
Powering Down for Energy Efficient Peer-to-Peer File
Distribution

Andrew Sucevic, Lachlan L. H. Andrew, Thuy T. T. Nguyen
CAIA, Swinburne University of Technology, Australia

Email: {landrew, tnguyen}@swin.edu.au

ABSTRACT
Peer to peer (P2P) techniques can reduce the time for file
distribution, yet require peers to stay ON to assist others
download. We study the total time that peers need to be
ON to distribute a file from a server to a set of peers. We
show that a P2P system optimized for energy efficiency can
consume half the energy of one optimized to minimize down-
load time, with minimal additional delay. To achieve this,
peers finish in increasing order of upload capacity, and turn
off as soon as they finish downloading. We show that the
optimal solution is complex, even for as few as three peers,
and advocate heuristics for large networks.

1. INTRODUCTION
Personal computers and their monitors consume a quarter of
all ICT energy [2]. This includes many computers being left
on to download files, such as software upgrades. This moti-
vates the study of energy-efficient file distribution schemes.
Peer to peer (P2P) technology can reduce the time required
for file distribution, but little attention [1,3] has so far been
paid to its energy consumption. This paper considers lower
bounds on the possible total time that peers need to be ac-
tive, either uploading or downloading, in order to distribute
a file from a single server to a given set of peers. Such bounds
are useful both because they give a benchmark against which
to compare implementable schemes, and also because they
can give structural insights such as indicating the optimal
order in which peers should complete.
Following [10,11,15], only upload constraints are considered.
It is assumed that a set of peers simultaneously start down-
loading a given file, and as soon as a peer has downloaded
some data, that data can be forwarded to other peers.
In this model, a simple symmetric strategy minimizes the
time for the last peer to receive the file [6, 11]. This strat-
egy causes all peers to finish simultaneously. However, some
peers can finish much earlier with minimal or no increase
in the finish time of the last peer. This led to a search for
smaller average finish times [5,7,8,14]. The “min-min” prob-

lem of sequentially minimizing finish times requires peers to
finish in decreasing order of capacity [5]. It was conjectured
in [5] that the “min-min” strategy also minimizes the sum
of finish times, but a counterexample was presented in [4].
For a given finishing order, [15] derives the polytope of all
possible combinations of finish times.
However, these schemes assume that peers will remain on
to continue uploading until the last peer has finished down-
loading. This wastes energy. We instead consider the case
that peers may be turned off before the last peer has fin-
ished. We show that it is often optimal to turn peers off as
soon as they have finished downloading.
A mathematical model of this system is presented in Sec-
tion 2. For networks of up to three peers, strategies which
minimize energy consumption are derived in Section 3 and
proven to be optimal. Notably, in these cases peers finish
in a different order from the one optimised for delay only,
and peers should turn off as soon as they finish downloading.
Larger cases are studied by simulation in Section 4, where
it is shown that a simple strategy can halve the energy con-
sumption relative to the schemes of [11] and [6].

2. MODEL
We consider a single server distributing a file to N peers. All
nodes (server and peers) can communicate with all others,
constrained only by the upload capacities. The network is
static, in that no peers can arrive or leave. The file is broken
up into infinitely small pieces, which allows a peer to forward
immediately any data it receives to another peer.
The following notation is used in this model. Peer i can
upload any data it has received to any other peers, at rates
not exceeding Ci in total. A peer is “finished” when it has
received all data in the file. Other notation is:
F : size of the file
N : total number of peers (not including the server)
τi: download time of the ith peer to finish; τi ≤ τi+1

ti: turn off time of the ith peer to finish; ti ≥ τi
Cs: upload capacity of the server
Cj : upload capacity of peer j. Without loss of generality
these are in decreasing order: Cj ≥ Ck given j < k.
pi: the ith peer to finish. When written as a subscript, this
is written pi; for example, Cp1 is the capacity of the first
peer to finish.
We choose rates to minimize the total time peers are on,∑N

i=1
ti. (1)

If the controller does not know the power of each peer, this
is the best way to minimize their total energy consumption.



3. OPTIMAL STRATEGIES FOR SMALL N
The strategy which minimizes (1) takes many forms, de-
pending on the relative capacities. In contrast, minimizing
the last finish time [6,11] requires only two strategies, while
achieving“min-min”finish times [5,10] usesN cases, depend-
ing on the “multiplicity” [9], the maximum M such that

Cs ≤
M∑
i=1

Ci

M − 1
+

N∑
i=M+1

Ci

M
. (2)

This is the number of peers that can finish at the earliest
possible time, F/Cs. When M = N , the strategy to min-
imize (1) matches that of [6, 11]: The server sends data to
peer i at rate proportional to Ci, which peer i forwards to
all other peers. This gives

N∑
i=1

ti =
NF

Cs
. (3)

We now describe optimal strategies for cases with up to three
peers. As in [5,9], a lower bound on (1) will first be derived
by bounding the maximum amount of data that can be pro-
vided to a given set of peers in a given time. Then a strategy
will be described which achieves this lower bound.

3.1 Networks of 2 Peers
If there are N = 2 peers with Cs ≤ C1 +C2 then the multi-
plicity is M = 2, and by (3), t1 + t2 ≥ 2F

Cs
.

When Cs > C1 + C2 the following Strategy A is optimal.
(i) Select an arbitrary finishing order for the peers.

(ii) During [0, t1], the server sends to first and second peers
at rates Cs−Cp2 and Cp2. Each peer i uploads to the
other at rate Cpi. Peer p1 turns off at t1 = τ1.

(iii) During [t1, t2], the server sends to peer p2 at rate Cs.

3.2 Network of 3 Peers
When there are three peers, there are at least four cases to
consider. The simplest case is again when all M = N can
finish by time F/Cs, namely Cs ≤ C1+C2+C3

2
. In this case,

the minimum cost is 3F/Cs, by (3).
The case M = 2 can be split into two cases: The case when
(C1 + C2 + C3)/2 < Cs < C1 + C2 is still open, and the
remaining one is considered in the next section. The difficult
case M = 1 is presented last.

3.2.1 Multiplicity M = 2, C1+C2+C3
2

< C1 + C2 ≤ Cs

Consider now the subset of cases with M = 2. We will show
that the Strategy B below is optimal.

(i) Set the finish order to be (p1, p2, p3) to satisfy:
Cp2 + Cp3 ≤ Cs ≤ Cp1 + Cp2 + Cp3/2

(ii) During [0, t1]: The server sends to peer i ∈ {p1, p2} at
rate λCi, where

λ =
Cs − Cp3/2

Cp1 + Cp2
(4)

Peer p1 sends this data to peer p2 and vice versa. Both
send a subset of this at rate Ci − λCi to peer p3.

The server sends to peer p3 at rate Cp3/2, which peer
p3 forwards to both peers p1 and p2.

Peers p1 and p2 turn off at t1 = t2 = τ1 = τ2.

(iii) During [t1, t3]: The server sends to peer p3 at rate Cs.

Proposition 1. When N = 3 and C1 + C2 < Cs ≤
C1 +C2 + C3

2
, Strategy B is feasible and minimizes (1). No

strategy with t2 > F/Cs minimizes (1).

Proof. The full proof is presented in [13]. A sketch fol-
lows. The finishing time is bounded below by

3∑
i=1

ti ≥
F

Cs

(
5− Cp1 + Cp2 + Cp3

Cs

)
, (5)

which can be achieved only if t2 = F/Cs. Under Strategy B,

t1 = t2 = τ1 = τ2 =
F

λC1 + λC2 + C3
2

=
F

Cs
(6)

t3 = τ3 =
F

Cs
(3− C1 + C2 + C3

Cs
). (7)

Summing these gives (5) with equality.

There are again multiple optimal finishing orders; (p1, p2, p3) =
(3, 2, 1) is always feasible.

3.2.2 Multiplicity M = 1, C1 + C2 + C3
2
< Cs

In the optimal strategy, the server sends just enough to p3
to enable that peer to send continuously to the other two
until they finish. Let

f(x, y) = 4− x

Cs
+

(2Cs − C1 − x)(Cs − C1 − y)

Cs(Cs + y
2
)

. (8)

and define Strategy C as follows:
(i) If f(C2, C3) < f(C3, C2), finish in order (p1, p2, p3) =

(2, 1, 3); otherwise (p1, p2, p3) = (3, 1, 2).

(ii) During [0, t1], the server sends different file segments
to p1, p2 and p3 at rates Cs − Cp2 − r3, Cp2, and r3
respectively, where

r3 :=
2Cs − Cp1 − Cp2

2Cs + Cp3
Cp3. (9)

Then p1 uploads to p2 at rate Cp1, p2 uploads to p1
at rate Cp2, p3 uploads to p1 at rate r3, and to p2 at
rate Cp3 − r3. When p1 obtains the whole file at τ1, it
immediately turns off which means t1 = τ1.

(iii) During [t1, t2], p3 continues to upload to p2 the data
it received from the server during [0, τ1]. The server
uploads at full rate to p2, and p2 uploads at its full
rate to p3. When p2 obtains the whole file at τ2, it
immediately turns off which means t2 = τ2.

(iv) During [t2, t3], p3 continues to receive the remainder
of the file at rate Cs from the server until it obtains
the whole file.

The following theorem is proved in Appendix A

Proposition 2. When N = 3 and Cs > C1 + C2 + C3
2

,
under Strategy C, the sum of finish times is

3∑
i=1

ti =
F

Cs
min

(
f(C2, C3), f(C3, C2)

)
(10)

which is the minimum achievable. Moreover, no strategy in
which p1 turns off after p2 can achieve this.



4. HEURISTIC FOR LARGE SYSTEMS
The foregoing results show that the optimal strategies quickly
become complex as the number of peers grows. However the
number of clients downloading a file may be very large. To
study this case, it is useful to consider a heuristic strategy
based on the insights from the explicit solutions. These in-
sights include: It seems optimal for a peer to turn off as soon
as it has finished downloading; The optimal order is not nec-
essarily decreasing order. This gives rise to Strategy D:

(i) Given a finishing order C, calculate the maximum num-
ber of peers that can finish at F/Cs,

MC = min

{
M : Cs ≤

M∑
j=1

Cpj

M − 1
+

N∑
j=M+1

Cpj

M

}
.

(11)

(ii) On [0, F/Cs], the server sends to pi at rate Cpi/MC for
i > MC , with the remaining capacity divided among
p1 to pMC in proportion to Cpi. Each peer sends a
copy of everything it receives to p1 to pMC , except
itself. Peers p1 to pMC turn off at F/Cs.

(iii) On [τi−1, τi], for all j > i ≥MC + 1, pj sends to pi at
rate Cj ; if it only has D < (τi−τi−1)Cj data, then the
server sends it new data at rate Cj −D/(τi − τi−1) so
that pi can send at rate Cj for the entire time. The
server’s remaining capacity is sent to pi. If i < N then
pi sends to pi+1 at rate Cpi. Peer pi turns off at ti = τi.

This was evaluated by simulation for varying numbers of
peers N , varying distributions of upload capacities Ci, and
varying regimes for scaling Cs with N . In each case, a
500 MByte file was distributed to up to 104 peers with ran-
domly chosen capacities with mean 10 Mbit/s. The mean of
100 runs of each test is plotted.
Three finishing orders were considered: descending order of
capacities, seeking to minimize finish times; random; ascend-
ing, to keep the more useful peers active as long as possible.
These were compared with two reference strategies: “Simul-
taneous” [6,11] in which all peers finish simultaneously at the
earliest possible time; and “Sequential, No P2P”, in which
the server sends the complete file to each peer in order, af-
ter which the peer turns off. Much less energy would be
used if the server could wake each peer when its turn came
to download; However, not all computers can be woken re-
motely, and so a general P2P system cannot rely on that.

4.1 Constant Server Capacity with varying N
Figure 1 shows the objective (1) normalized by the number
of peers, for Cs = 10 Gbit/s1 and Ci Pareto distributed, with
shape parameter 0.5. As expected, the Sequential scheme
increases linearly with the number of peers N , while the
P2P schemes scale more gracefully. Even with P2P, the on
time increases slightly, since Cs remains fixed even though
the peers’ total capacity grows in proportion to N . Naively
turning peers off while keeping the same finishing order as
in [5, 15], in descending order of capacities, increases the
energy consumption by a factor of over 2 relative to Simul-
taneous, since the extra delay incurred by the last peers to
finish outweighs the savings. Conversely, finishing the slow
peers first and turning them off reduces energy consumption
by a factor of about 2 relative to Simultaneous.

1Recall that the server is a software house, not a PC.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

Number of Peers

A
ve

ra
ge

 o
n−

tim
e 

pe
r 

pe
er

 (
se

c)

 

 
Simultaneous
Our Strategy D (Descending)
Our Strategy D (Random)
Our Strategy D(Ascending)
Sequential − No P2P

Figure 1: Constant Cs = 10 Gbps, Ci is Pareto dis-
tributed with mean 10 Mbps.

0 2000 4000 6000 8000 10000
50

100

150

200

250

300

Number of Peers

A
ve

ra
ge

 o
n−

tim
e 

pe
r 

pe
er

 (
se

c)

 

 
C

i
 Pareto

C
i
 Exponential

C
i
 Uniform

Figure 2: Constant Cs = 10 Gbps and different dis-
tributions of Ci, with mean 10 Mbps.

The distribution of capacities Ci makes a modest differ-
ence to the finish times, as shown in Figure 2 when the
Cpi are an increasing permutation of Ci. When the Cpi

are a random permutation, there is no discernible depen-
dence on the distribution. This is presumably because, in
that case, the average capacity after i peers have finished
remains 10(N − i) Mbit/s regardless of the distribution. In
contrast, for an increasing permutation, the average capac-
ity decreases sublinearly in i, more slowly as the distribution
becomes heavier tailed. This hypothesis is supported by the
fact that the heavier tails give longer finish times when the
Cpi are a decreasing permutation.

4.2 Varying Server Capacity
Popular content will typically be served by more powerful
servers, and so it is reasonable to expect that the server
capacity Cs will increase with the number of peers N . How-
ever, it is unclear how it will scale.
One extreme is that Cs may grow proportional to N . Fig-
ure 3 shows that this results the server staying on for a con-
stant amount of time, regardless of how many peers there
are, since both the amount of data and the capacity scale
in proportion. The Strategy D still outperforms the others.
The other extreme of constant Cs was shown in Figure 1.
A less extreme scaling would be Cs proportional to

√
N ,

as shown in Figure 4. In this figure, the capacity with 104

peers equals that of Figure 1, and so the only change is an
increase in on time for a small number of peers.



0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

Number of Peers

A
ve

ra
ge

 o
n−

tim
e 

pe
r 

pe
er

 (
se

c)

 

 

Simultaneous
Our Strategy D (Descending)
Our Strategy D (Random)
Our Strategy D(Ascending)
Sequential − No P2P

Figure 3: Cs = 0.1N Mbit/s, Ci is Pareto.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

Number of Peers

A
ve

ra
ge

 o
n−

tim
e 

pe
r 

pe
er

 (
se

c)

 

 
Simultaneous
Our Strategy D (Descending)
Our Strategy D (Random)
Our Strategy D(Ascending)
Sequential − No P2P

Figure 4: Cs = 10
√
N Mbit/s, Ci is Pareto.

Figure 5 shows the average on-time per peer using our strat-
egy D as a fraction of the time consumed by the Simul-
taneously strategy. In all cases of Cs, our strategy takes
around half of the time taken using the Simultaneous strat-
egy 2. This matches the intuition that the ith peer is on for
roughly i/N of the time. The upward trend as N increases
for constant Cs is because the peers provide more capacity
as N increases, and the penalty for turning them off becomes
larger. The apparent convergence of all scalings of Cs as N
increases is an artefact of the parameters, which make Cs

coincide for N = 104.

5. CONCLUSION
Optimised peer to peer systems can substantially improve
the energy efficiency of file distribution compared with sys-
tems in which peers are powered on from the time the file
becomes available until the time it is downloaded. For small
networks, it can be shown rigorously that the optimal strat-
egy turns each peer off as soon as it has finished down-
loading. It is tempting simply to take a system such as [5]
which provides low average download times, and to turn off
peers when they finish downloading. However, this actually
increases energy consumption. Instead, substantial savings
are possible if the order of serving peers is altered so that
higher-capacity peers remain in the system longer.
This work considered only an idealized model, but opens
the way for many further studies. Apart from the natu-

2This comes with a ∼ 10% increase in delay using our strat-
egy D compared to the one which optimised delay.

0 2000 4000 6000 8000 10000
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Number of Peers

R
at

io
: O

ur
 S

tr
at

eg
y 

D
 v

s.
 S

im
ul

ta
ne

ou
s

 

 

C
s
 constant

C
s
 ~ Sqrt(N)

C
s
 ~ N

C
i
 Uniform

C
i
 Pareto

C
i
 Exponential

Figure 5: Ratio of Sum of peers’ on-time: Our Strat-
egy D vs. Simultaneous. Cpi are increasing.

ral tasks of considering download constraints, finding a de-
centralized solution and considering peers that arrive part
way through transmission, which also apply to studies such
as [5, 10, 14, 15], there are some extensions specific to en-
ergy efficiency. The model could be expanded to include
energy consumption of the server, including the non-linear
relationship between its energy consumption and capacity.
It could also consider peers with known, different power con-
sumptions; in that case, it is likely to be optimal to finish
peers in increasing order of upload capacity per watt. Per-
haps most importantly, it will be useful to study systems in
which peers are not left on purely for P2P downloading; the
optimal strategy may be very different when peers are only
participating when they are already on for other purposes.

Acknowledgement
This work was supported by Australian Research Council
(ARC) grants DP0985322 and FT0991594.

6. REFERENCES
[1] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl,

and R. Gupta. Somniloquy: Augmenting network
interfaces to reduce PC energy usage. In Proc. Usenix
NSDI, 2009.

[2] Australian Computer Society. Carbon and Computers
in Australia. 2010.

[3] J. Blackburn and K. Christensen. A simulation study
of a new green bittorrent. In ICC Workshops, 2009.

[4] C. Chang, T. Ho, M. Effros, M. Medard, and
B. Leong. Issues in peer-to-peer networking: A coding
optimization approach. In IEEE Int. Symp. Network
Coding (NetCod), pages 1 –6, June 2010.

[5] G. Ezovski, A. Tang, and L. L. H. Andrew.
Minimizing average finish time in P2P networks. In
Proc. IEEE INFOCOM, 2009.

[6] R. Kumar and K. Ross. Peer-assisted file distribution:
The minimum distribution time. In Proc. IEEE
HotWeb, 2006.

[7] M. Lingjun and K.-S. Lui. Scheduling in P2P file
distribution – on reducing the average distribution
time. In IEEE Consumer Commun. Netw. Conf.
(CCNC), pages 521 –522, Jan. 2008.

[8] M. Lingjun, P.-S. Tsang, and K.-S. Lui. Improving file
distribution performance by grouping in peer-to-peer



networks. IEEE Trans. Netw. Serv. Manag., 6(3):149
–162, Sept. 2009.

[9] M. Mehyar. Distributed Averaging and Efficient File
Sharing on Peer-to-Peer Networks. PhD thesis,
California Institute of Technology, 2006.

[10] M. Mehyar, G. WeiHsin, S. H. Low, M. Effros, and
T. Ho. Optimal strategies for efficient peer-to-peer file
sharing. In Proc. IEEE ICASSP, 2007.

[11] J. Mundinger, R. Weber, and G. Weiss. Optimal
scheduling of peer-to-peer file dissemination. J.
Scheduling, 11:105–120, April 2008.

[12] S. Prajna, Papachristodoulou, and P. A. Parrilo.
Introducing SOSTOOLS: a general purpose sum of
squares programming solver. In Proc. CDC, 2001.

[13] A. Sucevic, L. L. H. Andrew, and T. T. T. Nguyen.
Minimising peer on-time for energy efficient
peer-to-peer file distribution. Online. Available:
http://www.caia.swin.edu.au/cv/landrew/pubs/
MinOnTime.pdf.

[14] P.-S. Tsang, X. Meng, and K.-S. Lui. A novel
grouping strategy for reducing average distribution
time in P2P file sharing. In IEEE Int. Conf. Commun
(ICC), pages 1 –5, May 2010.

[15] Y. Wu, Y. C. Hu, J. Li, and P. A. Chou. The delay
region for P2P file transfer. In Proc. Int. Symp. Info.
Th. (ISIT), pages 834–838, 2009.

APPENDIX
A. PROOF OF PROPOSITION 2
First, note that Strategy C is feasible. In particular, since
Cp3/2 ≤ r3 ≤ min{Cp3, Cs − Cp1 − Cp2}, the server can
allocate rate r3 to p3. Next, note that it achieves (10): Since

t1 = τ1 = F
Cs

; t2 = τ2 = F
Cs

(
2Cs−Cp1−Cp2

Cs+Cp3/2

)
;

t3 = τ3 = F
Cs

(3 +
Cp1

Cs
− (2Cs−Cp2)(Cp1+Cp2+Cp3)

Cs(Cs+Cp3/2)
),

the sum of on time of peers is

3∑
i=1

ti =
F

Cs

(
4− Cp1

Cs
+

(2Cs − Cp1 − Cp2)(Cs − Cp2 − Cp3)

Cs(Cs + Cp3/2)

)
.

(12)

By the choice of the order in which the peers are finished,
this is equal to (10). The remainder of this appendix will
show that (10) is the optimum, using a series of lemmas
established in [13].
We first derive an implicit bound on (1) in terms of the
individual finish times. For i ≤ N − 1, the ith peer to
finish can send at rate at most Cpi, and cannot send after
ti. The other peer can send at rate at most C(N), and has no
destination left to send to after the second last peer finishes
at τN−1. Finally, the server can send at rate at most Cs,
until all peers finish at tN . Yet all N peers must receive the
entire file of size F , whence

N−1∑
i=1

tiCpi + τN−1C(N) + tNCs ≥ NF (13)

or equivalently

tN ≥
NF − τN−1C(N) −

∑N−1
i=1 tiCpi

Cs
. (14)

Adding
∑N−1

i=1 ti to both sides, and noting that τN ≤ tN
since peer N must finish before it turns off, gives the lower

bound for (1) of

NF + tN−1(Cs − C(N−1) − C(N)) +
∑N−2

i=1 ti(Cs − Cpi)

Cs
.

(15)
For N = 3, (15) becomes

3∑
i=1

ti ≥
3F + t2(Cs − Cp2 − Cp3) + t1(Cs − Cp1)

Cs
. (16)

From the multiplicity theorem, it is impossible that t1 =
t2 = F

Cs
and so (5) is loose. A tight bound will now be

derived, using the following lemmas.

Lemma 1. For N = 3 and M = 1,

t2 ≥
2F − Cp2τ1 − Cp1 min{t1, t2}

Cs + Cp3/2
. (17)

Although we know that the download times satisfy τ1 ≤ τ2,
the order of the turn-off times ti depends on the chosen
strategy. Two cases can be considered.

Lemma 2. For N = 3 and M = 1, if t1 ≥ t2 then

t2(Cs−Cp2−Cp3)+t1(Cs−Cp1) ≥ F
Cs

(
2Cs(2Cs−Cp1−Cp2−Cp3)

Cs+Cp1+Cp2+Cp3/2
).

If t1 ≤ t2, then (17) becomes

t2 ≥
2F − Cp2τ1 − Cp1t1

Cs + Cp3/2
. (18)

Multiplying both sides of (18) by Cs − Cp2 − Cp3 (which is
positive) and then adding t1(Cs − Cp1) to both sides gives

t2(Cs − Cp2 − Cp3) + t1(Cs − Cp1) ≥
(Cs − Cp2 − Cp3)(2F − Cp2τ1)

Cs + Cp3/2

+
t1[(Cs − Cp1)(Cs + Cp3/2)− Cp1(Cs − Cp2 − Cp3)]

Cs + Cp3/2
.

(19)

Finally, the RHS of (19) is minimized when τ1 is maxi-
mum. Since τ1 ≤ t1, t2(Cs − Cp2 − Cp3) + t1(Cs − Cp1) ≥
2F (Cs−Cp2−Cp3)+Kt1

Cs+Cp3/2
, where K = (Cs −Cp1)(Cs +Cp3/2)−

(Cp1 +Cp2)(Cs−Cp2−Cp3). The sign of K depends on the
strategy. We will show that choosing K ≤ 0 is sub-optimal.

Lemma 3. For N = 3 and M = 1, then if t1 < t2 and
K > 0 then, for f given by (8),

3∑
i=1

ti ≥
F

Cs
min

(
f(C2, C3), f(C3, C2)

)
(20)

Lemma 4. For N = 3 and M = 1, if t1 < t2 and K ≤ 0
then (2) holds again.

The following lemma is proved using the sum-of-squares
technique [12].

Lemma 5. For N = 3 and M = 1, if (2) holds, then (20)
holds with strict inequality.


