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Dynamic Allocation of Subcarriers and

Transmit Powers in an OFDMA Cellular Network

Stephen V. Hanly, Lachlan L. H. Andrew and Thaya Thanabalasingham

Abstract

This paper considers the problem of minimizing outage probabilities in the downlink of a multiuser, multicell

OFDMA cellular network with frequency selective fading, imperfect channel state information and frequency

hopping. The task is to determine the allocation of powers and subcarriers for users to ensure that the user

outage probabilities are as low as possible. We formulate a min-max outage probability problem and solve it

under the constraint that the transmit power spectrum at each base station is flat. In particular, we obtain a

subchannel allocation algorithm that has complexity O(L log L) in L, the number of users in the cell. We also

consider suboptimal but implementable approaches with and without the flat transmit power spectrum constraint.

We conclude that the flat transmit spectrum approach has merit, and warrants further study.

Index Terms

Cellular network, resource allocation, power control, orthogonal frequency division multiple access (OFDMA),

subcarrier allocation, power spectrum, fading channels, outage capacity, fast frequency hopping, interference

averaging.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is an important technique for communicating

over frequency selective channels. By dividing the available bandwidth into orthogonal, non-interfering
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subcarriers and adopting a parallel transmission strategy, it offers better immunity to the multipath fading

effects of the wireless channel than single carrier transmission systems. OFDM is widely deployed in

commercial systems such as xDSL modems [1], [2] and low mobility wireless LANs [3]. It is also part

of WiMax [4], and a strong candidate for future wireless cellular systems.

Although OFDM typically multiplexes low rate data substreams from a single user onto all the

subcarriers, a cellular network can use orthogonal frequency division multiple access (OFDMA), in

which the data streams from different users are multiplexed onto subsets of the subcarriers. This paper

considers the downlink resource allocation problem in an OFDMA cellular system.

We consider the problem of allocating subcarriers and powers to users within each cell, subject to

meeting a data rate requirements. In the classical approach to power control [5], [6], channels are first

allocated to mobiles based on their rate requirements, and then power control adjusts the power levels to

account for the locations of the mobiles in the network. On the downlink, this implies that the transmit

power spectral density at a base station varies across the system bandwidth.

We propose a novel approach to power control in which the transmit power spectrum is always flat.

If more power must be allocated to a mobile, such as when it moves close to the cell boundary, then

there are two independent ways to achieve this: by increasing the cell power level as a whole, or by

increasing the number of subcarriers allocated to the mobile. We will show that this new approach

significantly reduces the maximum outage probability in the system.

We work with the premise that the base stations have knowledge of the statistics of channel conditions,

but not the instantaneous channel gains. In this setting, a commonly used metric of performance is the

outage probability, the fraction of time for which the rate is not achieved. The primary objective in this

paper is to minimize the maximum outage probability across all mobiles in the network. We formulate

this problem in Section III-A as a joint optimization over transmit powers and subcarrier allocations.

One difficulty in solving this problem is that the outage probability for a user is a complicated

function that depends not only on the transmit power and fading characteristics of the signal for the

mobile itself, but also on those for mobiles in other cells, interfering signals that have been sent by
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other base stations. Since the mobiles are attempting to meet their individual rate targets, the transmit

powers of all base stations are coupled in a complicated way. In Section III, we solve the problem

assuming that there exists a Genie who can instantly return for us the outage probability of any user,

as a function of the power levels and subcarrier allocations in the network.

In Section V, we provide a more practical power and subcarrier allocation algorithm, the Power First

Algorithm, that does not require a Genie. This algorithm is suboptimal with respect to the min-max

objective function of Section III-A, but simulation results show that it performs only slightly worse

than the optimal solution. In the Power First Algorithm, powers are first allocated to the base stations

according to a novel distributed power control algorithm, and subcarriers are then allocated to the users

in a manner that approximately minimizes the maximum outage probability across the cell, given the

powers. This algorithm provides a flat transmit power spectrum at each base station.

A nice feature of the Power First Algorithm is that the power allocation and subcarrier allocation

are separable problems: Even if the powers are not optimal with respect to the network as a whole, the

subcarrier allocation algorithm solves a local min-max optimization problem within the cell. Indeed, the

power allocation can be run on a slow time-scale while the subcarrier allocations simultaneously run

at a faster time-scale, although here we analyze the case when the subcarrier allocation is run after the

power allocation completes. This separability is due to the flat transmit power spectrum at each base

station.

In Section VI, we contrast the Power First Algorithm with the Subchannel First Algorithm, which takes

the classical approach to power control: The bandwidth allocation is proportional to the rate requirement

of the link, and per-link power spectral densities are determined to meet the rate requirement of each

link. This approach does not provide flat transmit power spectra to the base stations, and we compare

its performance with that of the Power First Algorithm in Section VIII.

A. Structure of the paper

In Section II, we introduce a model for OFDMA that includes the assumption of frequency hopping

over the subcarriers [7, Section 4.4.2]. Thus, we distinguish between physical subcarriers and the
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logical subchannels that are allocated to each mobile. Subchannel allocations within a cell involve the

specification of subcarrier hopping patterns that maintain orthogonality between users in the same cell,

but which provide time diversity with respect to the fading parameters, and with respect to interference

from users in other cells. Together, these assumptions imply that the outage probability is a function of

the numbers of logical subchannels allocated to a mobile, not the particular choice of physical subcarriers

(which would be the case if there were no frequency hopping). This avoids a combinatorial explosion

in the optimization problems that we consider in this paper.

In Section III-A we pose the Joint Power and Subchannel Allocation Problem which will be solved

by the Genie-aided Joint Algorithm in Section III-C. Before tackling this problem, we first consider the

local problem of minimizing the maximum outage probability in each cell. The resulting Genie-aided

subchannel allocation algorithm, is then a subroutine in the Genie-aided Joint Algorithm. The latter

algorithm provides a useful benchmark, but it cannot be implemented in practice: It requires knowledge

of expectations over random parameters which appear difficult to estimate, and it requires considerable

cooperation between the base stations.

In Section V-B we fix the powers, and formulate an approximate version of the subchannel allocation

problem, but one that does not require a Genie. We provide the Practical Subchannel Allocation

Algorithm to solve this problem, and show that it has complexity L log L in the number, L, of mobiles

in the cell (see Theorem 8). Motivated by this, we make the modeling assumption that the power control

and subchannel allocation tasks can be performed sequentially, with power levels first selected by the

base stations, and then held fixed while subchannels are allocated. In Section V-A, we provide a simple,

measurement-based, decentralized power control scheme that minimizes the sum of powers subject to

a fade margin. This scheme enforces the constraint that the transmit power spectrum be flat. Given the

final powers found by this scheme, we then apply the Practical Subchannel Allocation Algorithm. In

Section VIII we compare the performance of the resulting Power First Algorithm with the Subchannel

First Algorithm, and we find that the performance of the Power First Algorithm is significantly better

with respect to the min-max outage probability objective from Section III-A.
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B. Related work and assumptions

Resource allocation in OFDM systems has received considerable attention in the literature. Much

work assumes channel state information (CSI) is available at the transmitter. In single cell scenarios,

the maximum total rate is obtained by water pouring [8]. Note that the subcarrier allocation problem is

combinatorial, and becomes very difficult to solve once a fairness criterion is considered: suboptimal

approaches are considered in [9], [10].

In multi-cell networks, the resource allocation problem is further complicated by inter-cell interfer-

ence. Iterative water pouring techniques can be considered [11]. However, the iterative water-pouring

approach is not, in general, guaranteed to achieve the maximum total rate, nor does it provide fairness

among the users.

General formulations of optimization problems for allocating bandwidths and powers for networks of

interfering links are provided in [12]. A common theme is the NP hardness of all problems posed, both

as the number of subcarriers grows large, for fixed links, and as the number of links grows large, for

fixed numbers of subcarriers. Part of the complexity comes from the combinatorial nature of the problem,

in that there are many subcarriers, and each has a different channel gain (although there are typically

strong correlations between neighbouring subcarriers). The other difficulty is a lack of convexity when

interference is taken into account [13]. Although the paper [12] is focused on time-invariant problem

formulations, with applications to Digital Subscriber Lines (DSL), these difficulties apply equally to

OFDM wireless networks which, even worse, are typically time-varying. This motivates the search for

problem formulations that avoid these difficulties.

There are many heuristic approaches to resource allocation in DSL networks that involve the allocation

of spectrum to the different links. Collectively, this topic is known as “spectrum balancing” and

suboptimal approaches include game-theoretic methods, including iterative water filling [14], [15]; high

SNR approximations, and the use of Geometric programming methods [16], [17]; methods of successive

convex approximation [18], and dual decomposition methods [19]. Other recent papers on this topic

include [20], [21].
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Interference is just as significant in wireless networks, but wireless links are typically time varying.

This requires the problems to be solved in real-time, which only adds to the computational difficulties.

To base a spectrum allocation algorithm on channel state information requires channel measurement,

feedback, computation, and convergence all to take place before the channels change. This may be

possible in low mobility scenarios, but seems more difficult for high mobility scenarios. Much current

research in wireless is devoted to overcoming these difficulties.

Recent work on fair allocation in wireless mesh networks, decomposes the problem into subcarrier and

power allocations, and time scheduling [22]. Assuming the users have their own CSI, [23] computes

the optimal allocation strategy under a collision model of packet interference. An approach to joint

spectrum allocation, power control, routing, and congestion control for wireless networks is provided

in [24].

The problem of minimizing power levels subject to rate constraints on the individual links, in a multi-

cell context, was addressed in [25]. The subcarriers are allocated to users in a heuristic fashion, and then

iterative power control takes place. In the bandwidth-constrained power minimization problem [26], an

upper bound is imposed on the number of subcarriers to be allocated to each user to minimize the

mutual interference between users.

All of the work referred to above assumes CSI is available at the transmitters, which may not be

realistic in mobile, cellular scenarios, especially when the channel conditions vary quickly with time. In

this case, the resource allocation needs to be performed based on statistical knowledge of the channel

conditions. Such resource allocation problems have been studied in [27] and [28]. While [27] considers

a single user rate maximization problem subject to an outage probability target, [28] investigates the

problem of characterizing the outage probability region for a single cell system. In contrast, the present

paper considers an outage probability based resource allocation problem for a multiple user, multiple

cell system.

The present paper considers real-time data transmission, in which coding over time is limited to

one hop of the frequency hopping cycle, but each mobile gets frequency diversity from the multiple
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subcarriers it is allocated during the hop. Outage capacity and outage probability are then the appropriate

metrics to consider. It is in this context, with frequency hopping, that we propose the idea of constraining

the transmit power spectrum to be flat. In other settings, a non-flat spectrum may be preferable.

Recent work [29] shows that a flat transmit power spectrum is not optimal if spectrum can be allocated

as a function of the position of the mobile in the cell. By coordinating the spectrum allocation, the

interference is no longer white, and everyone benefits. This “fractional re-use” [29], [30] can be very

beneficial, but it does not integrate well with frequency hopping and interference averaging. The difficulty

with fractional power re-use is that it is only applicable if the channel changes slowly, so that joint

optimization over all variables is possible. The virtue of interference averaging is that rapid variations

can be averaged out. In a mobile radio scenario, it may be possible to combine the merits of both

approaches. This is a topic for future research. In the present paper, we consider a bandwidth over

which all mobiles are hopping, and study the merits of a flat transmit power spectrum constraint for

this scenario.

II. SYSTEM MODEL

Consider the downlink of an OFDM cellular network which consists of a set of N base stations,

denoted by N = {1, 2, . . . , N}. Each base station n ∈ N has a set Cn of users. Let the number of

subcarriers in the system be Nc.

Assume that the fading on the subcarriers is too fast to track at the base station, and that the base

station only has statistical knowledge of the fading. In this setting, a natural measure of performance

is the outage probability. A user will be in outage if the total mutual information between sent and

received signals summed over the allocated subchannels falls short of the threshold needed to support

the target data rate of the user.

The outage probability of a particular user will depend not only on the allocation of the subcarriers

for that user, and powers on those allocated subcarriers, but also on the interference experienced on

the allocated subcarriers, which will in turn depend on the power allocation in other cells. Due to

the difficulties associated with characterizing the user outage probability as a function of all these
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parameters, we

• use frequency hopping based on a Latin square design [7, Section 4.4.2] and,

• constrain each base station to use a uniform transmit power spectral density (uniform PSD) across

the frequency band.

With the use of frequency hopping, the users will now be allocated logical subchannels (which are

the hopping patterns across the subcarriers as specified by the Latin square design) instead of physical

subcarriers.

The use of a uniform PSD at each base station, together with the use of a Latin square design

for frequency hopping, achieves the effect of making all subchannels in any given link statistically

identical. This makes it sufficient to model the number of subchannels for each user, instead of individual

allocations of physical subcarriers to users. Since we will focus on outage capacity, we will assume

coding occurs over a single hop, so the diversity that a user obtains equals the number of allocated

subchannels.

Each base station is assumed to have access to all available subcarriers, i.e., the frequency reuse

factor is 1 (however, this assumption can easily be relaxed). Consequently, each base station will have

Nc available subchannels. Let Π = {1, 2, . . . , Nc}. The apportionment of subchannels to users within a

cell n can be modelled by a subchannel allocation vector ηn ∈ ΠLn , where Ln denotes the number of

links (users) in cell n. Since each user must be allocated at least one subchannel, we require Nc ≥ Ln

for all n ∈ N .

Base station n allocates ηn,m ∈ N \ {0} subchannels to its user m, and naturally ηn,m can never

exceed Nc, the total number of subcarriers. The feasibility constraint on the allocation vector is:

∑
m∈Cn

ηn,m ≤ Nc.

To maintain consistency with the assumption of a flat transmit power spectrum across all subcarriers,

it will be used with equality here:

∑
m∈Cn

ηn,m = Nc. (1)
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Let η denote the N -tuple of such allocation vectors for the network.

Link [n,m] is allocated ηn,m subchannels indexed by a set Hn,m. Due to frequency hopping, the

physical subcarrier allocated to subchannel i ∈ Hn,m changes every hop. Thus, we model the gain on

subchannel i by a positive random variable G
(i)
n,m with a continuous distribution function.

Denote the transmit power of base station n by qn, and let q = (qn)n∈N be the vector of total powers

for the network. Clearly, the SIR achieveable on subchannel i ∈ Hn,m is random, since it depends on the

random channel gain on the allocated subcarrier, and also on the random gains of all the interfering cells

on this subcarrier. Although the hopping pattern corresponding to subchannel i ∈ Hn,m is associated

with base station n, there will always be interference from other cells, since each cell spreads its power

uniformly over the subcarriers. Let G
(i)
k,m denote the instantaneous path gain on subchannel i ∈ Hn,m

from base station k to mobile m, valid for k 6= n. This is the path gain on the particular physical

subcarrier that subchannel i ∈ Hn,m has chosen.

Denote the receiver noise power at user m ∈ Cn by σ2
m > 0. Then, the random signal to interference

and noise ratio (instantaneous SIR) on subchannel i of link [n, m] is

γ(i)
n,m(q) =

G
(i)
n,m qn

σ2
m +

∑
k∈N ,k 6=n G

(i)
k,m qk

. (2)

This formula is a consequence of the flat transmit power spectra of the base stations.

We assume that the rate achieveable on this subchannel, in bits per channel use, is f(γ
(i)
n,m(q)), a

deterministic function of the SIR. We assume that f(γ) is a continuous, increasing function of γ, with

f(0) = 0. A specific example is the function f(γ) = log2(1 + γ), which applies if the link is optimal

with respect to Shannon capacity.

Let the total system bandwidth be W Hz. Since there are Nc subcarriers, the OFDM symbol duration is

Nc/W seconds. The total rate available to user m ∈ Cn is then given by W
Nc

∑
i∈Hn,m

f
(
γ

(i)
n,m

)
bits/sec.

In this paper, we normalize the total system bandwidth to unity and work with spectral efficiency, so

in this sense the available rate for user m ∈ Cn (in the given hop) is given by

Rn,m(q, ηn,m) =
∑

i∈Hn,m

R(i)
n,m(q) bits/sec/Hz. (3)
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where

R(i)
n,m(q) =

1

Nc

f(γ(i)
n,m(q)) bit/sec/Hz. (4)

Let Rtar
n,m > 0 be the normalized target rate for user m ∈ Cn in bits/sec/Hz. Then the outage probability

of user m, with ηn,m subchannels, when the power allocation for the network is q, is given by

θn,m(q, ηn,m) = P


 ∑

i∈Hn,m

R(i)
n,m(q) < Rtar

n,m


 . (5)

We define the cell outage probability as the maximum outage probability of the users in the cell.

When the power allocation is q and the subchannel allocation for the cell is ηn, we define the outage

probability of cell n to be:

Ωn(q,ηn) = max
m∈Cn

θn,m(q, ηn,m). (6)

III. MININIMIZING THE MAXIMUM OUTAGE PROBABILITY

The objective of this paper is to derive good algorithms for allocating powers and subcarriers to users

to balance the outage probabilities across the entire network whilst not consuming too much transmit

power. There is background noise in the model, so outage probabilities can always be reduced by

increasing transmit powers, subject to diminishing returns. Thus we begin with a formulation in which

the total transmit power in the entire network of cells is constrained. The algorithm we derive to solve

this problem is centralized, but we consider distributed formulations in later sections of the paper.

A. Joint Power and Subchannel Allocation Problem

Suppose that a given total power level, qtotal, must be shared amongst the base stations in the network.

Let Q denote the set of feasible power vectors:

Q = {q ∈ RN
+ :

∑
n∈N

qn = qtotal}, (7)

where R+ is the strictly positive reals. A joint power and subchannel allocation problem is the following:

min
q,η

max
n∈N

Ωn(q,ηn) (8a)
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such that

q ∈ Q, (8b)

∑
m∈Cn

ηn,m = Nc, ∀n ∈ N . (8c)

This problem formulation has the nice property that it has a solution for any set of rate requirements. An

alternative formulation is to minimize the total power subject to individual outage probability targets for

the users. The latter problem is also interesting, but has the disadvantage that it may be infeasible, and

there is no known way to determine, a priori, whether a given problem instance is feasible or not. In the

present paper, we find the min-max formulation above to be very useful in comparing the performance

of different practical algorithms that we propose in Section IV.

In this section, we will obtain an algorithm to solve the Joint Power and Subchannel Allocation

Problem (8), assuming the existence of a Genie which can evaluate the outage probability function

θn,m(q, ηn,m) in (5). In practice, there is no known formula for evaluating (5). Moreover, the outage values

cannot be physically measured without briefly trying each possible power and subchannel allocation.

Thus this algorithm is not in itself a solution for real-time implementation. Our approach will be to use

it as an off-line technique to solve the Joint Power and Subchannel Allocation Problem (8), to provide a

benchmark against which to compare the performance of practical algorithms. To do this, we will replace

the Genie with Monte-Carlo estimates of the outage probabilities. Note that the algorithm becomes of

practical interest for real-time implementation as soon as one can replace (5) with a practical technique to

measure or estimate the outage probabilities. In Sections V and VI, we will provide practical, distributed,

suboptimal algorithms that do not require a Genie.

B. The Genie-aided subchannel allocation algorithm

We begin with the sub-problem of allocating subchannels to users, under a fixed allocation of transmit

powers to the base stations in the network. The additional problem of selecting these transmit powers

is addressed in Section III-C.

Since the base stations use a uniform transmit PSD, if the transmit power allocation for the network
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is fixed, varying the subchannel allocation for the users within a given cell will not affect the subchannel

allocation for the users in any other cell. Thus, the subchannel allocation for users in each cell can be

done independently, without knock-on effects between cells.

Our aim is to obtain a subchannel allocation for users in each cell that minimizes the maximum

outage probability among the users in the cell. The corresponding optimization problem for a typical

cell n is:

min
ηn

Ωn(q,ηn) (9a)

such that

∑
m∈Cn

ηn,m = Nc. (9b)

Since q is fixed, the problems in (9), one for each cell, are independent of each other. Furthermore,

since the number of subchannels is a discrete quantity, it may not be possible to obtain a subchannel

allocation that exactly equalizes the outage probabilities among the same cell users.

Since q is fixed, we will drop the dependence of R
(i)
n,m and θn,m on q in the notation in this section.

Before presenting the algorithm to solve (9), we begin with some structural results. The function Ωn

defined in (6) provides the maximum outage probability in cell n. Analogously, define the minimum

outage probability in cell n:

ωn(q,ηn) = min
m∈Cn

θn,m(q, ηn,m). (10)

Denote the optimal value of the problem (9) by Ω∗
n, and an optimal subchannel allocation in cell n by

η∗n. Observe that the function θn,m(q, ·) in (5), treating ηn,m as the argument, is monotonically decreasing

in ηn,m. The following lemma and corollary follow from this fact.

Lemma 1: For any subchannel allocation ηn satisfying (9b) we have that

ωn(q,ηn) ≤ Ω∗
n ≤ Ωn(q,ηn).

Proof: If ωn(q,ηn) > Ω∗
n then by the monotonicity of θn,m(q, ·) we have that ηn,m ≤ η∗n,m for all

m ∈ Cn, with strict inequality for at least one m ∈ Cn. But this contradicts (9b). The second inequality

in the statement of the lemma follows from the fact that Ω∗
n is the minimum in (9a).
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Corollary 2: If ωn(q,ηn) = Ωn(q,ηn) for a subchannel allocation ηn satisfying (9b) then ηn is a

solution to problem (9).

We now use Lemma 1 to construct an optimal solution to problem (9), the Genie-aided subchannel

allocation algorithm:

• Initialization: Let ηn be an arbitrary feasible channel allocation. Set k ← 0. Define η
(0)
n by

η(0)
n,m ← min{x : θn,m(q, x) ≤ ωn(q, ηn)}.

• While
∑

m∈Cn
ηn,m(k) > Nc

– m ← argmin
m∈Cn

θn,m(η(k)
n,m − 1)

– Construct η
(k+1)
n from η

(k)
n by setting

η(k+1)
n,m ← η(k)

n,m − 1

– k ← k + 1

• endwhile

Although η
(0)
n need not in general be feasible, the algorithm terminates with a feasible allocation

η
(K)
n after K =

∑
m∈Cn

η
(0)
n,m−Nc ≥ 0 steps. Note that θn,m(η

(k)
n,m) ≤ Ω∗

n for all m ∈ Cn for k = 0, and

for all k up to k = K by induction on the following lemma, whence η
(K)
n solves (9).

Lemma 3: For any ηn = (ηn,m)m∈Cn , if

• θn,m(ηn,m) ≤ Ω∗
n, ∀m ∈ Cn, and

•
∑

m∈Cn
ηn,m ≥ Nc + 1,

then

min
m∈Cn

θn,m(ηn,m − 1) ≤ Ω∗
n. (11)

Proof: Let νm = min{i ∈ Z : θn,m(i) ≤ Ω∗
n}. Then

∑
m∈Cn

νm ≤ Nc, since at least one feasible

vector achieves Ω∗
n. The two hypotheses above imply that ηn,m ≥ νm for all m ∈ Cn, with strict

inequality for some m′ ∈ Cn. Since ηn,m is an integer, monotonicity of θ(q, ·) implies that

θn,m′(ηn,m′ − 1) ≤ θn,m′(νm′) ≤ Ω∗
n.
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The Genie-aided subchannel allocation algorithm will be an important subroutine in the algorithm, to

be presented in Section III-C below, for finding a solution to the Joint Power and Subchannel Allocation

Problem (8).

C. Solving the Joint Power and Subchannel Allocation Problem (8):

Just as it was useful to have notation for the maximum and minimum outage probabilities within a

cell, it is useful to have notation for the maximum and minimum cell outage probabilities across the

network. Let

Ω(q,η) = maxn∈N Ωn(q,ηn)

and

ω(q, η) = minn∈N Ωn(q,ηn).

Note that Ω(q,η) is the value of the objective function to be minimized in (8). Further, for any subset

of cells, X ⊆ N , define:

ΩX(·, η) = maxn∈X Ωn(·,ηn) (12)

which, for fixed X and η, is a function of power levels q.

We begin with a method for taking an arbitrary feasible power and subchannel allocation (q,η)

(thus q ∈ Q) and improving it. To do this we will appeal to some simple continuity and monotonicity

properties of the mapping ΩX(·, η); see Appendix A. These properties are not surprising, given known

results for standard power control [6], and they are stated and proven in Appendix A.

The method of improvement will define a function T that maps a feasible power and subchannel

allocation pair (q,η) (thus q ∈ Q) to a new feasible power allocation vector q̄. Thus, to define the

mapping T , we provide a single power update step: Given a feasible power vector q ∈ Q and a

subchannel allocation η, a new feasible power vector, q̄ = T (q,η), is generated by Power Update. The

key property is that this power update improves the objective function, i.e., Ω(q̄,η) ≤ Ω(q,η), with

inequality unless the power is already optimal.
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Power Update: Define ψ = 1
2
(Ω(q, η) + ω(q,η)). Let D = {n | Ωn(q, ηn) > ψ} and D̄ = N\D 6= ∅.

Here, D (if nonempty) consists of cells for which the outage probabilities should be decreased and D̄

consists of cells for which the outage probabilities can be increased to achieve that. If D = ∅ then there

is no change: set q̄ = q. Otherwise, calculate q̄ as follows:

• Scale the powers of cells in D̄ by the same factor λ until the maximum outage probability of

the cells in D̄ equals the maximum outage probability of the cells in D. Let the resultant power

allocation be q̂, i.e.,

q̂n =





qn, n ∈ D

λqn, n ∈ D̄.

(13)

Note that λ < 1 as D 6= ∅, and so
∑

n∈N q̂n <
∑

n∈N qn. Satisfying the above condition follows

immediately from the continuity, and monotonicity results in Appendix A (Lemmas 9 and 10,

respectively). As we scale λ from 1 down to 0, the outage probabilities in D decrease, and the

outage probabilities in D̄ increase, achieving value 1 at λ = 0, and all are continuous functions of

λ. This implies that there exists a unique λ equalizing the maximum outage probabilities in D and

D̄.

• Now scale up the powers of all cells by the same factor µ which is given by

µ =

∑
n∈N qn∑
n∈N q̂n

> 1.

Let the resultant power allocation be q̄, i.e.,

q̄n =





µqn, n ∈ D

λµqn, n ∈ D̄.

with
∑

n∈N q̄n =
∑

n∈N qn.

This concludes the definition of the power update, and hence of the mapping T .

It is clear that Power Update is centralized in the way the values of λ and µ are determined, and it

requires the Genie to return the outage probabilities as a function of powers and subchannel allocations.

Power Update takes a vector of powers q and, if it is not optimal (D 6= ∅), generates a new vector of
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powers q̄ by increasing the powers of the cells in D by a factor of µ and decreasing the powers of the

cells in D̄ by a factor of

λµ =
λ

∑
n qn∑

n∈D qn + λ
∑

n∈D̄ qn

< 1, (14)

where the inequality uses D 6= ∅.

We now propose an iterative application of the power update procedure:

Genie-aided Joint Algorithm:

• Initialization: Start with an initial power allocation q(0) which is feasible, i.e., satisfies
∑

n∈N q
(0)
n =

qtotal. Find an optimal subchannel allocation η(0) to work with q(0) by solving (9) for each cell

using the Genie-aided subchannel allocation algorithm. Set k = 0.

• Repeat:

– Set k ← k + 1

– Using (q(k−1),η(k−1) as the input to the Power Update, obtain a new power allocation q(k). In

other words, set q(k) = T (q(k−1), η(k−1)).

– Find an optimal subchannel allocation η(k) to work with q(k) by solving (9) for each cell using

the Genie-aided subchannel allocation algorithm.

• Until false

We claim that the above algorithm solves the Joint Power and Subchannel Allocation Problem (8),

as stated in Theorem 5, below. But first it is necessary to make a statement about the uniqueness of

the solution to the Joint Power and Subchannel Allocation Problem. Indeed, we will prove that there

is a unique solution for the power allocation, q∗, in (8). Typically, η∗ will also be unique, but there

are scenarios in which users in the same cell can swap subchannels without affecting the maximum

outage probability in the cell. For example, if two users swap a subchannel, one outage probability will

decrease and the other will increase; there exist parameters for which the maximum of the two will

remain unchanged. In the following, we will use E to denote the set of optimal subchannel allocation

vectors.

Theorem 4: There is a unique solution for the optimal power allocation, q∗, in the Joint Power and
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Subchannel Allocation Problem (8). There may be more than one subchannel allocation, η∗, in the

set E, i.e., for which (q∗,η∗) solves (8), but any subchannel allocation η∗ that equalizes Ωn(q∗,η∗),

n ∈ N provides an optimal solution. Given q∗, any solution of (9) in each cell will provide a subchannel

allocation η∗ ∈ E.

Proof: See Appendix C.

Let Ω∗ denote the optimal value in the Joint Power and Subchannel Allocation Problem, and let Ω(k)

be the value generated at step k of the Genie-aided Joint Algorithm, i.e., Ω(k) = Ω(q(k),η(k)). The

following theorem specifies the convergence properties of Genie-aided Joint Algorithm.

Theorem 5: 1) Ω(k) is a decreasing sequence that converges to Ω∗ as k ↑ ∞.

2) q(k) → q∗ as k ↑ ∞.

3) The sequence (q(k), η(k)) has accumulation points, and for any accumulation point (q,η), we have

q = q∗ and η ∈ E.

4) There exists an integer, M , such that ∀k ≥ M, η(k) ∈ E.

Proof: see Appendix D.

In summary, the Genie-aided Joint Algorithm starts with an arbitrary feasible power allocation and

improves it with respect to the objective function of (8) at each iteration. After each power update, it

solves (9) in each cell using the Genie-aided subchannel allocation algorithm (Section III-B). The power

level in each cell is guaranteed to converge to the unique optimal power allocation, and the maximum

outage probabilities in all cells tend to the same value. After a finite number of steps, the subchannel

allocation becomes and remains optimal, although it can switch from one optimal allocation to another.

IV. A PRACTICAL APPROACH TO POWER AND SUBCHANNEL ALLOCATION

In the following sections we present more practical algorithms that do not require evaluation of

outage probabilies (5) at every power or bandwidth update. In this section, we present an overview of

our approach, which involves decoupling the power updates from the subchannel updates, and using

fade margins in the power update part of the algorithm.
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Our approach to power control in fading channels is to use fade margins: Random, frequency-selective

fading parameters are averaged over frequency to obtain average channel gains, and only these average

gains are used in the power control algorithm. The power control algorithm uses enhanced rate targets,

to provide a margin to protect against the fluctuations from fading. The objective of the power control

algorithm is to minimize total average power [6]. Given the fade margin, the power control algorithm

does not need to consult an outage probability Genie during power updates. We remark that selecting

the fade margin is a one-parameter optimization problem that can be handled numerically, or one can

simply measure performance across a range of possible fade margins and choose a desired operating

point.

In standard power control, subchannels are allocated first, as a function of the data rate requirements of

the users, and then per-user power allocation is used to try to achieve the enhanced data rate requirements

of the users. We will consider this approach in Section VI below, and we will thereby obtain a transmit

power spectrum that is not in general flat.

In Section V, we propose a novel power control algorithm that does provide flat transmit power

spectra. In this approach, we reverse the usual ordering of subchannel allocation and power control, and

select the power levels to be used by the base stations first. Once the power levels are fixed, we then

provide a practical method of subchannel allocation (Section V-B). Since the transmit power spectra

at all base stations are flat, subchannels can be re-allocated amongst the users in the cell without any

knock-on effects to other cells, just as in Section III-B. The subchannels can be allocated in each cell

to approximately minimize the maximum outage probability in the cell, as we describe in Section V-B.

The whole algorithm is summarized in Section V-D.

We will investigate the performance of these algorithms as the fade margin is varied from small to

large. Given a fade margin, the performance of both proposed algorithms can be measured numerically

and compared with each other, and with the Genie-aided Joint Algorithm. The performance metrics are

the min-max outage probability measure, (8), and the total average power measure, (7). Note that the

Genie-aided Joint Algorithm is parameterized by total power consumption, (7), so it is easy to make
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this comparison.

V. POWER FIRST ALGORITHM

This section provides a novel power and subchannel allocation algorithm, which adheres to the

framework of having a flat transmit power spectrum at each base station. As the name suggests, the

power levels in each cell are chosen first, and the subchannels are chosen based on these power levels.

In fact, the subchannel allocation algorithm can be run independently of the power allocation algorithm:

The only pre-requisite of the subchannel allocation algorithm is that the power levels used by the

base stations are fixed on the time-scale of the algorithm, and the transmit spectra are flat. These

prerequisites are met by the power control algorithm that we describe in Section V-A. Taken together,

the two algorithms can be viewed as a joint method for power and subchannel allocation.

A. Power allocation

In this subsection, we avoid the Genie by proposing a power control algorithm whose objective is

that of minimizing the total average transmit power, as in classical power control formulations [6]. We

will address the problem of selecting suitable fade margins in Section VII, but in this section, the rate

targets are assumed to be the enhanced rate targets chosen after fade margins have been applied, and

for the remainder of this subsection, outage probabilities are not considered.

The novel feature of this algorithm is the flat transmit power spectrum at each base station. Compared

to the standard power control algorithm [6], the base stations lose the ability to independently vary the

per-user power levels, but they can still vary the total power spectral density. Moreover, they can control

the share of power allocated to each mobile by varying the amount of bandwidth that is allocated to each

user. It is important to note that bandwidth allocation we refer to in this subsection is only virtual: Only

the power levels will be used by the system. Since the bandwidth allocations derived by the algorithm

are not actually to be used, we allow them to take continuous values, rather than integer values. In

Section V-B, we will propose a subchannel allocation algorithm that does takes account of the discrete

nature of the subchannels.
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For a given subchannel allocation, let the weight vector wn = ηn/Nc denote the proportions of (virtual)

subchannels allocated to each user in cell n, and w be the corresponding N -tuple of weight vectors.

Constraint (1) becomes
∑

m∈Cn
wn,m = 1. Recall from Section II that the total system bandwidth is

normalized to unity. Thus, wn,m represents the normalized bandwidth allocated to user m ∈ Cn. Since

the total power at base station n is qn, the power allocated to user m is pn,m = wn,mqn.

Let Ḡk,m be the average path gain of link [k, m] to user m in cell n from a base station k (not

necessarily k = n). Then, the value for the signal to interference and noise ratio at m ∈ Cn that we

will use is

γ̄n,m(q) =
Ḡn,mqn

σ2
m +

∑
k∈N ,k 6=n Ḡk,mqk

(15)

which in practice will be a simple ratio of average power measurements. This can be measured by each

user m, and transmitted to its controlling base station n, without global co-ordination. We now formulate

the power control problem as a power minimization subject to all users achieving rates Rmargin
n,m > Rtar

n,m,

which exceed their target rates by a fade margin (see Section VII). The formulation is:

min
q,w

∑
n∈N

qn (16a)

such that for all n,

wn,m f (γ̄n,m(q)) ≥ Rmargin
n,m , ∀m ∈ Cn, (16b)

∑
m∈Cn

wn,m = 1, (16c)

wn,m > 0, ∀m ∈ Cn, (16d)

qn > 0. (16e)

Note that, in the formulation above, the weights wn,m are allowed to be continuous.

The problem (16) is studied in [31] and there it is shown that if there is a solution, it is unique, and

an algorithm is proposed that finds the unique solution when it exists. We use it to obtain the power

allocation for the base stations. The algorithm is summarized as follows.
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Decentralized Power Control Algorithm:

Initialization: Start with any initial power vector q(0) > 0. Set k ← 0.

Repeat:

• Compute a pseudo-weight ŵn,m for each user m given the power vector q(k) (using (16b)):

ŵn,m =
Rmargin

n,m

f(γ̄n,m(q(k)))
, ∀m ∈ Cn.

Define σ̂n =
∑

m∈Cn
ŵn,m. Note that the vector ŵn computed above is infeasible if σ̂n > 1.

• Compute a feasible weight vector w(k)
n by normalizing ŵn:

w(k)
n,m =

ŵn,m

σ̂n

, ∀m ∈ Cn.

• Use the newly computed w(k)
n to compute the target transmit power ρ̂n,m for each user m ∈ Cn

(using (16b)):

ρ̂n,m =
q
(k)
n

γ̄n,m(q(k))
f−1

(
Rmargin

n,m

w
(k)
n,m

)
, ∀m ∈ Cn

• Compute the transmit power to use for the next iteration:

q(k+1)
n =





min
m∈Cn

ρ̂n,m, if σ̂n > 1

max
m∈Cn

ρ̂n,m, otherwise.

• Increment k.

Until false

Each iteration of this algorithm can be considered as a mapping from q(k) to q(k+1). Although this

mapping does not satisfy the monotonicity condition required in Yates’ framework [6], the convergence

of the algorithm can be proved by examining the sequence of power vectors generated. For any sequence

(q(k))∞k=0 generated by the algorithm, a monotonically non-increasing upper bounding sequence, and a

monotonically non-decreasing lower bounding sequence, can be constructed with the property that both

bounding sequences provably converge to the minimal solution. This implies that the sequence (q(k))∞k=0

also converges to the minimal solution. See [31] for the details of this argument.

Once the power levels are deemed to have converged, we then invoke the subchannel allocation part

of the joint algorithm, described in Section V-B below.
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B. Subchannel Allocation under a Fixed Power Allocation

In this subsection, we assume that power levels are fixed, and power spectra are flat, pre-requisites

that are met by the Decentralized power control algorithm described in Section V-A. If we had access to

the Genie, we could apply the Genie-aided subchannel allocation algorithm (Section III-B), to obtain the

optimal subchannel allocation given the fixed power levels. Indeed, we will provide numerical results

for this approach in Section VIII, but in this section, we propose a more practical subchannel allocation

algorithm that does not require a Genie.

This subsection revisits the subchannel allocation problem (9). It will derive an algorithm amenable

to practical implementation, which serves as a subroutine in the Power First algorithm of the present

section. However, it is more general than that, and can be applied to any power allocation that is flat

across the frequency band.

Since q is fixed, we will again drop the dependence of R
(i)
n,m and θn,m on q in the notation in this

section.

Note that R
(i)
n,m are all identically distributed because of frequency hopping. Let Zn,m =

∑
i∈Hn,m

R
(i)
n,m,

E[R
(i)
n,m] = µn,m and variance of R

(i)
n,m be β2

n,m. Since the power allocation is fixed, each mobile can

measure the distribution of its own SIR, γ
(i)
n,m, over a sufficient period. From this, it can calculate the

distribution of R
(i)
n,m by (4), and hence µn,m and β2

n,m. These two values are then transmitted to the base

station. Define

Ẑn,m(ηn,m) =
Zn,m − ηn,m µn,m√

ηn,m βn,m

. (17)

The outage probability of user m is given by

θn,m(ηn,m) = P (Ẑn,m(ηn,m) < Bn,m(ηn,m)) (18)

where

Bn,m(ηn,m) =
Rtar

n,m − ηn,mµn,m√
ηn,m βn,m

. (19)

The simplification in this section comes by assuming that the Ẑn,m(ηn,m) are approximately identically

distributed.
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By definition, these random variables share the same first two moments. The approximation is

particularly reasonable if all the ηn,m are moderately large and R
(i)
n,m are independent, for then the

central limit theorem applies. Independence represents the case in which the number of users in the cell

is large and no user gets allocated a large proportion of the subchannels. As a result, a user’s allocation

of subchannels can be well separated in frequency, hence the average correlation between subchannels

on a given link can be neglected.

We claim that the approximation is reasonable even when the ηn,m are not large. The numerical results

will demonstrate that this approximation is “reasonable” in that it yields outage probabilities very close

to those of the benchmark Genie-aided algorithm.

Under the assumption that Ẑn,m are identically distributed, the right hand side of (18) shows that

minimizing the maximum of θn,m(ηn,m) is equivalent to minimizing the maximum of Bn,m’s among the

users. This yields the following optimization problem:

min
ηn

max
m∈Cn

Bn,m(ηn,m) (20a)

such that

∑
m∈Cn

ηn,m = Nc, (20b)

ηn,m ∈ Z+, ∀m ∈ Cn. (20c)

Note that there are N cells, each with its own subchannel allocation problem. Since the transmit powers

at the base stations are held fixed, each problem can be solved independently of the others, as was the

case in Section III-B.

C. Practical Subchannel Allocation Algorithm

The Practical Subchannel Allocation Problem (20) is a nonlinear integer programming problem, which

is combinatorial in nature. It may have multiple solutions, but has at least one since the number of users

in cell n is Ln ≤ Nc. The following Practical Subchannel Allocation Algorithm is an O(Ln log Ln)

algorithm that exactly solves (20).
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The first step is to solve the continuous relaxation of (20):

min
xn

max
m∈Cn

Bn,m(xn,m) (21a)

such that

∑
m∈Cn

xn,m = Nc, (21b)

xn,m ∈ R+, ∀m ∈ Cn. (21c)

Note that xn,m are not required to be integers and xn = (xn,m)m∈Cn . Note also that the inverse of

Bn,m(·) is

xn,m(Bn,m)=



√

(Bn,mβn,m)2+4µn,mRtar
n,m−Bn,mβn,m

2µn,m



2

where the “+” has been taken in the quadratic implied by (19) since √xn,m ≥ 0.

Lemma 6: The problem (21) has a unique solution x∗n, and Bn,m(x∗n,m) = B̃∗
n for all m ∈ Cn.

Moreover,
∑

m∈Cn
xn,m(Bn) is strictly decreasing in Bn.

Proof: The final claim holds since xn,m(·) is strictly decreasing. Thus
∑

m∈Cn
xn,m(Bn) = Nc has

a unique solution Bn = B̃∗
n since xn,m(−∞) = ∞ and xn,m(∞) = 0. Thus the unique solution to (21)

is x∗n,m = xn,m(B̃∗
n) for all m ∈ Cn, due to the monotonicity of Bn,m(·).

Lemma 6 shows that (21) can be solved by binary search on Bn.

Let B∗
n be the minimum of the original problem (20). Then, B̃∗

n ≤ B∗
n. Now define a vector η̄n =

(η̄n,m)m∈Cn with

η̄n,m = dxn,m(B̃∗
n)e, ∀m ∈ Cn. (22)

Since η̄n,m ≥ xn,m(B̃∗
n) and Bn,m(.) is monotonically decreasing, Bn,m(η̄n,m) ≤ B̃∗

n ≤ B∗
n, ∀m ∈ Cn.

Furthermore,
∑

m∈Cn
η̄n,m ≥ Nc.

If
∑

m∈Cn
η̄n,m =Nc then the problem (21) has an integral solution, which solves (20). Alternatively,

∑
m∈Cn

η̄n,m ≥ Nc + 1. Note that Bn,m(η̄n,m) ≤ B∗
n, for all m ∈ Cn, whence the excess in the number

of allocated subchannels can be reduced, analogous to Lemma 3.

Lemma 7: For any ηn = (ηn,m)m∈Cn , if
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• Bn,m(ηn,m) ≤ B∗
n, ∀m ∈ Cn, and

•
∑

m∈Cn
ηn,m ≥ Nc + 1, then,

min
m∈Cn

Bn,m(ηn,m − 1) ≤ B∗
n. (23)

Proof: Let η∗n = (η∗n,m)m∈Cn be a subchannel allocation that solves (20) (not necessarily unique).

Since
∑

m∈Cn
ηn,m ≥ Nc +1 and

∑
m∈Cn

η∗n,m = Nc, there exists a user m′ ∈ Cn such that (ηn,m′−1) ≥

η∗n,m′ . Since Bn,m(.) is monotonically decreasing, Bn,m′(ηn,m′ − 1) ≤ Bn,m′(η∗n,m′) ≤ B∗
n.

An integral solution to Problem (20) can be constructed by successively applying Lemma 7 zero or

more times, starting with the allocations in η̄n, and terminating after at most Ln steps in such a solution.

This provides us with an algorithm, but also the proof of the following theorem:

Theorem 8: Problem (20) for cell n can be solved in time O(Ln log Ln), where Ln is the number of

mobiles in cell n.

Proof: First note that B̃∗
n is the minimum of the relaxed problem (21). Problem (21) can be solved

by first determining the value of B̃∗
n and then using it to find x∗n. Initial bounds on B̃∗

n can be constructed

by selecting an xn > 0 which satisfies
∑

m∈Cn
xn,m = Nc, and then setting Bu

n = max
m∈Cn

Bn,m(xn,m)

and Bl
n = min

m∈Cn

Bn,m(xn,m), giving
∑

m∈Cn
xn,m(Bl

n) ≥ Nc ≥
∑

m∈Cn
xn,m(Bu

n). The bisection search

converges exponentially fast, at a rate independent of Ln. The computation of
∑

m∈Cn
xn,m(Bn) at each

step of the bisection search is linear in Ln.

The algorithm to compute the solution to (20) is constructed as follows. We start with η
(0)
n = η̄n and

note that this allocation involves rn =
∑

m∈Cn
η̄n,m−Nc excess subchannels, which need to be removed.

We do this iteratively. Suppose η
(k)
n has rn− k > 0 excess subchannels, and satisfies Bn,m(η

(k)
n,m) ≤ B∗

n,

for all m ∈ Cn. Then Lemma 7 applies. In particular, removing a subchannel from user m′ that satisfies

m′ = arg min
m∈Cn

Bn,m(η(k)
n,m − 1) (24)

results in a new subchannel allocation η
(k+1)
n that has rn − (k + 1) excess subchannels, and satisfies

Bn,m(η
(k+1)
n,m ) ≤ B∗

n for all m ∈ Cn. Note that implementation of (24) does not require knowledge of

B∗
n. By induction, we obtain after rn steps that there are no excess subchannels, so we must be at a
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solution to the problem (20). The number of iterations is linear in Ln. Each iteration requires (24),

which is a minimization over Ln elements. At an initial cost of Ln log Ln, a priority queue can be used,

with cost O(log Ln) per iteration [32].

The proof of Theorem 8 provides an algorithm to solve the practical subchannel allocation problem

which we shall call the Practical Subchannel Allocation Algorithm. Note that the algorithm is not

equivalent to subtracting one subchannel each from the rn users with the smallest Bn,m(η̄n,m − 1), as

there are cases where more than one subchannel must be removed from the same user.

The relevance of the Practical Subchannel Allocation Problem (20) is based on an approximation, and

the Practical Subchannel Allocation Algorithm solves this problem. We will measure the true outage

probability performance of the algorithm in Section VIII, and examine the validity of the approximation

via numerical examples.

D. Power first: a joint power and subchannel allocation algorithm

In summary, we have proposed two distinct algorithms that are to be applied one after the other:

Power First Algorithm: A two stage power and subchannel allocation algorithm

1) Power allocation: Select increased target rates using a fade margin (Section VII). Choose base

station transmit powers using the above decentralized power control algorithm, using averaged

channel gains and averaged interference measurements.

2) Subchannel Allocation: With the above transmit powers, determine a subchannel allocation using

the Practical Subchannel Allocation Algorithm to minimize the maximum outage probability of

the users.

Let us now consider some implementation issues.

We assume that the mobile can measure both its own signal’s received power, and the total interference

plus noise power, in each of its subchannels. This enables the mobile to measure both the numerator,

and denominator, of (2), for each of its subchannels, which is required in the subchannel allocation part

of the algorithm. By averaging these measurements across the subchannels, and across several hops,

the mobile obtains moving average estimates of the numerator and denominator, respectively, of (15),
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a quantity required in the power allocation part of the algorithm. During the averaging process, the

mobile’s signal hops across the entire system frequency band.

During the Power First Algorithm, the mobile obtains (15), as above, and sends it back to the base

station; the base station then computes the next power level to use based on feedback from all users

in the cell. The subchannel allocation part requires the mean and variance of R
(i)
n,m, as defined in (4),

but this is a simple function of (2). Again, the mobile can keep track of these statistics, and send the

mean and variance back to the base station, so that the base station can compute a new subchannel

allocation. In practice, the time taken to collect the statistics will dominate the time to run the Practical

Subchannel Allocation Algorithm. Note that the statistics only need to be collected once, prior to the

commencement of the Practical Subchannel Allocation Algorithm.

Finally, note that we have presented these two components (power allocation and subchannel alloca-

tion) as occuring in series, but this is only for ease of exposition. In practice, the two algorithms could

be run on different time-scales: For example, the power updates could occur less frequently than the

subchannel updates. The numerical results in the present paper are for the order as presented above,

however.

VI. SUBCHANNEL FIRST ALGORITHM

In this section, we present the standard approach, in which subchannels are allocated first, as a function

of the data rate requirements of the users, and then per-user power allocation is used to try to achieve

the data rate requirements of the users [7]. The Subchannel First Algorithm allocates subchannels in

direct proportion to the data rate requirements of the users. The remaining task is then to select the

transmit power levels on each subchannel.

As in Section V, we will will apply a fade margin to obtain enhanced rate targets. However, once

the enhanced rate targets are fixed, the power control algorithm we employ is the standard one [6].

In applying the standard power control algorithm, we use average powers, averaged over the fading

parameters. The objective of the standard power control algorithm is to minimize the sum of all transmit

powers subject to meeting the (enhanced) data rate constraints of the users.
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The subchannel first algorithm is summarized as follows.

Subchannel First Algorithm:

1) Subchannel allocation: The base station allocates subchannels to each user in direct proportion to

the data rate requirements of the users.

2) Power allocation: Select increased target rates using a fade margin (Section VII). Apply the standard

power control algorithm [6] in each subchannel. Interference measurements are averaged over many

hops, and hence over all users in other cells (due to frequency hopping).

Note that the transmit power spectrum at a base station under the Subchannel First Algorithm will

not in general be flat. For example, a user with a poor average gain will receive more transmit power

than a user with higher gain and the same data rate target. Both users will operate at the same spectral

efficiency, so the amount of transmit power allocated per subchannel will be different for the two users.

VII. FADE MARGINS

We now discuss the way fade margins are incorporated into the above heuristic algorithms. We

describe three different methods, which we term a) power margin, b) additive rate margin and c) mul-

tiplicative rate margin. All three are applicable to both the Power First and the Subchannel First

algorithm. Each approach has one free parameter; increasing the parameter decreases the maximum

outage probability, but increases the total power consumption.

In the power margin approach, the data rate is not altered, but once the power levels are calculated,

each is incremented by a fixed amount (in dB). This is the IS95 approach to fade margins. In the

Subchannel First Algorithm, this amounts to scaling the power on each link by a common factor. In the

Power First Algorithm, the total power from each base station is scaled by a common factor. Using a

power margin decreases the outage probability of all links at the expense of increased transmit power.

The additive rate margin approach adds a fixed amount, ∆R, to the data rate requirement of each

user. Similarly, the multiplicative rate margin approach scales the rate target of each user by a fixed

constant. Note that if data rate requirements are the same for all users then these two are equivalent.

However, they differ when traffic is heterogeneous, as in Section VIII.
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If Ln is equal for all cells n, then power margins and rate margins are equivalent in the interference-

free, high-SNR case. However, they differ when Ln differs, which is the focus of this paper.

The rate margin approach (either kind) gives more power to links operating at high spectral efficiency

than it gives to links operating at low spectral efficiency. This follows because power increases expo-

nentially with rate. Recall that the power first algorithm assigns power to a base station and a virtual

bandwidth to each link to meet the data rate requirements, when fading is not considered. In the virtual

bandwidth allocation, links with good channel conditions (high average SIR) get less virtual bandwidth

and operate at high spectral efficiency. When we consider fading, these links get less frequency diversity,

and suffer higher outage probabilities. Rate margins compensate for the lack of diversity: they result in

more virtual bandwidth being allocated to such links, forcing other links to operate at higher spectral

efficiency. We would expect then that outage probabilities will be fairer, given the diversities are now

more similar. Indeed, numerical results confirm that rate margins are better than a power margin, in

minimizing the maximum outage probability for a given power consumption.

One scheme can be called superior to another if the maximum outage probability is measured to

be lower for the same total amount of transmit power. Numerical results indicate that rate margins

are clearly superior to power margins for both the Power First Algorithm and the Subchannel First

Algorithm. Of the two rate margins, the multiplicative is better than the additive, albeit only marginally

so for the Subchannel First Algorithm. For this reason we use a multiplicative rate margin in the

numerical results presented in the following section.

VIII. NUMERICAL RESULTS

In this section, we numerically evaluate and compare the performances of all the schemes proposed

in this paper. We also address the effectiveness of various heuristics, including the heuristic subchannel

allocation scheme proposed in Section V-C.

Primarily, we will evaluate and compare the performances of the Subchannel First Algorithm, the

Power First Algorithm, and the Genie-aided Joint Algorithm. We will compare these with the perfor-

mance of three other algorithms, which we will call “Subchannel only”, “Flat spectrum, rounding”, and
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“Power first, Genie reallocation”, to highlight the effects of individual building blocks.

“Subchannel only” is the Practical Subchannel Allocation Algorithm (Section V-C) applied after

allocating each base station an equal amount of transmit power: All the complexity is in the subchannel

allocation. This is the reverse of the Subchannel First Algorithm, in which all the complexity is in

the power control. By comparing “Subchannel only” with both the Subchannel First Algorithm, and

the Power First Algorithm, we will demonstrate the relative importance of power control. Note that

“Subchannel only” is not the subchannel allocation part of the Subchannel First Algorithm, it is the

subchannel allocation part of the Power First Algorithm.

The purpose of “Flat spectrum, rounding” is to show that the subchannel allocation used in the Power

First Algorithm is actually needed. Recall that the Power First Algorithm has a power allocation part

followed by a subchannel allocation part. The power first part provides a virtual bandwidth allocation,

and this bandwidth allocation can be rounded to obtain a discrete subchannel allocation. Rounding is

performed by thresholding the fractional part of the number of channels allocated, with a threshold

chosen such that the rounded numbers sum up to be Nc.

The purpose of “Power first, Genie reallocation” is to demonstrate the effectiveness of the heuristic

subchannel allocation scheme proposed in Section V-C. In “Power first, Genie reallocation”, the power

allocation part of the Power First Algorithm is run first, but the Practical Subchannel Allocation

Algorithm (Section V-C) is replaced by the Genie-aided subchannel allocation algorithm (Section III-B).

If the heuristic based on the Central limit theorem were no good, then there would be a significant

difference in performance between the Power First Algorithm and “Power first, Genie reallocation”.

The results of all six schemes are depicted in Fig. 2, for the following cellular radio scenario. The

cellular network consists of 7 hexagonal cells with each cell having a radius of 500 m. The base stations

are located at the center of their respective cells. There are 70 users, uniformly randomly distributed

in the network (refer to Fig. 1). Each user is served by the base station with the strongest average

channel strength to that user. The rate target for each user is chosen uniformly at random from a set

{r, 2r, 3r, 4r}, where r is a scaling factor to enable us to consider the impact of different traffic loads.
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Fig. 1. Network configuration

Log-distance path loss [33] with a path loss exponent of 4 is used (with the reference distance set to

50 m). The log-normal shadowing has a mean of 0 dB and a standard deviation of 8 dB for all distances.

The noise spectral density is 10−19 W/Hz at each receiver.

The system implements Latin square design based fast frequency hopping. There are Nc = 113

subcarriers in the system (when Nc is a prime, there is a simple construction of Latin square design

based fast frequency hopping). As the FFT implementation requires the number of subcarriers to be a

power of 2, this can correspond to a system with 128 subcarriers, with the remainder to be used as pilot

and null subcarriers. Within each link, the subcarrier gains are independent and Rayleigh distributed

about the flat fading gain. Monte Carlo simulations were used for calculating the outage probabilities

of the users.

Figure 2 plots the maximum user outage probability against the total symbol energy for three different

values of r. The symbol energy (plotted on the horizontal axis) is a function of the multiplicative rate

margin applied, but a different function for each algorithm: A particular rate margin will not have the

same effect on each algorithm, but we can compare the algorithms across the whole range of rate

margins, which is the way Fig. 2 was generated. From Fig. 2, we can compare the outage performance

of each algorithm at the same level of total transmit power.

The first thing to notice from Fig. 2 is the extremely poor performance of “Subchannel only”, which
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confirms the importance of power control. This result is not unexpected, since more heavily loaded cells

need more power, and an equal allocation of power between cells is too rigid. Moreover, our metric

captures the maximum outage probability; “Subchannel only” might not look so bad if we measured

average outage probability, for example. The Power First Algorithm does much better, but “Flat spectrum,

rounding” shows that the initial virtual subchannel allocation in the Power First Algorithm needs to be

improved. We conclude that the power allocation in “Subchannel only”, and the subchannel allocation

in “Flat spectrum, rounding”, are both deficient.

Now consider the Power First Algorithm and, in particular, the heuristic Practical Subchannel Allo-

cation Algorithm (Section V-C). In “Power first, Genie reallocation”, the heuristic Practical Subchannel

Allocation Algorithm is replaced by the Genie-aided subchannel allocation algorithm (Section III-B).

There is very little difference between the two. Further numerical results (not shown) reveal that the

Genie-aided subchannel allocation algorithm produces an almost identical allocation to the heuristic,

with only half a dozen of the 7Nc = 791 subchannels allocated differently. Although the number

of subchannels is typically small, the good performance of the heuristic inspired by the central limit

theorem is presumably because the Rayleigh fading distribution is already quite similar to a Gaussian,

and the central limit theorem applies to the sum of any number of Gaussian random variables. These

two schemes are outperformed by the Genie-aided Joint Algorithm because the latter is free to readjust

powers based on the new channel allocation.

We now focus on the three proposed schemes: the Power First Algorithm, the Subchannel First

Algorithm and the Genie-aided Joint Algorithm. Notice that the outage performance of all schemes

improves with transmit power. With smaller rate margins, these schemes have similar maximum outage

performance. However, the Genie-aided Joint Algorithm and the Power First Algorithm benefit more

from increased rate margins than does the Subchannel First Algorithm. Overall, the performance of the

Genie-aided Joint Algorithm is the best of these three schemes, while the Subchannel First Algorithm

is the worst. One can conclude that Power First Algorithm is significantly better than Subchannel First

Algorithm in the scenario that we simulated.
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Fig. 2. The outage performance of the schemes with varying rate margins. The total symbol energy increases with the rate margin

applied. The r values of 300, 400, 600 kbit/sec were used.

We now compare the distribution of user outage probabilities for the three schemes: the Power First

Algorithm, the Subchannel First Algorithm, and the Genie-aided Joint Algorithm. Figure 3 shows the

distribution of user outage probabilities for all schemes when r = 400 kbits/sec. The rate margins of

30% (Power First Algorithm) and 26% (Subchannel First Algorithm) were chosen to make the total

symbol energy equal (to 1.09 × 10−7 W/Hz) for all schemes. The outage probabilities of users are

grouped by cells, with the probability values sorted in descending order in each cell. Note that the

outage performances of the Power First Algorithm and the Genie-aided Joint Algorithm are much better
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Fig. 3. Outage performance of the users when r = 400 kbits/sec. The rate margins for the Subchannel First Algorithm (26%) and the

Power First Algorithm (30%) were selected to make all schemes use a same total symbol energy. The outage probabilities of same cell

users are sorted in descending order.

than that of the Subchannel First Algorithm. Furthermore, the Genie-aided Joint Algorithm indeed

achieves nearly equal cell outage probabilities as it solves the min-max outage probability minimization

problem (8). The Power First Algorithm also has similar cell outage probabilities even though it takes a

suboptimal (relative to the objective in (8a)), but realizable, two stage approach to resource allocation.

In a dynamic environment, it is important that a resource allocation algorithm be able to track changing

conditions. The rapid convergence of the Power First Algorithm is demonstrated in Fig. 4, which shows

that the power allocation converges after around six iterations for the case r = 300 kbit/sec.

IX. CONCLUSIONS

This paper has considered the problem of minimizing the maximum outage probability across all

users in a multiple user, multiple cell OFDM cellular network under frequency selective fading. The

problem involves the joint allocation of power and bandwidth to each user.

Much of the literature on resource allocation for OFDM cellular networks focuses on problem
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Fig. 4. Time evolution of power spectral density of each cell during the first phase of the Power First Algorithm, normalized by the

power spectral density after the first iteration.

formulations which turn out to be NP-hard [12]. Our formulation turns out to be tractable, and this is

primarily because we adopt a frequency hopping framework, which benefits from interference averaging,

and makes all subchannels essentially equivalent. Nevertheless, the system is interference-limited, and

there is a strong coupling between all the users in the network. The tractability of the problem we pose

requires proof, which we supply in this paper.

The min-max problem is formulated under the constraint that the transmit power spectrum at each

base station must be flat. This is a non-standard constraint, and the solution to this problem provides

a novel method of power control that does not fall into the classical framework of Yates [6]. The total

power level at each base station is updated at each step of the power control algorithm, but the way

that it is allocated to each user in the cell is via a novel method of subchannel allocation. Indeed, we

provide the Genie-aided Joint Algorithm: a joint power and bandwidth allocation algorithm to solve

the min-max optimization problem. We show it does much better than the standard approach of first
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allocating the bandwidth in a fixed way, and then providing a power only update algorithm.

The Genie-aided Joint Algorithm suffers from the fact it is centralized, and it also requires a method

to compute outage probabilities, which we do not provide in this paper. In the terminology of the

paper, the Genie-aided Joint Algorithm requires a Genie to supply these outage probabilities, when

needed by the algorithm. For this reason we propose a number of more practical algorithms, which are

decentralized, and which do not require the Genie. Of particular interest is the Power First Algorithm,

which is similar to Genie-aided Joint Algorithm in that each base station controls an overall power

level, uses a flat transmit power spectrum, and controls the per-user power allocation via the allocation

of subchannels to the individual users.

The Power First Algorithm is a two stage power and subchannel allocation algorithm. The power

allocations are obtained first by applying a multiplicative rate margin to the user rate targets and using

the average received power measurements. The second stage allocates numbers of subchannels to users.

This allocation is performed by the Practical Subchannel Allocation Algorithm within each cell in order

to minimize the maximum outage probability in the cell. This balancing of outage probabilities is done

independently in each cell using the locally measured channel statistics, independent of other cells. In

practice, the two stages can run on different time-scales; the Practical Subchannel Allocation Algorithm

can be run for any fixed allocation of transmit powers, not just the optimal ones.

A key benefit of using the Power First Algorithm as a method for resource allocation is that it avoids

a combinatorial explosion as the number of users and subcarriers grows large. In particular, the first

stage (power control) is not combinatorial (it is a continuous relaxation of a combinatorial problem)

and it converges exponentially fast, as is typical for power control algorithms of this type. The second

stage Practical Subchannel Allocation Algorithm is combinatorial, but converges in time O(Ln log Ln),

where Ln is the number of users in the cell, as shown in Theorem 8. The use of frequency hopping is

crucial at this step.

We compared the performance of the Power First Algorithm with the standard approach of first allo-

cating subchannels (independently of the interference coupling between cells) and then doing standard
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power control (referred to as the Subchannel First Algorithm in this paper). Numerical investigations

showed that the proposed Power First Algorithm is significantly superior with respect to the objective

of minimizing the maximum outage probability. One plausible explanation is that a flat transmit power

spectrum reduces the interference fluctuations in the system. In the Subchannel First Algorithm, per-user

power densities are allocated according to user locations, and as a result interference levels fluctuate

more wildly than in the Power First Algorithm. This may be harmful to outage capacity, although we

remark that the same conclusion cannot be made with respect to ergodic capacity.

APPENDIX

A. Continuity and monotonicity properties of various outage probability expressions

The following lemmas will be used in the proof of convergence of the Genie-aided joint algorithm

in Section III-C.

Lemma 9: For any subchannel allocation η, the following functions are continuous functions of the

first argument on the closure of Q, for any n ∈ N , m ∈ Cn and X ⊆ N :

θn,m(·,η) Ωn(·, η)

ΩX(·,η) = maxn∈X Ωn(·, ηn) Ω(·,η) = ΩN (·, η)

ωX(·, η) = minn∈X Ωn(·, ηn) ω(·, η) = ωN (·,η)

Proof: The continuity of θ follows from the continuity of R
(i)
n,m(q) and the assumption that the

fading has a continuous distribution. For a detailed argument, see [34].

The remaining statements follow since the maximum and minimum of continuous functions are

continuous.

Lemma 10: The cell outage probability Ωn satisfies

1) Ωn(q, ηn) is monotonically decreasing in qn.

2) Ωn(q, ηn) is monotonically increasing in qk, for all k 6= n.

3) If α > β, then

Ωn(αq, ηn) < Ωn(βq,ηn). (25)
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Lemma 10 is a corollary of the following:

Lemma 11: The per-user outage probability has the following monotonicity properties:

1) θn,m(q, ηn,m) is monotonically decreasing in qn.

2) θn,m(q, ηn,m) is monotonically increasing in qk, for all k 6= n.

3) If α > β, then

θn,m(αq, ηn,m) < θn,m(βq, ηn,m). (26)

Proof: The events of interest strictly increase or decrease, in the sense of set inclusion, with the

corresponding changes in power levels. The result then follows from the axioms of probability. For a

detailed argument, see [34].

B. Structural results about T (q,η), Ω(q,η), and some related functions

This section contains results useful for proving Theorem 5.

An important monotonicity property of T is stated in the following lemma.

Lemma 12: If ω(q,η) < Ω(q,η) then

Ω(T (q,η), η) < Ω(q,η). (27)

Proof: We recall the definition of the set D from Power Update in Section III-C. Let q̄ denote

T (q,η). Since ω(q,η) < Ω(q,η), whence D 6= ∅, it follows that T is defined in terms of (13). Let q̂

denote the vector in (13), where λ is the scaling of the powers of the cells in D̄. Note that the existence

and uniqueness of λ and the fact that λ < 1 is established in Power Update in Section III-C. Then

Ω(q̂, η) = max
n∈N

Ωn(q̂, ηn) < max
n∈N

Ωn(q,ηn) = Ω(q,η) (28)

by Lemma 10(2), since the maximum outage occurs at a cell in D, and λ < 1. On the other hand,

Lemma 10(3) implies that Ω(q̄, η) < Ω(q̂,η). The result follows.

The remainder of this section will establish the following lemma, which is used in Appendix D.

Lemma 13: If ω(q,η) < Ω(q,η) then there exists a neighbourhood A of q such that

Ω(T (q′,η),η) < Ω(q,η) ∀q′ ∈ A.
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The proof of this lemma is complicated by the fact that T is not continuous in q, because of the

discontinuity in the set D, as q varies. In the remainder of this section, the subchannel allocation η will

be fixed, and will be omitted from the notation where it is not ambiguous. We will make explicit the

dependence of D and ψ on q, with

D(q) = {n : Ωn(q) > ψ(q)}. (29)

Note that ψ(q) is continuous in q by Lemma 9.

The set of indices, D(q), in (29), is not continuous in q. To avoid discontinuities in T that occur when

D(q) changes, we will fix the set of indices under consideration, as follows: Let (X, X̄) be a partition

of {n = 1, 2, . . . N}, let ΩX(q) = maxn∈X Ωn(q), and let QX = {q ∈ RN
+ : ΩX̄(q) < ΩX(q)}. Let

TX : QX → RN
+ be the mapping defined by the Power Update procedure, but with the set D replaced

by X . Thus, the powers of the cells in X̄ are scaled down by a common factor λ until the maximum

outage probability of the cells in X is the same as the maximum outage probability of the cells in X̄ .

Let λX(q) denote the value of λ at which this equality occurs. The resulting power allocation is

q̂n(q) =





qn, n ∈ X

λX(q)qn, n ∈ X̄.

(30)

Then all the powers in q̂ are scaled up by the common factor µ(q̂) = ‖q‖1/‖q̂‖1, and TX(q) is defined

to be this new value:

TX(q) =





µ(q̂(q))qn, n ∈ X

µ(q̂(q))λX(q)qn, n ∈ X̄.

(31)

Note the similarity between the definition of TX and the mapping T defined in Section III-C of the

paper. Indeed, T (q) = TD(q)(q) for q ∈ Q. The following lemma is more general than Lemma 12, but

is proven in exactly the same way.

Lemma 14: For any q ∈ QX with ω(q) < Ω(q), we have Ω(TX(q)) < Ω(q).

However, in contrast to T , the mapping TX is continuous:

Lemma 15: Each TX is continuous on its domain QX .
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Proof: We first show that λX(q) is continuous. Note that the domain of TX is open. Consider an

arbitrary q ∈ QX . Define g1 : QX×R+ → R such that g1(q, `) is the maximum outage probability of the

cells in X when the powers of cells in X̄ are scaled by `. Define g2 as the maximum outage probability

in X̄ under the same conditions. Let h = g1−g2. Note that h is continuous and strictly increasing in its

second argument, always negative when l = 0, and positive when l = 1, which implies that h(q, l) = 0

has the unique solution l = λX(q) for any q ∈ QX . For any q0 ∈ QX , let `0 be the unique point

for which h(q0, `0) = 0. Since h is defined in a neighbourhood around (q0, `0), and is continuous, the

version of the implict function theorem in [35] implies that there is a unique, continuous function `(·)

defined in a neighbourhood of q0 for which h(q, `(q)) = 0. Thus λX(q) = `(q) is continuous in q at

every q ∈ QX . Hence q̂(q) is also continuous in q. It is clear that µ(q̂) is a continuous function of q̂.

From the definition (31), each component of TX is a composition of continuous functions, and hence

TX is continuous.

Lemma 16: Suppose ω(q) < Ω(q). Then for all q′ in a neighbourhood of q, we have that D(q) ⊆

D(q′) and ΩD(q′)(q) = Ω(q).

Proof: Under the hypothesis, there is an ε > 0 such that

D(q) = {n : Ωn(q) ≥ ψ(q) + ε} 6= ∅ (32)

Since Ωn and ψ are continuous functions of q, it follows that for q′ sufficiently close to q, we have that

both ψ(q′) < ψ(q)+ ε/2 and Ωn(q′) > Ωn(q)− ε/2. If n /∈ D(q′) then Ωn(q) < ψ(q′)+ ε/2 < ψ(q)+ ε.

But (32) then implies that n /∈ D(q), establishing the first claim. The second claim follows since the

cell with highest outage probability is in D(q), hence in D(q′).

We are now in a position to prove the main result of this section: Proof of Lemma 13:

Proof: Assume that the statement in the lemma is false. Then there exists a sequence of power

vectors q(k) converging to q with the properties that D(q(k)) = D′ and

Ω(T (q(k))) = Ω(TD′(q(k))) ≥ Ω(q), for all k. (33)

Note that D′ need not be D(q), but q ∈ QD′ . To see this, note that ω(q) < Ω(q) implies ψ(q(k)) is

bounded away from Ω(q), whence ΩD̄′(q(k)) is also, yet ΩD′(q(k)) → ΩD′(q) = Ω(q) by Lemma 16.
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Thus, ΩD̄′(q) < ΩD′(q), which gives q ∈ QD′ as claimed. Thus, by Lemma 14,

Ω(TD′(q)) < Ω(q) (34)

But by Lemma 15, Ω(TD′(q(k))) → Ω(TD′(q)), and thus, by (33),

Ω(TD′(q)) ≥ Ω(q). (35)

But this contradicts (34), establishing the lemma.

C. Proof of Theorem 4

The following lemmas are useful in establishing the uniqueness of the power allocation in solutions

to (8).

Lemma 17: Let (q∗,η∗) be a solution to (8). Then,

1) All cell outages are equal:

Ωn(q∗, η∗n) = Ω∗, ∀n ∈ N . (36)

2) For all n ∈ N , η∗n solves (9) for cell n.

Proof: For 1), suppose that ω(q∗,η∗) < Ω(q∗,η∗). By Lemma 12 (Appendix B), Ω(T (q∗,η∗),η∗) <

Ω(q∗,η∗), which contradicts the optimality of (q∗,η∗). For 2), suppose that η∗n does not solve (9) in

cell n. Let η′n be an optimal subchannel allocation in cell n. Construct a new subchannel allocation,

η†, from η∗ by replacing η∗n with η′n. Then ω(q∗, η†) < Ω(q∗, η†) and it then follows from Lemma 12

that Ω(T (q∗,η†)) < Ω(q∗,η∗) which is a contradiction to the fact that (q∗,η∗) is an optimal solution

to (8).

To prove the uniqueness of the optimal power allocation, we need to show that if (q†,η†) solves

problem (8), then properties 2) and 3) below must hold in addition to 1) (which holds by definition).

Lemma 18: Let (q∗,η∗) be a solution to (8), and let Ω∗ be the optimal value (the minimum). Suppose

that an allocation (q†,η†) of powers and subchannels has the following properties:

1)
∑

n∈N q†n = qtotal and

2) η†n solves (9) under the power allocation of q†, for all n ∈ N .
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3) There exists an Ω† such that

Ωn(q†,η†n) = Ω†, ∀n ∈ N .

Then, q∗ = q† and Ω∗ = Ω†.

Proof of Lemma 18

Proof: Suppose that q∗ 6= q†. Define

δ = max
n∈N

q†n
q∗n

> 1 (37)

where the inequality follows from hypothesis 1). Let b be a cell that achieves this maximum. We have

that q†b = δq∗b and δq∗ ≥ q†. From Lemma 11(3), in Appendix A, we have

θb,m(q∗, η∗b,m) > θb,m(δq∗, η∗b,m), ∀m ∈ Cb. (38)

Since δq∗b = q†b and δq∗n ≥ q†n,∀n 6= b with at least one with strict inequality, we obtain the following

inequality using Lemma 11(2):

θb,m(δq∗, η∗b,m) > θb,m(q†, η∗b,m), ∀m ∈ Cb. (39)

Since η†b is optimal for cell b under q†, we also have

max
m∈Cb

θb,m(q†, η∗b,m) ≥ max
m∈Cb

θb,m(q†, η†b,m). (40)

Thus, Ωb(q∗,η∗n) > Ωb(q†,η†n). Consequently Ω∗ > Ω†, which contradicts the optimality of (q∗,η∗).

Thus q∗ = q†. The result follows since both η∗ and η† solve (9) for q∗.

Theorem 4 is an immediate corollary of Lemmas 18 and 17.

D. Proof of Theorem 5

Proof: Lemma 12 (Appendix B) implies

Ω(q(k),η(k−1)) ≤ Ω(q(k−1),η(k−1)) = Ω(k−1),

since T (q, η) = q if ω(q,η) = Ω(q, η). But since the Genie-aided subchannel allocation algorithm

(Section III-B) cannot increase the maximum outage probability in each cell,

Ω(k) = Ω(q(k),η(k)) ≤ Ω(q(k),η(k−1))
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These imply Ω(k) is non-increasing in k. Since it is bounded,

Ω(k) ↓ Ω for some Ω (41)

Now notice that since q(k) ∈ Q, the sequence (q(k),η(k)) is bounded, and hence accumulation points

exist, and the powers at the accumulation points are in the closure of Q. Now Ω(k) ↓ Ω(q,η) for any

accumulation point (q, η) of the sequence (q(k), η(k)), so Ω(q,η) must be the same for all accumulation

points of that sequence. We now show that ω(q,η) = Ω(q,η) at any accumulation point (q, η). Let

(ki)
∞
i=1 denote a convergent subsequence, with η(ki) = η for all i, q(ki) → q as i ↑ ∞. Assume instead

that ω(q,η) < Ω(q,η). Then by Lemma 13 in Appendix B,

Ω(T (q(ki),η), η) < Ω(q, η)

for i sufficiently large. But q(ki+1) = T (q(ki),η), and hence for i sufficiently large,

Ω(ki+1) ≤ Ω(q(ki+1),η) < Ω(q,η)

which contradicts (41). Thus it must be that Ω(q, η) = ω(q,η) and by Corollary 2 (Section III-B), ηn

is a solution of (9) for all n. The three hypotheses of Lemma 18 (Appendix C) are therefore true at

(q, η) from which it follows that q = q∗, and Theorem 4 gives η ∈ E. This establishes claims 1)–3)

in the statement of Theorem 5. The last claim, 4), follows from the fact that if it were not true, there

would exist an infinite subsequence converging to an accumulation point (q′,η′) with the property that

η′ is not an element of E, but that would contradict claim 3) in Theorem 5.
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