
Neuron Splitting for Efficient Feature Map
Format ion

Lachlan L. H. Andrew
Department of Electrical and Electronic Engineering

University of Melbourne, Parkville, Victoria 3052, Australia
Iha@ee.mu. OZ. AU

Abstract -Kohonen’s Self Organising Feature
Map (SOFM) produces an ordered mapping
from one space to another. This paper de-
scribes an algorithm inspired by the splitting
initialisation for the classical LBG method for
vector quantiser design, which allows the effi-
cient generation of maps with various topolo-
gies and with high local and global ordering.

I. INTRODUCTION

Kohonen’s Self Organising Feature Map (SOFM)
[l] is a biologically plausible artificial neural network
modeling the formation of an ordered mapping be-
tween specific concepts and locations in the brain.
The resulting map is ordered, or topology preserv-
ing, and also reflects the distribution of its inputs in
the sense that regions of the input space with a high
probability density are allocated more output values
(neurons) than regions of low probability. This has
proved to be useful in many applications [2-51. An-
other algorithm which also provides a mapping with
some useful ordering is the LBG or generalised Lloyd
algorithm [6] using the splitting initialisation. By
forming a global structure on smaller maps and then
splitting them once the order has formed, this al-
gorithm leads to efficient implementations on serial
computers, but it is limited to producing a single
topology. Although this topology is useful for tree
search vector quantisers [7] and progressive transmis-
sion [3], it is but one of the many useful topologies.
This paper presents an algorithm combining the ef-
ficiency of the LBG algorithm with the generality of
the SOFM algorithm, by allowing a wide range of
topologies to be generated using splitting.

11. SUMMARY O F THE EXISTING ALGORITHMS

A . SOFM training

Kohonen’s SOFM algorithm is a type of soft com-
petitive learning. When an input vector z is pr+
sented to the network, the neuron, T, whose weight
vector, wr, is closest to 2, is selected as the winner.

All neurons are then updated according to the rule

%(t + 1) = w s (t) + r?(t)hrs(t)(z - w3(t)) ,

where w, is the weight vector of neuron s, is the
learning rate, and h,, is the neighbourhood function.
For each neuron T there is a vector r in the output
space, which is typically one or two dimensional, and
the neighbourhood function is normally a decreasing
function of the distance in output space between its
two arguments:

h , s (t) = h(llr - sll,t), (1)

where h is a monotonically decreasing function. It is
the updating of neighbours, governed by the neigh-
bourhood function, that imparts the structure on the
codebook by causing the weights of neurons which are
close in output space also to be close in input space,
since they are updated from the same input vector 2.

It is also responsible for making sure that all neurons
represent some part of the input space, since neurons
outside the convex hull of the input space are grad-
ually brought towards it when their neighbours win.

To ensure a good global ordering of the map, it
is necessary that, in the early stages, the neighbour-
hood function cover many of the neurons. In detailed
simulations, the neighbourhood is often chosen to be
a function of infinite support such as a Gaussian,
whose variance decreases as training proceeds. How-
ever, many simulations neglect the weak long range
interactions in later stages and simply use a piecewise
constant neighbourhood

1 if d 5 @ (t)
0 otherwise h(d , t) =

where h(d , t) is the function in (1) and B(t) is a thresh-
old which decreases as training proceeds. It has been
shown [3] that the LBG algorithm with splitting de-
scribed below is of this form, when the neurons are
arranged appropriately in output space.

B. LBG training
The LBG algorithm is a batch training algorithm

which generalises Lloyd’s algorithm for scalar quan-

10
0-7803-24@4-8/941$4.00 01994 EEE

tiser design [SI. Without the splitting component, it
consists simply of repeatedly applying two steps:

LBGl Partition all the training vectors to be used
in this epoch such that each is assigned to the
neuron with the closest weight vector.

LBG2 Adjust the weight vector of each neuron to
the centroid of the training vectors assigned to
it.

The splitting algorithms initially trains a network
of only one neuron. When this has trained sufficiently
that further training produces negligible change, a
copy of this neuron is created, with a small ran-
dom offset to enable a meaningful partition to be
formed in the next LBGl stage. When these two
have trained sufficiently, each neuron is again split
and the process is repeated until the network of the
required size is created. When training has finished,
the resulting mapping has some structure since two
neurons which split early must spread far apart to
represent the input adequately, while neurons which
split late need not change much. This structure is
enhanced if at each stage, each of the new neurons
has the same offset added. If neurons are numbered
such that the ith bit is set if the neuron is derived
from one created during the ith split, then the neuron
numbering reflects the structure.

If the SOFM is implemented on a serial computer,
the cost of selecting the winner increases with net-
work size. This increase is typically linear, although
fast optimal methods exist [9], and many suboptimal
fast searches exist. If a given proportion of the neu-
rons are to be covered by the neighbourhood function
in the early stages of training, then the update cost is
also linear in network size. Thus substantial compu-
tational savings can be made by using the splitting
approach to reduce the size of the network in the
initial stages.

111. SPLITTING ARBITRARY TOPOLOGIES

Since the LBG algorithm provides no means for
enforcing order on the mapping between splits, it is
limited to implementing one topology. An increased
range of topologies can be generated by including ex-
plicit local interactions at each stage, as the SOFM
does by means of its neighbour updates. Any topol-
ogy can then be generated as long as the new neu-
rons introduced by the splitting can be fitted into
the lattice without disrupting its structure. Since the
expansion of the network replaces a shrinking neigh-
bourhood, only the winner and its nearest neighbours
need to be updated (19(t) = l), further reducing com-
putation from that of the SOFM. Care must be taken
that the splitting process does not disturb the or-

11

der introduced by the SOFM, or equivalently, care
must be taken that the two sources of order cooper-
ate rather than competing. Below are descriptions of
how the splitting algorithm may be combined with
some common topologies.

A . Linear Chain
No special care is required to generate a linear

topology, since that is very close to the topology al-
ready generated by the splitting algorithm. Indeed,
this linear splitting is already in common usage (see
for example [IO]). Splitting is achieved by the assign-
ment

w r = WrJ2,

where wv denotes the new neuron weight, w, denotes
the old weight, and / denotes integer division with
truncation. This inserts the new nodes next to the
nodes from which they split. A final network whose
size, m, is not a power of two may be generated by
replacing the final split with one of the form

Wv- = w (r 2 -) ~ m > (2)

where 2" is the size of the network before splitting.
If the final size, m, has a factor which is a power of
two then the partial split can be performed before
the final stage, allowing more time for the network
to smooth out the non-uniformity caused by the un-
even split. Clearly the same strategy can be used to
split a closed loop, changing only the neighbourhood
function.

B. Rectangular Lattice
One of the most useful topologies [3] is a rectangu-

lar lattice on either a flat sheet or a torus. In order
to form the two dimensional mapping, the splitting
must occur in each dimension of the output space.
This could be achieved by splitting each neuron into
four, but a simpler way is to split each dimension al-
ternately. Thus the mappings have dimensions l x l,
2 x 1, 2 x 2, 4 x 2, and so on up to the desired size.
Thus splitting alternates between

wr,r2 = W,,/2,r2

and
Wr,rt = W ~ , , r o / 2

This generates networks whose final size is a power of
two and whose sides are in the ratio 1:l or 2:l. Net-
works whose sides are not powers of two, but which
are in a ratio between 1:l and 2:l may easily be gen-
erated by applying a partial split analogous to (2) on
each of the last two splits, while ratios n:l, n > 2 can
be achieved by splitting one way more often than the

other. Again this splitting can easily be used to split
a cylinder or torus by adjusting the neighbourhood
function appropriately.

C. Other Topologies
In general, n dimensional splitting of a hyperrect-

angular lattice can be achieved by cycling through
the dimensions, splitting one at a time. In the case
of the hypercube topology [4], each dimension only
gets split once before the final size is reached. Thus
extra training after the final split is required in order
to make sure that each dimension is fully exploited.

Although it is less straightforward, a hexagonal lat-
tice can be split in several ways by splitting the net-
work as though it were a rectangular lattice, but u s
ing the explicit interactions of a hexagonal network.

IV. DIRECTION OF SPLITTING

In the original LBG algorithm [6], splitting was
achieved by simply adding a random vector to each
duplicate neuron. This is a simple but clearly sub-
optimal method. It may not provide a split in a use-
ful direction, requiring more iterations to cause the
weight vectors to represent the true clusters, or in
the case of an ordered map, it may disturb the order
of the network. A solution to the first problem has
been proposed [ll], based on splitting the neuron in
the direction of greatest variance. This is an effec-
tive solution to the first problem, at the expense of
a small amount of work to calculate the appropriate
direction. A simple solution to the second problem is
to split in the direction of the line joining the neuron
to its neighbour. If the probability density is locally
approximately uniform, as is the case with smooth
clusters or large output maps, then the optimal posi-
tion for the new neuron is the midpoint between the
two neurons which will be on either side of it in the
new lattice (midpoint splitting). If the distribution is
not known to be approximately uniform then the new
neuron can be formed close to the existing neuron,
but still in the same direction. This is the direction
which can be expected to be optimal. It is shown
experimentally that even with no explicit interaction
between neurons this can produce substantial order-
ing.

V. RESULTS

Results of computer simulations are shown in fig-
ure 1. These are the results of training a 16 x 16
node flat network with random data uniformly dis-
tributed on a square using batch updates. Each of
the 80 batches consisted of presenting 256 random
vectors, and the network was split after every eight
batches until its full size was reached. In trials with

I

(e) (f)
Fig. 1. Results of networks trained with neigh-
bourhood radius 6' and various splitting strategies.
(a) 6' = 0, no splits (b) 6' = 1 , no splits (c) 6' = 0,
random splits (d) 6' = 1, random splits (e) 6' = 0,
midpoint splits (f) 6 = 1, midpoint splits

6' = 0, only the winner was updated, and when 6' = 1
a neighbourhood of eight neurons was also updated
with a constant interaction of h(1,t) = 0.1. In both
cases the learning rate for the ith batch was ~ (i) =

Clearly the map in fig. l (a) suffers from severe un-
deruse (many of the vectors have not been updated
at all) and is quite unacceptable. Local interactions
without splitting cause a map with fair local order
but no global order (fig. l(b)). Even the least ordered
of those using splitting, that using random splitting
and no explicit interaction (fig. l(c)), provides a de-
tectable degree of global ordering. Midpoint split-
ting clearly increases the local order considerably,
while neurons with explicit local interactions as well

2/(2 + i).

12

as splitting form highly ordered maps (fig. l(d),(f)).
Greater order could have been achieved using a larger
number of vectors per batch to obtain greater aver-
aging of the random process, or by increasing the
explicit interactions, but parameters have been se-
lected which highlight the effect of splitting, and the
results suffice to demonstrate the superiority of nets
employing splitting over those only using explicit lo-
cal interactions between neurons.

VI. CONCLUSION
It has been shown that feature maps with good

global and local ordering can be produced efficiently
using only local interactions between neurons by ini-
tially training small maps and then splitting them
to form larger ones. By using an appropriate split-
ting procedure, different topologies can be generated
by the splitting alone, even without explicit interac-
tions.

VII. ACKNOWLEDGMENT

The author would like to thank his supervisor, Dr
M. Palaniswami, for his comments on drafts of this
manuscript. While performing this work, the author
was on a scholarship from the Australian Telecommu-
nications and Electronics Research Board (ATERB).

REFERENCES
T. Kohonen, “Self-organized formation of t o p e
logically correct feature maps,” Biol. Cybern.,
vol. 43, no. 1, pp. 59-69, 1982.
L. L. H. Andrew and M. Palaniswami, “A
study on the effect of neighbourhood functions
for noise robust image vector quantisation,” in
Proc. ICNN, (Orlando, FL), pp. 41594163,
1994.

L. L. H. Andrew and M. Palaniswami, “On the
effect of neighbourhood functions for image vec-
tor quantisers,” Submitted to IEEE n u n s . Neu-
ral Networks.
D. S. Bradburn, “Reducing transmission error
effects using a self-organizing network,” in Proc.
IJCNN, (Washington, DC), pp. 11-531-11-537,
1989.
K. K . Truong, “Multilayer Kohonen image code-
books with a logarithmic search complexity,” in
ICASSP 91, (Totonto, Canada), pp. 2789-2792,
1991.
Y. Linde, A. Buzo, and R. M. Gray, “An algo-
rithm for vector quantizer design,” IEEE Trans.
Commzm., vol. 28, pp. 84-95, Jan. 1980.
A. Buzo, A. H. Gray, J r , and R. M. Gray,
“Speech coding based upon vector quantzation,”
IEEE Trans. Accoust. Speech and Sig. Proc.,

S. P. Lloyd, “Least squares quantization in
PCM,” IEEE Trans. Inform. Theory, vol. 28,
pp. 129-137, March 1982.
C.-M. Huang, Q. Bi, G. S. Stiles, and R. W. Har-
ris, “Fast full search equivalent encoding algo-
rithms for image compression using vector quan-
tization,” IEEE Trans. Image Processing, vol. 1,
pp. 413416, July 1992.
J . V. Black, “Comparison of the performance of
vector quantiser training algorithms,” in Proc.
ICANN, (Brighton, UK), pp. 71-75,25-27 May,
1993.

vol. 28, pp. 562-574, Oct. 1980.

[l l] C.-M. Huang and R. W. Harris, “A comparison
of several vector quantization codebook genera-
tion approaches,” IEEE Bans . Image Process-
ing, vol. 2, pp. 108-112, Jan. 1993.

13

