Balancing Peer and Server Energy Consumption in
Large Peer-to-Peer File Distribution Systems

Lachlan L. H. Andrew, Andrew Sucevic, Thuy T. T. Nguyen
Centre for Advanced Internet Architectures, Faculty of ICT
Swinburne University of Technology, Melbourne, Australia

Email: {landrew, tnguyen}@swin.edu.au

Abstract—Network induced energy consumption is a significant
fraction of all ICT energy consumption. This paper investigates
the most energy efficient way to distribute a file to a large number
of recipients. It is shown that using peer-to-peer and naively
minimizing the transfer time results in energy consumption that
is an order of magnitude larger than simply distributing directly
from a server, but that with careful management peer-to-peer
systems can reduce the server’s cost without increasing overall
energy consumption.

I. INTRODUCTION

As in most industries, there is a push in the communications
industry to improve energy efficiency. However, the energy
consumption of communications infrastructure itself is only
part of the story; there is a considerable amount of network in-
duced energy consumption, in which devices such as personal
computers (PCs) or set-top boxes are left on simply to maintain
network connectivity [1]. Since PCs and their monitors have
been estimated to consume a quarter of all IT energy [2], this
provides significant potential for savings.

One form of network induced energy consumption consists
of leaving PCs on to download files. Peer-to-peer (P2P) tech-
nology can reduce the time required for file distribution, but
little attention [1], [3] has been paid to its energy consumption.

This paper considers large scale file distribution, such as
distributing an update to a popular software package, or
perhaps the distribution by a television station of content via
P2P transmission among set-top boxes [4]. This differs from
the more common file sharing in terms of the scale (possibly
millions of peers), the asymmetry (software houses having
multi-gigabit connections to the Internet) and the increased
potential for centralized management. Peer-to-peer distribution
is a promising means for content distributors to reduce their
infrastructure and networking expenses.

Our objective in this paper is to investigate the implication
of this for overall energy consumption. To this end, we
compare the energy consumption of four schemes: the four
combinations of with or without P2P transmission, and of
naive or energy-optimized strategies.

Previous work [5], [6] shows that “optimal” schedules are
excessively complex, even for simple optimization tasks such
as the sum of peer download times under a model ignoring
peers’ download constraints. With download constraints and
the ability to turn peers OFF, they become even more complex.
For the comparison of this paper, it is sufficient to find a

simple, scalable strategy that asymptotically minimizes peer
and server energy, rather than the actual optimal schedule.
Deriving such a scalable strategy in Section III, and proving
its asymptotic optimality in Section IV, is the main technical
task of this paper.

Following [7]-[10], only upload and download constraints
are considered, while network congestion is ignored. It is
assumed that a set of peers simultaneously start downloading
a given file, and that as soon as a peer has downloaded some
data, that data can be forwarded to other peers.

In this model, a simple symmetric strategy minimizes the
time for the last peer to receive the file [7], [8]. This strategy
causes all peers to finish simultaneously, and is the “naive
P2P” scheme used in our comparisons. However, some peers
can finish much earlier with minimal or no increase in the
finish time of the last peer. This led to a search for smaller
average finish times [5], [11]-[13]. It was conjectured in [5]
that sequentially minimizing finish times also minimizes the
sum of finish times, but a counterexample was presented in [6].
For a given finishing order, [10] derives the polytope of all
possible combinations of finish times.

However, these strategies assume that peers will remain
on to continue uploading until the last peer has finished
downloading. This need not minimize the energy consumed
by the peers. This paper instead considers the case that the
central algorithm can turn peers ON or (if they are not in use
for some other purpose) OFF at any point in the schedule, to
minimize the total energy consumption.

It is shown that it is optimal for most peers to be ON only
while they are downloading, and to download at the fastest rate
possible, while a small subset of energy-efficient peers may
be required to be ON for the entire duration of the transfer.

The rest of this paper is organized as follows. After describ-
ing the model in Section II, a class of strategies is described
in Section III, with the aim of getting good performance in
large systems. Section IV derives an upper bound on the
cost of any strategy in this class, and shows that this bound
approaches the lower bound on the cost of any strategy,
which demonstrates the asymptotic optimality of the class.
These results are numerically validated in Section V, where
it is shown that turning peers OFF can result in significant
energy savings over systems aiming to minimize the total
download time. Implementation issues are briefly discussed
in Section III-A.

II. MODEL

The model used here is a fluid model, similar to those
of [7]-[10] which were used for determining the minimum
total time (makespan) required for peers to download a file,
and the minimum sum of download times. The novelty in
our model is the different objective of minimizing the energy
consumption instead of the download time, by allowing peers
to turn ON and OFF during the download.

In particular, the system has a single server which contains
a file of size F' which is distributed to N peers. All nodes
(server and peers) are assumed to be able to communicate to
all other nodes with no congestion in the core network, so that
the only constraint being the upload and download capacities
of each node. The network is also assumed to be static, in
that no peers can arrive or leave. The file is broken up into
infinitely small pieces, which allows a peer to immediately
forward any data it receives without delay to another peer.

The following notation is used in this model:

o F: size of the file

o N: the set of peers (not including the server)

e C5: upload capacity of the server

e U; € [Unin, Umax]: upload capacity of peer i

e D; € [Dpin, Dimax|: download capacity of peer ¢

e P; € [Puin, Pmax): The power consumption of peer i.

e P;: The power consumption of the server.

When peer 7 is ON, it can download at rate D;, it can
upload any data it has received to any other peers, at rates not
exceeding U; in total, and it consumes power P;. When it is
OFF, it cannot download or upload, and consumes no power.
A peer is “finished” when it has downloaded all data in the
file.

For most of the paper, it is assumed that the server must
be ON, consuming power P;, until all peers have finished.
The numerical results section considers the case of an energy-
proportional virtual server; the transmission rate can be varied
up to the maximum of Cy, and Ps is proportional to the
transmission rate, not to C.

The objective is to choose the rates and the sequence of ON
peers to minimize the total energy consumption, which is the
integral over all time of the power consumption.

III. STRATEGY

In the above model, the strategy to minimize the total energy
is significantly more complicated than the strategy proposed
in [5] to minimize the sum of the download times. Instead
of deriving the optimal strategy, we present a much simpler
strategy, which still performs well for large systems.

It is based on two observations: that there is a minimum
amount of time for which the peers must be ON, and that there
is a minimum additional energy per bit of data not uploaded
during that time.

Since the server must remain ON until all peers have
finished, the minimum energy per bit delivered is achieved by
augmenting the server with a (possibly empty) set E of energy-
efficient peers. These peers will remain ON for essentially the
entire time, effectively providing the server with additional
capacity.

Let the set E of extra peers satisfy

Co+) .crU
E € argmin @
E Pi+3enb:
This can be found by sorting peers in descending order of
U,;/P; and greedily adding peers to E until the next U;/P; is
less than the fraction in the right hand side of (1). To simplify
notation, let
CL=Ci+) U

i€E

6]

P=P,+)» P.
i€E

The set £ will be empty if and only if Cs has a higher
power efficiency (upload capacity per watt) than any of the
peers. This is likely if the server has high energy efficiency and
the peers are all personal computers connected by residential
broadband connections. However, E is likely to be non-empty
if some of the peers are power-efficient notebooks connected
to the local area network of a well-connected corporation.

A broad class of schedules is described in Figure 1. It leaves
many degrees of freedom, but contains enough structure that
all feasible schedules in this class are asymptotically optimal,
provided that no peer receives the same data twice.

The left hand side of inequality (2) is the total upload
capacity given that only peers in £'U K are ON, and the right
hand side is the download capacity required to keep all peers
in K downloading at full capacity. Initially, 7(0) > 1/k, with
equality if and only if), U;/|K| < Dmin; subsequently,
n(t) will often be 0.

Within this class, the recommended choices are:

1) In step 2, low-capacity peers start early enough that the

only peers left by step 8 have high capacity.

2) In step 2, the first phase consists of the lowest-capacity
peers, so that each peer in E can send data to the largest
possible number of peers; this minimizes the amount it
needs to download from the server.

3) In (2), n is the minimum amount of data that each peer
7 € E. must download in order to upload at full rate to
the peers ¢ € K.

4) If (2) is not met with equality, the excess upload capacity
is used to upload to peers in E that have not yet
downloaded the entire file, starting with the one with
the smallest download capacity.

The specific instance used for our numerical results is de-
scribed in Section V.

A. Implementation considerations

This strategy is intended, in the spirit of [7]-[10], to be an
idealized benchmark against which more practical decentral-
ized strategies can be compared. However, some comments on
implementation issues are called for.

As with all centralized schemes, this assumes that the
capacity of the access link is known. This could be estimated
by an agent on the peer using active probing techniques such
as [14] for determining the capacity of a particular link on a
path. Note also that U; and D; need not be the entire link
capacities; the system may for example limit data transfers to
at most a certain percentage of the physical link capacity, at
the expense of suboptimality.

Schedule:

1) Determine E by (1).

2) Select an ordering for N \ E.
Transmission rates:

3) Download enough to peers j € E to be able to
upload at rate U; in step 6.

4) Maintain a list K of peers downloading at full
capacity D;.

5) Whenever a peer ¢ finishes downloading, or at the
start, remove ¢ from K and greedily add peers to
K, subject to, for some 7(t) € [0,1],

Cot Y Uity Uj=)y Ditn(t)) Uy 2
i€K JjEE i€eK JjEE
6) Upload to each peer : € K at D;.

7) If not all peers in N\ F have finished, go to step 5.
8) Finish all 7 € FE, with the maximum possible
number downloading at rate D; at each time.

Power control:
9) At any given time, only the server and peers i €

K U E are ON.

10) In step 3, only enough peers in £ are ON such that
the upload capacity of all but one is fully used.

11) Once all peers in N\ E have finished, the only ON
peers in E are those that are either downloading,
or without whose upload capacity the remainder
could not download at their full rate.

Figure 1. Class of schedules

The strategy assumes that P; is known for each peer. This
will typically not be known. The strategy can be used instead
with surrogate data, such as assuming that each peer has
some “average” power consumption, or some given correlation
between access link rate and power consumption.

IV. PERFORMANCE BOUNDS

The above class of schedules is quite simple. It makes no
effort to perform “packing” of the sort that makes the knapsack
problem hard [15]. This section derives an upper bound on the
cost of the schedule, and a corresponding lower bound on the
cost of any schedule. The ratio of these bounds approaches
1 in a natural scaling regime in which N — oo, Cs — oo,
Cs = o(N) and P; = O(Cs). This demonstrates that the
schedule is asymptotically optimal, despite its simplicity.

The bounds are based on the same observations as the
strategy itself: that there is a minimum amount of time for
which the peers must be ON, and that there is a minimum
additional cost per bit of data not uploaded during that time.

A. Lower bound

To find a lower bound on the energy cost of distributing
the file to all of the peers, notice that each peer must be
ON while it is downloading, giving a cost ;. F'P;/D;.
While it is ON, there is no additional cost for uploading at
rate U;, but power must be used to upload the remaining
NF =3,y FU;/D;. Given that the server must be ON until

all peers are finished, the cheapest way to supply data is from
a combination of the server and all peers in E. This gives a
lower bound on the optimal total cost OPT' of

OPT P, U, P!
- > — 4+ (N — —)= 3
F 225t p)g ®)
1EN iEN
Note that network coding [6] cannot overcome the need to
have an integer number of peers ON.

B. Upper bound

We now find an upper bound on the energy cost of the class
of schedules of Section III. The total energy consumption of
any schedule in the proposed class is bounded above by

cost P;

— < — 4

F - Z D; S
€N

S| N — _
+ C; (Z D’L + kmianin >

1EN
& Cs + Umax InaxjeE(Dj - UJ) ZjEE Uj 5
Cs Dmin kmianin Cs
where
Finin = Co/ max(D; = Ui) = 1,)

The justification is as follows.

The total energy consumption is bounded above by the
sum of the energy consumed by the peers while they are
downloading, plus the energy required by the server and the
peers in E to supply the data that was not uploaded by peers
in N\ E. To bound the latter term, we bound the aggregate
upload capacity that is unused, and add this to the lower bound
F(N — > ,cnUi/D;) on the amount of data that cannot be
supplied by peers while they are downloading. This unused
capacity contains three components: a truncation component
that occurs at the end when there are no more peers to add to K
in (2), a packing component that occurs because there are more
peers, but the next peer in sequence requires more capacity
than is available, and possibly an initialization component that
occurs in step 3 when the peers in E are receiving enough data
to start assisting the server.

First we find an upper bound on the packing compo-
nent. The maximum unused upload rate during this time is
max;en(D; — U;); if more capacity were available then (2)
would allow the next peer to be added to K. It remains to
bound the amount of time for which this rate is unused.

Divide the download time into “windows”; a new window
starts at the time of completion of all peers that were in K
at the time the previous window started. The duration of a
window is the maximum of the times to finish each of the
peers in K, which is bounded above by F/D,i,. Again, the
maximality of the set K subject to (2), and the fact that n < 1,
implies that ki, given by (5) is a lower bound on the number
of peers in K during this phase. Since the sets K at the start
of distinct windows are disjoint, the number of windows is at
most N/kmin. Thus, the packing component is at most

N F
kmin Dmin %%((DZ - Ul) (6)

The truncation component, which starts from the time the
last node begins downloading, is bounded above by

Dmin (CS + UmaX)' (7)

This is the time taken to download by the peer with the
smallest download capacity, multiplied by the unused rate of
upload capacity. The latter contains two terms; The first is the
upload capacity of the server, which must be ON. The second
is the upload capacity of either a downloading peer, since that
peer cannot upload to itself and may not have another peer to
upload to, or alternatively one member of F which may be
required to be ON to ensure all other peers are downloading
at D;, but may not be fully utilized. The average cost per unit
data during this period is at most P;/Cj, since all peers in E
have P;/C; < P,/Cs.

Finally, we bound the filling component of wasted upload.
Since peers in E that are not being filled at full rate can
be turned OFF, the waste is at most max;cg(D; — Uj)
per unit time. To provide enough capacity during a sub-
sequent stage, it is sufficient to download a total amount
(>_jer Uj/kmin)(F/Dmin). This is supplied either by the
server or peers in F, and so has a cost of at most Ps/Cj
per unit of data. Thus, the total cost for making up for the
wasted capacity during this phase is

FmaneE(Dj —Uj)> el P
kmianin Cs .

The upper bound (4) for the server ON time can now be
formed by adding the upper bounds of wasted upload capacity
in (6), (7) and (8) to the total amount of data that needs to be
uploaded, minus the maximum each peer can upload during
its minimal download time F'/D;.

®)

C. Asymptotic tightness
Consider now the case that there is a constant 3 such that
B8="U;/D; for all i € N.

Theorem 1. In a scaling regime where C's — oo and N — o0,
bounds (3) and (4) imply

cost 1 P, P,
OPT1+O<C;+N+C§>' 9

Proof: Dividing (4) by (3) gives

P, (N i(Di—U; P,
cost & (Mm@t} 4 P (14 Upae/C)

Yienp TN =2 en ﬁ)ﬁ
maneE(Dj_Uj)ZjeE Uj&
+ kmin Dmin Cs
P; U\ Ps
ZiEN D; (N — Zz‘eN E)Cg
<1 T Nmaxi(Di — Ul)

N kmianin(N - ZiEN %Z)
PS/Dmin
+ 7(1 + Umax/cs)-
ZiEN Pi/Di
maxjep(D; —U;j) > cpUj Py

—. 10
kmianin ZiEN B/Dz Cs ()

Since 3 is a constant, substituting (5) into the second term
above gives

Dr2nax(1 B ﬁ) -2\ __
Cstin * O(CS) B O(l/CS)

For Cy > Upnax, the second line of (10) is bounded above
PS 2Dmax

by
Py
N Dmin =0 <N> .

Finally, the last term of (10) is O(Ps/C?) since the numera-
tor of the first factor is O(N) and the denominator is Q(CsN)
(that is, increases at least as fast as C'sIV).

This shows that (9) is an upper bound. Since cost > OPT,
(9) follows. [|

Given that it is possible to get P, = O(Cy) simply by
replicating servers, this theorem implies that for large systems,
it is optimal to use the proposed schedule, with the server
capacity increasing without bound but slower than the number
of peers. In particular, the bound is minimised if C o v/N.

V. NUMERICAL RESULTS

We can now compare energy-aware P2P with alternatives
such as server-only distribution and energy-unaware P2P.
These alternatives were tested under the following conditions.

The distribution of download speeds was based on that
measured by Akamai, a large content distribution network,
for the US state of California in August 2009 [16]. The
maximum and minimum speeds were not specified, and so
Din = 128kbps and Dy,,x = 100 Mbps were used.

The server was assumed to be a standard volume server,
with a Cy = 1 Gbps connection to the Internet!.

The server power was taken to be P, = 218W, the
average power of a volume server in 2005 [17]; this value
was not adjusted to consider the data centre Power Utilization
Efficiency (PUE). It was assumed that 90% of peers are PCs
using power P; = 100W, while the other 10% are set-top
boxes consuming P; = 15 W. The upload and download speeds
are independent of the node’s power.

Unless otherwise stated, the ratio of upload to download
capacity was § = 0.2, which is typical of asymmetric digital
subscriber line (ADSL) connections.

The energy-aware strategy evaluated was as described in
Figure 1, with the following implementation decisions.

1) In Step 2, peers were ordered by increasing capacity.

2) In (2), the coefficient 7 for the rate at which peers in

E download was as described in the appendix, which is
sufficient to perform the required uploading.

3) Any unused upload capacity is directed to the peers in

E, starting with the one of lowest capacity.

A. Benefit of optimization

To determine whether P2P increases or decreases the overall
network-induced energy consumption, Figure 2 plots the total
energy consumption of the server and peers for four schemes.

I'To make the first and third O(-) terms of (9) vanish, C should also grow,
but constant C's demonstrates the decrease in the upper bound.

10 u
—+— Naive server
Q —o6— Naive P2P P
:{ 10° | Opt server i
3 —— Opt P2P
g
-2
w 101
le) ¢
o
)
R ["
c
L
10_6 1 ‘ 2 ‘ 3 4
10 10 10 10
Number of Peers, N
Figure 2. Total energy consumption as the number of peers N increases

and the server capacity is C's = 1 Gbps. Upload to download capacity ratio
B = 0.2. The difference between P2P and server-based is small compared to
that between naive and optimized.

In first, “naive server”, all data is sent from the server, but
all clients are ON for the entire duration. The second, “naive
P2P”, is the P2P scheme [7] that minimizes the total download
time of all peers, which again requires that all peers be ON
during the download. In “Opt server”, all data is sent from the
server, but peers are either OFF or being uploaded to at full
rate D;. “Opt P2P” is the scheme of Section III.

This shows clearly that the difference in energy consump-
tion between P2P schemes and purely server-based schemes
is small compared with the savings that are possible by
optimizing for energy consumption. Henceforth, we consider
only the optimized strategies.

B. Scalability

Next, we investigate the optimality of the “Opt P2P”
scheme. A central contribution of this paper is to demonstrate
that a simple strategy can obtain nearly optimal energy per-
formance in large systems. To validate this claim, Figure 3
shows how the proposed strategy performs as the number of
users grows from 100 to 10 000, relative to the upper and lower
bounds, and the “Opt server” strategy.

Although the upper bound (4) is sufficient to establish the
asymptotic form (9), it is clearly loose, largely because it does
not depend on the order in which peers are served. Tighter
bounds could be obtained by noting that typically K >> kuin,
and that most peers that are unfinished in the final stage have
download capacities well above Diy;y.

The performance of “Opt P2P” and “Opt Server” are
identical except for very large N, not merely because of the
scale of this graph. To see why, note that the total peer energy
consumption is fixed at F') ;5 Pi/D; for any scheme in
which peer ¢ is only ON when downloading at its capacity
D;. Similarly, the total server capacity is at least F'Ps/Din,
the energy it expends while the slowest peer is downloading.
When Cs/N > Dy, both of these bounds are tight. This is
typically the case when a standard volume server is dedicated
to distributing a single file.

Opt P2P Upper Bound
—=o— Opt Server
—=&— Opt P2P
—— Opt P2P Lower Bound

“\Q\A
4]

;/ i

Energy cost per bit, J/b
=

10 10° 10° 10
Number of Peers, N

Figure 3. Total energy consumption as the number of peers /N increases.
Upload to download capacity ratio 8 = 0.2. The measured performance of
the proposed schedule, and its provable upper bound, approach optimality for
large systems.

x 10
7.055
L 705p ©
5
S 7.045
©
a
5 7.04f
o
o
5 7.035¢
Q —o— Opt Server
W 7.03f| —a— OptP2P
—*— Opt P2P Lower Bound
7.025 ‘ ‘ ‘ :
0 0.2 0.4 0.6 0.8 1
Beta
Figure 4. Total energy consumption as the ratio of upload to download

capacity [increases. Total energy saving is negligible, even though saving in
download time is appreciable. The kink at 8 = 0.7 is due to a change in E.

C. Effect of upload asymmetry

Peer-to-peer technology clearly has the biggest potential
benefit when peers have high upload capacity. Figure 4 shows
the total cost for N = 100000 users when the asymmetry
ratio 3 ranges from 0.1 to 0.8.

Just as increasing § reduces the download time in typical
P2P systems, energy use decreases when the upload capacity
is significant compared with the download capacity. However,
the gains are not large, because the energy cost is dominated
by the time that the peers are ON, which is '), Pi/D;
in both cases.

D. Cost-optimization by the server

The motivation for a file distributor to use P2P is typically
to reduce its own costs, rather than altruistically to minimize
energy consumption. The two goals can be traded off by
placing a greater weight on the server energy than the peer
energy, causing an increase in FE.

Figure 5 shows the total energy consumption against server
energy consumption, as the set E is forced to contain an
increasingly large fraction of the most energy-efficient peers.

x 10
11

10.5
o~
= 10}
@
3 95t
I
o L
~ 9 .

« Increasing E
8.5
8 ‘ ‘ ‘
0.5 1 1.5 2 2.5
Server Cost, J/b 107
Figure 5. Total cost versus server cost, as the set E/ of peers that remain

ON to assist uploading increases from empty to 10% of all nodes. Further
increasing E increases the total cost dramatically, for minimal decrease in
server cost.

Increasing E can result in a very large increase in total
energy consumption for a very small reduction in the total
cost to the server. This shows the importance of providing a
suitable incentive for the file distributor to seek to minimize
total energy consumption, rather than merely its own cost.

VI. CONCLUSION

This paper has presented both a study of the energy effi-
ciency of P2P file distribution in a typical setting, and also a
new P2P schedule that is asymptotically optimal for energy
efficiency.

Specifically, it has shown that a simple schedule can be
asymptotically optimal, which eliminates the need to deter-
mining the exact schedule as done in a related context in [5].

However, the structure of the policy raises several concerns.
Most notable is the issue of fairness [18], [19]. The optimal
scheme sometimes forces a small subset of peers to carry a
large fraction of the burden of uploading. It remains to deter-
mine how nearly optimal a scheme may be while introducing
limited unfairness.

The results of the numerical study suggest that there is
little difference in the total energy consumption between
an optimized P2P file distribution system and an optimal
server-only system. However, the optimal P2P strategy for
minimizing energy consumption is significantly different from
the strategy for minimizing the total download time, since the
latter causes too many peers to remain ON for long periods.

The results of Section V-B also demonstrate that, when
some peers have low download rates, it is very inefficient to
dedicate a server to serving a single file, even when 10000
peers want to download that file.

The numerical study makes simplifying assumptions, such
as that peers are only ON for the purpose of downloading the
file, and that all peers are available at any time. However, we
expect the above qualitative insights to hold more broadly.

Going forward, it will be important to determine a practical
schedule, considering issues such as congestion within the
network, that allows the cost savings of peer-to-peer to be
achieved without causing excessive energy consumption.

ACKNOWLEDGEMENT

This work was supported by ARC grants DP0985322 and
FT0991594.

REFERENCES

[1] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R. Gupta,
“Somniloquy: Augmenting network interfaces to reduce PC energy
usage,” in Proc. Usenix NSDI, 2009.

[2] Australian Computer Society, “Carbon and computers in Australia,”
2010.

[3] J. Blackburn and K. Christensen, “A simulation study of a new green
bittorrent,” in Proc. ICC Workshops, 2009.

[4] M. Cha, P. Rodriguez, S. Moon, and J. Crowcroft, “On next-generation
telco-managed P2P tv architectures,” in Proc. Int. Conf Peer-to-peer
Systems, 2008, p. 5.

[51 G. Ezovski, A. Tang, and L. L. H. Andrew, “Minimizing average finish
time in P2P networks,” in Proc. IEEE INFOCOM, 2009.

[6] C. Chang, T. Ho, M. Effros, M. Medard, and B. Leong, “Issues in
peer-to-peer networking: A coding optimization approach,” in IEEE Int.
Symp. Network Coding (NetCod), June 2010, pp. 1-6.

[71 R. Kumar and K. Ross, “Peer-assisted file distribution: The minimum
distribution time,” in Proc. IEEE HotWeb, 2006.

[8] J. Mundinger, R. Weber, and G. Weiss, “Optimal scheduling of peer-to-
peer file dissemination,” J. Scheduling, vol. 11, pp. 105-120, 2008.

[9] M. Mehyar, G. WeiHsin, S. H. Low, M. Effros, and T. Ho, “Optimal
strategies for efficient peer-to-peer file sharing,” in Proc. ICASSP, 2007.

[10] Y. Wu, Y. C. Hu, J. Li, and P. A. Chou, “The delay region for P2P file
transfer,” in Proc. Int. Symp. Info. Th. (ISIT), 2009, pp. 834-838.

[11] M. Lingjun and K.-S. Lui, “Scheduling in P2P file distribution — on
reducing the average distribution time,” in /EEE Consumer Commun.
Netw. Conf. (CCNC), Jan. 2008, pp. 521-522.

[12] M. Lingjun, P--S. Tsang, and K.-S. Lui, “Improving file distribution
performance by grouping in peer-to-peer networks,” /[EEE Trans. Netw.
Serv. Manag., vol. 6, no. 3, pp. 149 —-162, Sept. 2009.

[13] P-S. Tsang, X. Meng, and K.-S. Lui, “A novel grouping strategy for
reducing average distribution time in P2P file sharing,” in IEEE Int.
Conf. Commun (ICC), May 2010, pp. 1-5.

[14] K. Harfoush, A. Bestavros, and J. Byers, “Measuring capacity bandwidth
of targeted path segments,” IEEE/ACM Trans. Netw., vol. 17, no. 1, pp.
80-92, Feb. 2009.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[16] Akamai Technologies Inc., “Observed average internet speeds
for U.S. network connections,” Oct. 2009. [Online]. Available:
http:/fjallfoss.fcc.gov/ects2/document/view ?id=7020243366

[17] J. Koomey, “Estimating total power consumption by servers
in the U.S. and the world,” 2007. [Online]. Available:
http://enterprise.amd.com/Downloads/svrpwrusecompletefinal.pdf

[18] P. Tsiaflakis, Y. Yi, M. Chiang, and M. Moonen, “Fair greening for DSL
broadband access,” in GreenMetrics, 2009.

[19] L. L. H. Andrew, M. Lin, and A. Wierman, “Optimality, fairness and
robustness in speed scaling designs,” in Proc. ACM Sigmetrics, 2010.

APPENDIX

To calculate 7 in (2), the evaluated strategy finds the
maximal subset T" of K such that

ZDi < Z Uj. (11)
ieT jEE
Then
max;er D; 1 >ier Di
7 = max , 1-— . (12)
ZjGE Uj |K\T| ZjeE Uj

This provides sufficient data for the peers in E to send at
aggregate rate DJ; to each ¢+ € T, and to use any remaining
capacity to send equally to the remaining peers in K \ 7.

