampler [Brémaud, 1999, Fish-
man, 1996, Ross, 1997]. Section 3.1 in the following describes the standard Gibbs sampler.
Sections 4 and 5 then present two enhancements: thesetwiseGibbs sample, which extends
the range of networks which can be analysed, andfilteredGibbs sampler, which improves
the efficiency of the network performance estimator.

3.1 The standard Gibbs sampler

The Gibbs sampler applies to multi-dimensional state spaces. The key principle is that
each transition in the surrogate Markov chain updates only one component, selected either
deterministically or randomly, and the associated transition probability is proportional to
the readily derived stationary conditional probability for that component given the current
values of all other components. This is clearly ideally suited to product form distributions,
where each such conditional probability has a very simple form. It is the Gibbs sampler’s
ability to make large changes to each component, reducing the correlation between sam-
ples generated, that leads to its greater efficiency than direct simulation of the arrival and
departure of calls.

To present the algorithms for generating stateXk+1 from Xk for the occupancy vector
n we introduce the following notation. First rewriten asX = (X(1), . . . , X(NR)) which
is a vector inNNR. It is straightforward to see thatni,r = X(N(r − 1) + i). Then define:

X(−i) = (X(1), . . . , X(i − 1), X(i + 1), . . . , X(NR)),

which is a vector inNNR−1, missing componenti. A realization ofX is x ∈ N
NR and

x(−i) is similarly defined asX(−i). We also similarly defineXk(−i). Given anyx ∈ Ω
and an index1 ≤ i ≤ NR, the notationπ(·|x(−i)) is used for the stationary conditional
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probability of theith component given all the others:

π(y|x(−i)) = P(X(i) = y|X(−i)= x(−i))

=
π(xi(y))

∑C∗

i
(x)

x(i)=0 π(x)
,

wherexi(y) denotes the vectorx with the scalary replacingx(i), andC∗
i (x) is the state

dependent upper bound forx(i) such that all states in the sum in the denominator lie inΩ.
A Gibbs Updateis a rule for generatingXk+1 from Xk, of the form:

(1) Select a coordinateσk ∈ {1, . . . , NR}, independent ofXk.

(2) SetXk+1(−σk) = Xk(−σk) and takeXk+1(σk) ∼ π(·|Xk+1(−σk)).

For example, ifσk are i.i.d. random variables then{Xk} forms a Markov chain, while if
σk = k(mod NR), then{(Xk, σk)} forms a Markov chain, as does everyNRth sample,
{XNRk}. The key property of Gibbs updates is that ifXk is distributed according toπ
(denotedXk ∼ π) thenXk+1 ∼ π. In other words, the target probability is stationary for
the Gibbs sampler.

Once a stationary Markov chain{Xk : k = 1, . . . , T} has been constructed by the
Gibbs sampler, it can be used to estimate those network performance measures such as the
blocking probability etc.. We illustrate this by recallingthe model of the circuit-switched
network considered in Section 2.1, whereR = 1 andπ(·|Xk+1(−σk)) is a one dimensional
Poisson distribution truncated by (6) wheren corresponds toX . For each1 ≤ i ≤ N , let

Pi(g) =

g
∑

d=0

ρd
i

d!
g = 1, 2, . . . . (10)

Let Zj(X) = Cj −
∑

c∈Lj
ajcX(c) be the number of free channels on linkj in stateX ,

whereLj = {i : aji 6= 0} is the set of all routes being used on linkj. At every stepk, let
i = σk and let

Ci(Xk) = min
j:i∈Lj

(Zj(Xk)/aji + Xk(i)) (11)

be the maximum allowable number of connections using routei given Xk(−i). Then
the required conditional probability satisfiesP(Xk+1(i) ≤ g) = Pi(g)/Pi(Ci(Xk)), g =
0, . . . , Ci(Xk).

Since, ask → ∞, Xk ∼ π, it is possible to estimateBi by (1/T )
∑T

k=1 1{Xk∈Bi},
where1{A} = 1 if A is true, 0 otherwise. However since updates to component/route
i′ only change1{Xk∈Bi} wheni andi′ share a link, evaluating this sum involves signif-
icant unnecessary computation at each stepk for all routes that do not share a link with
the current updated route. Having evaluatedCi(Xk) andXk+1, it is easy to calculate
1{Xk+1∈Bi} = 1{Xk(i)=Ci(Xk)} for the componenti which is updated at iterationk. Thus
Bi can be estimated by

Yi(T ) =
1

T (i)

T
∑

k=1

yi(Xk)1{σk=i} (12)

whereyi(Xk) = 1{Xk+1∈Bi}, andT (i) =
∑

1{σk=i} counts the number of iterations
whereσk = i. Theselocal estimatesconverge toBi at rateO(T−1/2) asT increases.
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4. SETWISE GIBBS SAMPLER

For a distribution on a manifold, it is often impossible to update one coordinate at a time.
For example, in a closed network such as a window flow controlled packet switched net-
work, if only one occupation number,nσ, is to be updated, the requirement that the number
of customers of each class in the network remains constant means that the next state must
equal the previous state. The next state still satisfiesXk+1 ∼ π, sinceXk ∼ π, but the
process is no longer ergodic. We now propose thesetwise Gibbs sampler(SGS), which
restores ergodicity. We consider only the closed networks to focus our presentation. The
SGS algorithm can be seen as an efficient special case of the Generalised Gibbs Sampler
[Liu and Sabatti, 2000].

4.1 SGS algorithm

Recall the notationSr = {(i, r), i = 1, . . . , N} defined in Section 2 which gives the
indices of the occupancy vectorX ∈ Ω (another notation isn ∈ Ω) corresponding to the
customers in classr (r = 1, . . . , R). Let sr = {(s1, r), . . . , (sj , r)}, 2 ≤ j ≤ N , denote a
subset ofSr. DefineX(−sr) (or Y (−sr)) to be a subvector ofX ∈ Ω (Y ∈ Ω) removing
those components indexed bysr. We will consider a Gibbs-style update ofX(sr), those
components ofX indexed bysr, in constructing a Markov chain{Xk, k = 1, 2, . . .} for
X ∈ Ω. But first note that the constant occupancy constraint for classr says that the sum
Cr = n1,r + · · · + nN,r ≡

∑N
i=1 X(N(r − 1) + i) remains constant. Also forX, Y ∈ Ω

the statementX(−sr) = Y (−sr) implies

π(Y )

π(X)
=

πsr
(Y (sr) |X(−sr))

πsr
(X(sr) |X(−sr))

, (13)

whereπsr
is the conditional distribution of the occupancy subvectorindexed bysr given

X(−sr).
The general scheme for aSetwise Gibbs Updateis a pre-specified set,S = {sr : sr ⊆

Sr, r ∈ (1, 2, . . . , R)}, and a rule for generatingXk+1 from Xk for X , of the form:

(1) Select an index sets(k)
r ∈ S, independent ofXk.

(2) SetXk+1(−s
(k)
r )=Xk(−s

(k)
r ) and takeXk+1(s

(k)
r ) ∼ π

s
(k)
r

(·|Xk+1(−s
(k)
r )).

The selection ofs(k)
r may be deterministic or random, but each setsr ∈ S is assumed

to be selected an infinite number of times with probability 1 ask → ∞. Also assume that
eachSr can be covered by a sequence ofsr in S. This ensures that all the components
of Xk(Sr) for eachr communicate. Further, note that SGS becomes a standard Gibbs
sampler whenj in the definition ofsr equals 1.

To further illustrate the SGS we now take on a case where each setsr ∈ S is of the form
sr = {(s1, r), (s2, r)}. Rather than prohibiting an update, the occupancy constraint now
helps by substituting the generation of a two-dimensional random variable with that of a
one-dimensional one. This gives updates of the formns1,r ≡ X(N(r− 1) + s1) = Q and

ns2,r ≡ X(N(r − 1) + s2) = Cr −
∑

i:(i,r) 6∈sr
ni,r − Q

denote
= Cr,sr

− Q whereQ is a
random variable having the distribution determined byπsr

(· |X(−sr)). For a closed class
of a BCMP network, it can be derived from (3) and (4) that

P(Q = q) ∝
hs1(n

′
s1• + q)

q!

hs2(n
′
s2• + Cr,sr

− q)

(Cr,sr
− q)!

(

ρs1,r

ρs2,r

)q

, (14)
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wheren′
s1• =

∑

j 6=r ns1,j andn′
s2• =

∑

j 6=r ns2,j . Note that if nodes (stations)s1 and
s2 are both single-class nodes (n′

s1• ≡ n′
s2• ≡ 0) of a type other than type 3 (IS), then

the distribution ofQ becomes a truncated geometric distribution. If one of the two nodes
is instead of type 3 (IS), then a truncated Poisson distribution results. And if both of the
nodes are of type 3 (IS), then a binomial distribution results. All these distributions can
be efficiently generated using standard random number generating programs with minor
modifications. In principle, SGS can be applied to any general BCMP network model; and
the associated transitional distribution in step 2 in SGS can be derived from (3). However,
the derivation can sometimes be analytically very complicated. In these situations, other
more feasible MCMC algorithms are expected to be developed and will not be pursued
here.

The SGS updates are closely related to the true network dynamics; instead of customers
moving from one queue to the next one at a time, groups of customers move in batches
between queues on their route which need not be consecutive.This extra flexibility reduces
the correlation between successive estimates of the quantity of interest (such as queue
length or link utilisation), which improves the efficiency of the estimation.

THEOREM 2. Consider a setwise Gibbs sampler for simulating a Markov chain
{Xk, k = 1, 2, . . .} for occupancy vector in a closed BCMP network model. Assume
all components of the occupancy vector indexed bySr, i.e. customer classr, communicate
in SGS updates. Also assume the network routing matrixP = {p(i,r),(j,s)} is irreducible
when restricted to any customer classr. Then the Markov chain{Xk, k = 1, 2, . . .} simu-
lated by the SGS converges to the occupancy stationary distribution defined in Theorem 1.

This will be proved with the help of the following lemma.

LEMMA 1. Consider an occupancy vectorn ∈ Ω in a closed BCMP network model.
Let {F, V } be a partition ofSr, the index subset corresponding to customer classr, such
that V can be covered by a route of elements ofS and the cardinalities|F | ≥ 0 and
|V | ≥ 2. Assume all components ofn indexed bySr communicate. Then for anyj such
that(j, r) ∈ V , and target valuetj ∈ {0, . . . , C̄F } with C̄F = Cr −

∑

k:(k,r)∈F nk,r, it is
possible under the randomized setwise Gibbs sampler to attain a state,m from n, where
the occupancy components not indexed byV will be unchanged,m(−V ) = n(−V ), and
where the occupancy components indexed by(j, r) equals the target valuemj,r = tj .

PROOF. Call the occupancy components indexed byV “variable” and those byF
“fixed”. Consider an arbitraryi1 6= j satisfying(i1, r) ∈ V . Note thatni1,r +nj,r ≤ C̄F is
always true. Ifni1,r + nj,r = tj , then the setwise Gibbs sampler has a positive probability
to reach the target state in one step, which chooses and changes the occupancies at(i1, r)
and(j, r) so that stationj has exactlytj customers of classr by moving all components at
(i1, r).

Next consider the case that no suchi1 exists, but thatnj,r < tj ≤ C̄F . we now argue
that SGS has a positive probability to transfertj − nj,r customers from variable compo-
nents into the component indexed by(j, r) in a finite number of steps. First, with positive
probability SGS updates will select in a finite number of stepsk ≥ 2 components indexed
by {(i1, r), . . . , (ik, r)} ⊆ V , such that{(i1, r), . . . , (ik, r)} can be covered by a subset of
elements ofS and

ni1,r + · · · + nik−1,r + nj,r < tj , ni1,r + · · · + nik,r + nj,r ≥ tj .
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Because all occupancy components indexed byV communicate, again with positive prob-
ability the SGS updates will transfer allni1,r customers of classr at stationi1 to i2 without
changing any other occupancy components, will then transfer all ni1,r + ni2,r customers
at i2 to i3, and so on until transfer allni1,r + · · · + nik−1,r customers atik−1 to ik, and
transfer onlytj−nj,r customers atik to stationj. Eventually,tj−nj,r customers of classr
in the variable components can, with positive probability,be transferred to the component
indexed by(j, r) with no change in the fixed components.

Finally, if nj,r > tj , then there exists ani1 such that(i1, r) ∈ V and{(i1, r), (j, r)} ∈
S. It can be seen that the SGS updates have positive probability to transfernj,r − tj
customers of classr at stationj to stationi1, so that exactlytj customers of classr are left
at stationj. This establishes the lemma. ⊳

PROOF OF THEOREM2. LetP (s) = (pm,n(s)) be the transition kernel inΩ when all,
but only, those coordinates indexed bys ∈ S are updated according to the Gibbs sampling
strategy:

pm,n(s) = πs(n(s) |m(−s))1{n(−s)=m(−s)},

It is easily shown [Fishman, 1996, sec. 5.15, 16] that the target distributionπ is stationary
for P (s), that is,πP (s) = π. Indeed, for anyn ∈ Ω, from (13)

∑

m∈Ω

π(m)pm,n(s)

=
∑

m∈Ω

π(m)πs(n(s) |m(−s))1{m(−s)=n(−s)}

=
∑

m∈Ω

π(m)

(

π(n)

π(m)

)

πs(m(s) |m(−s))1{m(−s)=n(−s)}

= π(n)
∑

m∈Ω

πs(m(s) |m(−s))1{m(−s)=n(−s)}.

For anyn ∈ Ω,
∑

m∈Ω πs(m(s) |m(−s))1{m(−s)=n(−s)} = 1 because the conditional
probability satisfies the law of total probability on the setof coordinatess. Soπ(n) =
∑

m∈Ω π(m)pm,n(s), as required.
Becauseπ is stationary underP (s) for all s ∈ S, it suffices now to ensure that

the successive iterations of a Gibbs sampler will produce anergodicchain, that is, one
for which all states are reachable, so that the limit distribution will be the target one:
limk→∞ P(Xk = n) = π(n) for all n ∈ Ω. For this, it is sufficient to show that, from any
state,n, which is recurrent under true process, any state,m, reachable in one step under
true process is reachable under the SGS.

According to the definition of SGS and the condition onP , the (two) components in
which m andn differ must be in the same irreducible block of the routing matrix, P .
Without loss of generality, label the components in the maximal such irreducible block
as(1, r), . . . , (N, r). By hypothesis, all occupancy components in this irreducible block
communicate in SGS updates. We show now that starting fromn there is a path of the
randomized setwise Gibbs sampler that has positive probability and reachesm in finite
time. That is, we will show how to perform a series of positiveprobability Gibbs updates
that will change the occupancy fromni,r to mi,r for all i = 1, . . . , N .

First, from Lemma 1 it is always possible to construct an update that reaches with
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positive probability a state with the target occupancymN,r of classr at the last sta-
tion, by changing one or several of the other occupancies of the same classr. Next,
reach a state where this occupancymN,r remains the same but stationN − 1 reaches
the target valuemN−1,r of classr. By continuing in this fashion it is straightforward
that mr = (m1,r, . . . , mN,r) is reachable fromnr = (n1,r, . . . , nN,r) using the set-
wise Gibbs sampler, by Lemma 1. Thus reachability of the whole state space follows
from the randomisation in the updates: the Gibbs sampler will choose the next classr′

to update at random, and then chooses one setsr′ ∈ S for the update, also at random.
⊳

COROLLARY 1. Lemma 1 and Theorem 2 also hold for SGS with updates in a deter-
ministic order.

PROOF. With non-zero probability, intervening updates have no impact. ⊳

As with the analysis of the circuit switched model (where there is a single customer
class), it is possible to estimateBi consistently using the fact that the chain satisfies (9), so
that

Bi = lim
T→∞

1

T

T
∑

k=1

bi(Xk), i = 1, 2, . . . , N.

Clearly, for the mean queue length wherebi(n) = R−1
∑R

r=1 ni,r, if coordinateN(r −
1) + i is not updated at iterationk then Xk(N(r − 1) + i) = Xk+1(N(r − 1) + i)
and it contributes nothing to the estimate to add this sample: on the contrary, it increases
computational effort. Thus, similarly to (12), we use instead the localised estimator ofBi:

Yi(T ) =
1

T (i)

T
∑

k=1

bi(Xk)1n

i:∃r s.t. (i,r)∈s
(k)
r

o,

whereT (i) =
∑T

k=1 1n

i:∃r s.t. (i,r)∈s
(k)
r

o.

If the variance of the occupancy of either component(i, r) or (j, r) is very small, then the

state will usually not change significantly whens
(k)
r = {(i, r), (j, r)}. In BCMP networks,

this typically occurs when the expected occupancy is low. Since the resulting correlation
in performance estimates will reduce the efficiency, it is advisable to group components
together with others of similar expected occupancy.

Each component can be grouped with arbitrarily many other components. In the extreme
case, one component could be selected and grouped with everyother component of the
same class, giving updates a star topology. This can be viewed as converting the closed
network into an open network with one fewer dimension, and then using the standard Gibbs
sampler, as mentioned in Section 1. However, if the selectedcomponent has very little
variance, then consecutive estimates can be very highly correlated, as noted in the previous
paragraph. Additionally, the original problem may have some mathematical symmetry
which can be exploited to simplify the implementation of thesampler; singling out one
component to be grouped with every other component may breakthat symmetry.

4.2 An application of SGS

The setwise Gibbs sampler will be demonstrated by investigating the impact of delay on
the utilisation of a window flow control network. To understand this model, consider the
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Fig. 1. Two connections for three store-and-forward nodes.Left: the system. Right: the closed network model;
the circles denote FCFS queues (packet buffers) and the rectangles denote IS queues with deterministic service
times (transmission delays)

case illustrated in Figure 1 to the left, where two possible connections are depicted, one
sending packets from node 1 to node 3 via node 2, and the other one only from node 1
to 2. Consider, for example, the class representing the firstconnection (going to node 3).
Packets are processed at node 1 at a certain service rate called the “transmission rate”, after
which they are sent to node 2 along the link, which takes a fixedamount of time known
as the “propagation delay”δ. Next, they receive service at node 2 and are routed towards
node 3, where they arrive afterδ units of time. Once serviced at node 3 they are released,
and an acknowledgement is sent back along the same route in opposite direction, following
transmission and propagation delays until they arrive backat the originating node of the
connection (this path is shown in dashed arrows in the figure to the left).

A simplified model of the transmission control protocol (TCP) for flow control estab-
lishes a window sizeWr, r = 1, 2 for each connection, and works as follows. Packets at
node 1 are sent while there are less thanW1 packets sent for which no acknowledgment
has yet been received. As soon as there areW1 unacknowledged packets the source is
stopped until an acknowledgement is received. While the connection is active, there are
always packets to be sent, and it is straightforward to see that after an initial transient, the
number of packets plus the number of acknowledgements within the system at any given
time is always exactlyW1. This is why a connection can be modelled as a closed sub-
network. The closed network model associated with the example is depicted to the right of
Figure 1. Each station (link),i, in the model corresponds to either a store and forward node
(FCFS) with iid serivce times following distributionGi, or a propagation delay (IS) where
the server is of type 3 with deterministic service timesδ. The two classes of customers in
the network correspond to the two connections of the example.

The data rate of any given connection is the inverse of the maximal service rate along the
(closed) path, which corresponds to the maximum transmission rate. The window size for
a connection is set at four times the number of hops in the path. Using a fixed window size,
Wr, this models a situation where the window uses the maximum buffer space allowed by
the receiver, and cannot increase as the propagation delay grows.

The standard ARPA2 topology, with 21 nodes and 26 links, was used in our experi-
ments. For this network the transmission rate of all FCFS stations is assumed constant
and it is expressed in units of1/δ. Studying the impact of delay in network utilization
is equivalent to studying the proportion of idle time as a function of the transmission rate
(in units of reciprocal propagation time). Application of the SGS matches similar queues

ACM Journal Name, Vol. V, No. N, Month 20YY.



14 · Lachlan Andrew et al.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  10  100  1000  10000

Id
le

 ti
m

e

propagation time / transmission time

queue A
queue B
queue C
queue D
queue E

Fig. 2. Fraction of time queues are idle in ARPA2 network as a function of data rate, expressed as mean propa-
gation time normalised by transmission time. This network of FCFS and IS queues requires a technique such as
SGS for its analysis.

in the pairss ∈ S, that is, consecutive updates consider pairs of IS-IS or FCFS-FCFS
queues in the network. For each path, at least one IS-FCFS pair and one FCFS-IS are also
included inS to ensure SGS updates corresponding to each irreducible block of the rout-
ing matrixP communicate. Because this network consists of a mixture of FCFS and IS
nodes, these results, shown in Figure 2, could not be generated by, for example, Buzen’s
algorithm [Buzen, 1973].

5. FILTERED GIBBS SAMPLER

Consider a Markov chain{Xk} and an estimator

B̄T =
1

T

T
∑

k=1

b(Xk),

for a sample performanceb. The method offiltered Monte Carlois based on conditioning
at each stage [Ross, 1997, sec. 8.3]:

B̄′
T =

1

T

T
∑

k=1

E[b(Xk+1)|Xk].

It is expected that conditioning would reduce estimator’s variance, i.e,Var[B̄′
T ] ≤

Var[B̄T ]. Filtered Monte Carlo is closely related to “inverse convolution” [Lassila and
Virtamo, 2000].
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The Filtered Gibbs Sampler(FGS) combines the filtering with the distribution of the
estimation via the local estimates as follows.

Consider a network model with a single class of customers. Suppose the Gibbs updates
of the corresponding Markov chain{Xk} use the set of components{σk}, with a deter-
ministic assignment of periodp that updates every coordinate at least once inp iterations.
The FGS estimator based onb is of the form:

Ŷ (T ) =

N
∑

i=1

Ŷi(T ) =
1

T

N
∑

i=1

T
∑

k=1

(

ν(i)

p

)

yσk,F (Xk), (15)

whereyi,F (x) = E[b(Xk+1) |Xk]1{σk=i} andν(i) > 0 is the number of times that coor-
dinatei is updated in one period. SinceT (i)/T → ν(i)/p asT → ∞ whereT (i) is the
number of times coordinatei is updated in the chain{Xk, k = 1, . . . , T}, it follows that
under the FGS,̂Y (T ) → B = E(B̄T ) [Vázquez-Abad and Andrew, 2000].

Applying this approach to the circuit switched network, where B is assumed to be the
network blocking probability, it requires evaluation of the conditional probabilities:

P(Xk+1 ∈ Bi|Xk)=
Pi(Ci(Xk)) − Pi(Ci(Xk) − 1)

Pi(Ci(Xk))

≡ g(Ci(Xk); ρi) (16)

wherePi(·) are given in (10) andCi(Xk) is given in (11). When it is feasible to pre-
computeg(·; ·), calculation of the probabilities is as simple as reading a table. This is the
case when there is a small number of distinct loads,ρj , in the network. Following this
discussion, an FGS estimator of the blocking probabilityB is

Ŷ (T ) =
N

T

T
∑

k=1

(

λσk

λ

)

yσk,F (Xk), (17)

whereyi,F (x) = g(Ci(x); ρi) = P(Xk+1 ∈ Bi|Xk = x).
Note that in addition to estimating blocking probabilities, with a suitable choice of func-

tion g, other performance statistics may be estimated, such as mean queue size.
Unlike most exact techniques whose complexity isO(C) when the number of channels

on each link is a constantC and the numbers of routes and links are fixed, the complexity
per iteration of the FGS isO(1) as the capacity per link increases, assuming the time to
generate a single random number is independent ofC. However, its primary strength is that
it is O(N maxi |Li|) as the numbers of routes and links increase, whereLi is the number
of links used by routei, andN is the number of routes. The complexity of all known exact
methods is exponential in the number of links.

5.1 Networks used for testing FGS

The performance of FGS will be presented in Sections 5.2 and 5.3, where it is tested on
the following circuit switched network topologies:

(a) Mesh-torus: a rectangular grid with each node connectedto four neighbours, wrap-
ping at the edges. Components of the state vectorn are the numbers of current calls on
a route. In the experiments, the load on all routes was equal.Static shortest path routing
ensured a constant number of routes used each link.
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(b) Cellular: Spatial reuse constraints in cellular networks with dynamic channel assign-
ment produce “cliques” of cells with a maximum aggregate number of calls [Everitt and
Macfadyen, 1983]. These cliques are analogous to links, while cells correspond to routes.
The networks considered here employ a hexagonal grid of cells, and cliques consist of
groups of three mutually adjacent cells.

In addition to these, FGS was tested on closed BCMP networks such as the packet
switched networks with window flow control, where it was shown to cause minimal im-
provement. We recommend the use of SGS but not FGS for such networks, and so the
specific numerical results have been omitted for brevity.

5.2 Correlation

For a single random variable,Var[Y ] = Var[E[Y |Z]] + E[Var[Y |Z]], and conditioning al-
ways entails a variance reduction. However, it is not alwaysthe case for Markov chains
that conditioning always reduces the variance of the estimator, due to the correlation struc-
ture [Ross, 1997, sec. 8.3]. Explicitly, for the estimatorsB̄T andB̄′

T at the beginning of
Section 5,

Var[B̄T ] =
1

T
Var[b(X2)] +

2

T 2

T−1
∑

j=1

T−j
∑

k=1

Cov[b(Xj), b(Xj+k)] (18)

Var[B̄′
T ] =

1

T
Var[E{b(X2)|X1}]

+
2

T 2

T−1
∑

j=1

T−j
∑

k=1

Cov[E{b(Xj+1)|Xj}, E{b(Xj+k+1)|Xj+k}]. (19)

Although the first term in the righthand side of (19) is smaller than the corresponding
term in (18), the second term in the righthand size of (19) maybe larger than that in (18).
Consequently, it may not always be true thatVar[B̄′

T ] ≤ Var[B̄T ].
The varianceVar[B̄′

T ] can be estimated using batch means (grouping runs ofK samples
to obtain approximately independent estimates (e.g. [Alexopoulos and Seila, 1998])). The
impact of the correlation can be quantified by the ratio ofVar[B̄′

T ] to Var[b(X1)]/T , the
variance estimated by treating individual samples as independent.

Figure 3 shows the results of using batches of sizeK = 3 × 106 (10000 for each of the
300 routes) in a5× 5 mesh-torus, for both the FGS and the standard Gibbs sampler.(Note
that these only show the impact of correlation, and do not compare the actual variances
of FGS and the standard Gibbs sampler.) These results show that the covariance term
has minimal impact except when blocking is very high. This justifies ignoring its effect
in arguing that filtering should reduce the variance of the estimated blocking probability.
However, when blocking is high, the variance of the final blocking estimator using FGS
is up to an order of magnitude higher than would be predicted by treating samples as
independent. Since this does not occur without filtering, the benefit due to filtering would
be overestimated in the case of high blocking if batch means were not used. This effect
is greatest for networks with many channels per link, as theyhave a higher occupancy per
channel for a given blocking probability, due to increased trunking efficiency.

Figure 3 suggests that, for high blocking, the true varianceof the standard Gibbs sampler
is actually less than would be predicted by treating samplesas independent. This indicates
a negative correlation between samples, but the reason for this is unclear.
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Fig. 3. Ratio of variance of a 4-hop route estimated by batch means,K = 3 × 106, divided byVar[b(X1)]/T .
5 × 5 mesh-torus network, 4 to 4096 channels per link.

5.3 Improvement due to filtering

Numerical results show that filtering causes negligible increase in efficiency for closed
BCMP networks. However the gains can be quite significant forM/G/k/k networks, such
as the circuit switched networks described in Section 2.1. This will now be quantified.

Consider a single link ofC channels, used byN routes of loadρ each, and assume that
the blocking probability,B, is low. As was demonstrated in Section 5.2, for low blocking
the variance of FGS is dominated by the variance of each update, rather than the covariance
introduced by the Markov structure. Let

DA =
C
∑

j=0

Aj/j!

and note that forB << 1 (smallA or largeC), DA ≈ eA. Denote the Erlang loss function
by

Ek(ρ) =
ρk/k!

∑k
j=0 ρj/j!

.

The blocking probability of the link isB = EC(Nρ), and the variance of the Gibbs
sampler estimator isB − B2.

For lowB, the occupancy of theN routes is well approximated by independent Poisson
variables. Each FGS update will see the link filled with the aggregate of theN − 1 other
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routes, which is Poisson with rate(N − 1)ρ. Thus with probability

((N − 1)ρ)C−j/(C − j)!

D(N−1)ρ
,

the FGS estimate isEj(ρ). Thus

Var[FGS] + B2

=

C
∑

j=0

((N − 1)ρ)C−j/(C − j)!

D(N−1)ρ

(

ρj/j!
∑j

k=0 ρk/k!

)2

,

and

Var[FGS] + B2

Var[GS] + B2

=
DNρ

D(N−1)ρ

C
∑

j=0

C! (N − 1)C−j

(C − j)!j! NC

ρj/j!

(
∑j

k=0 ρk/k!)2

= eρ

(

N − 1

N

)C C
∑

j=0

(

C

j

)(

1

N − 1

)j
Ej(ρ)
j
∑

k=0

ρk/k!

(20)

→

(

N − 1

N

)C

asρ → 0. (21)

This analysis extends easily to unequal loads.
Figure 4 shows the increase in the relative efficiency of the FGS compared to a standard

Gibbs sampler for5 × 5 and200 × 200 cellular networks (N = 3) and5 × 5 and7 × 7
mesh-torus networks (N = 15, 42). The improvements are very similar for both cellular
networks, while the improvements differ for the two mesh-torus networks. This is because
cellular networks haveN = 3 cells per clique, while the values ofN differ greatly for the
mesh-tori.

Since CPU time is approximately unchanged by filtering, the ratio of relative efficiencies
is given byVar[FGS]/Var[GS], which is bounded between 1 and the expression in (20).
As suggested by (20), the gain in relative efficiency due to conditioning increases as the
capacity of the links increases. It is a minimum in the range of blocking probabilities which
are of greatest interest, around10−2 to 10−3. However, even in this range the gains are
substantial for networks with many channels per link.

5.4 Confidence intervals

It is important to know when to terminate a simulation. A typical criterion is achieving a
sufficiently small confidence interval, based on the estimated variance of the probability
estimator. Traditional Monte Carlo techniques yield Bernoulli outcomes for probability
estimates. If the probability to be estimated is so small that no “successes” have been
observed, the variance estimate is zero. This invalidates the resulting confidence interval,
but such vanishing confidence intervals are easily identified and discarded, allowing the
simulation to continue.

In contrast, techniques such as importance sampling and theFGS produce samples from
an unknown and highly skewed distribution. This makes it possible to underestimate the
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variance of the estimator by orders of magnitude if insufficient samples are taken, causing
premature termination of the simulation. Figure 5 shows theestimate of blocking after
each iteration, and also the value (“traditional upper”) which is usually used as the upper
limit of a confidence interval, i.e., the estimated mean plustwice the estimated standard
deviation. After a small number of samples, this “2σ” upper limit is below the true mean
value for much more than 2.5% of the time (which it would be in the Gaussian case), and
is ineffective as a confidence bound.

To see why this occurs, consider the terms in

Bi =

C
∑

j=0

g(j; ρi)P(Ci(X) = j), (22)

with g(j; ρi) defined by (16). Without filtering,yj(X) = 1 if Ci(X) = X(i) and 0
otherwise. If at least one non-zero sample is generated thenthe variance estimator would,
with high probability, be of the correct order of magnitude.If all samples are 0, it is clear
that the sample variance (zero) is not a true indication of the error. However, this is not the
case for highly skewed continuous distributions. There aremany non-zero terms in (22)
which have a high probability, but make very little contribution to the sum due to small
values ofg(j; ρi). Thus if the sample size is too small, the sample mean and variance can
be very much smaller than the ensemble values, without any tell-tale zeros to indicate their
unreliability. For the FGS to be of practical value, it is necessary to be able to detect when
an estimate is statistically unreliable.

For a better indication of the accuracy of the result, consider the individual terms (“par-
tial expectations”) of (22). Figure 6 plots these terms against the cumulative probability for
a 37-cell cellular network with 64 channels and 12 Erlangs per cell, as studied in [Vázquez-
Abad, Andrew, and Everitt, 2002]. (AsP(Ci < j) is monotonic inj, the horizontal axis is
simply a non-linear scale forj.)

Sinceg(j; ρi) is known, it suffices to estimateP(Ci(X) = j), or those for which
g(j; ρi)P(Ci(X) = j) is a significant fraction ofB. Because these terms decay rapidly for
j < argmaxj(g(j; ρi)P(j)), as seen in Figure 6, it is possible to determine by inspection
when all “significant” terms have been estimated with sufficient confidence.

To quantify this, assume that the sample contains enough points to capture the peak of
the probability distribution, which requires orders of magnitude less data than capturing
the peak of the partial expectation. (Note the different scales in Figure 6.) Letm be
the smallest value such thatP(Ci = m) can be reliably estimated from the sample, and
for j ≥ m, let pi,j be the sample estimate ofP(Ci = j). For j < m, conservatively
approximate the tail asP(Ci = j) ≈ pi,j ≡ pi,m∆j−m

i , where∆i is fitted to the sample
data. In this paper,

∆i = h

√

√

√

√

∑h−1
j=0 pi,m+j

∑h−1
j=0 pi,m+h+j

,

wherem is estimated by the smallest value ofCi(X) observed more than once in the
simulation, andh is such thatm + 2h is the fourth smallest such value.

Ignoring correlations (Section 5.2), the variances of the estimatespi,j based onT sam-
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ples, andVar[Ŷi(T )] can then be approximated by

V̂i(j) = pi,j(1 − pi,j)/T,

V̂i =

C
∑

j=0

(g(j; ρi))
2V̂i(j). (23)

The curve “conservative” in Figure 5 plotŝB + 2
√

V̂ whereB̂ = Ŷ (T ) is a weighted
sum ofŶi(T )’s andV̂ is the estimated variance of̂B usingV̂i’s. It is clearly overly con-
servative for very small sample sizes, sincepi,j , j < m, are very conservative. However,
if the sample is large enough forB to be suitably accurate, then the bound becomes usably
tight.

6. CONCLUDING REMARKS

The Gibbs sampler has been applied to the broad class of BCMP queueing networks,
including both closed queueing networks andM/G/k/k networks as important special
cases. For closed BCMP networks, the setwise Gibbs sampler (SGS) has been proposed,
and the Markov chain generated by SGS for simulating the network occupancies has been
proved to converge to the network stationary distribution.For M/G/k/k networks, the
filtered Gibbs sampler (FGS) is used which not only outperforms the standard Gibbs sam-
pler, but also has its relative efficiency grow with problem size and improve under heavy
load. However, filtering in FGS provides relatively little reduction in variance for closed
BCMP networks using window flow control, when the load per route is very low.
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Fig. 4. Ratio of efficiency of filtered to standard Gibbs sampler with 4 to 4096 channels per link for (a)5× 5 and
200 × 200 cellular (b)5 × 5 and7 × 7 mesh-torus networks.
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Fig. 5. Estimated upper bounds onB: B̂ + 2σ and the conservative estimator of (23) for a3 × 3 mesh with 64
channels per link. (a) 13 Erlangs per route, simple variance(b) 10 Erlangs per route, batches of 100
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