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Abstract -Kohonen’s Self Organising Feature 
Map (SOFM) produces an ordered mapping 
from one space to another. This paper de- 
scribes an algorithm inspired by the splitting 
initialisation for the classical LBG method for 
vector quantiser design, which allows the effi- 
cient generation of maps with various topolo- 
gies and with high local and global ordering. 

I. INTRODUCTION 

Kohonen’s Self Organising Feature Map (SOFM) 
[l] is a biologically plausible artificial neural network 
modeling the formation of an ordered mapping be- 
tween specific concepts and locations in the brain. 
The resulting map is ordered, or topology preserv- 
ing, and also reflects the distribution of its inputs in 
the sense that regions of the input space with a high 
probability density are allocated more output values 
(neurons) than regions of low probability. This has 
proved to be useful in many applications [2-51. An- 
other algorithm which also provides a mapping with 
some useful ordering is the LBG or generalised Lloyd 
algorithm [6] using the splitting initialisation. By 
forming a global structure on smaller maps and then 
splitting them once the order has formed, this al- 
gorithm leads to efficient implementations on serial 
computers, but it is limited to producing a single 
topology. Although this topology is useful for tree 
search vector quantisers [7] and progressive transmis- 
sion [3], it is but one of the many useful topologies. 
This paper presents an algorithm combining the ef- 
ficiency of the LBG algorithm with the generality of 
the SOFM algorithm, by allowing a wide range of 
topologies to be generated using splitting. 

11. SUMMARY O F  THE EXISTING ALGORITHMS 

A .  SOFM training 

Kohonen’s SOFM algorithm is a type of soft com- 
petitive learning. When an input vector z is pr+ 
sented to the network, the neuron, T, whose weight 
vector, wr, is closest to 2, is selected as the winner. 

All neurons are then updated according to the rule 

%(t + 1) = w s ( t )  + r?(t)hrs(t)(z - w3(t)) ,  

where w, is the weight vector of neuron s, is the 
learning rate, and h,, is the neighbourhood function. 
For each neuron T there is a vector r in the output 
space, which is typically one or two dimensional, and 
the neighbourhood function is normally a decreasing 
function of the distance in output space between its 
two arguments: 

h , s ( t )  = h(llr - sll,t), (1) 

where h is a monotonically decreasing function. It is 
the updating of neighbours, governed by the neigh- 
bourhood function, that imparts the structure on the 
codebook by causing the weights of neurons which are 
close in output space also to be close in input space, 
since they are updated from the same input vector 2. 

It is also responsible for making sure that all neurons 
represent some part of the input space, since neurons 
outside the convex hull of the input space are grad- 
ually brought towards it when their neighbours win. 

To ensure a good global ordering of the map, it 
is necessary that, in the early stages, the neighbour- 
hood function cover many of the neurons. In detailed 
simulations, the neighbourhood is often chosen to be 
a function of infinite support such as a Gaussian, 
whose variance decreases as training proceeds. How- 
ever, many simulations neglect the weak long range 
interactions in later stages and simply use a piecewise 
constant neighbourhood 

1 if d 5 @ ( t )  
0 otherwise h(d , t )  = 

where h(d , t )  is the function in (1) and B(t) is a thresh- 
old which decreases as training proceeds. It has been 
shown [3] that the LBG algorithm with splitting de- 
scribed below is of this form, when the neurons are 
arranged appropriately in output space. 

B. LBG training 
The LBG algorithm is a batch training algorithm 

which generalises Lloyd’s algorithm for scalar quan- 
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tiser design [SI. Without the splitting component, it  
consists simply of repeatedly applying two steps: 

LBGl  Partition all the training vectors to  be used 
in this epoch such that each is assigned to the 
neuron with the closest weight vector. 

LBG2 Adjust the weight vector of each neuron to 
the centroid of the training vectors assigned to  
it. 

The splitting algorithms initially trains a network 
of only one neuron. When this has trained sufficiently 
that  further training produces negligible change, a 
copy of this neuron is created, with a small ran- 
dom offset to  enable a meaningful partition to be 
formed in the next LBGl stage. When these two 
have trained sufficiently, each neuron is again split 
and the process is repeated until the network of the 
required size is created. When training has finished, 
the resulting mapping has some structure since two 
neurons which split early must spread far apart to  
represent the input adequately, while neurons which 
split late need not change much. This structure is 
enhanced if at each stage, each of the new neurons 
has the same offset added. If neurons are numbered 
such that the ith bit is set if the neuron is derived 
from one created during the ith split, then the neuron 
numbering reflects the structure. 

If the SOFM is implemented on a serial computer, 
the cost of selecting the winner increases with net- 
work size. This increase is typically linear, although 
fast optimal methods exist [9], and many suboptimal 
fast searches exist. If a given proportion of the neu- 
rons are to  be covered by the neighbourhood function 
in the early stages of training, then the update cost is 
also linear in network size. Thus substantial compu- 
tational savings can be made by using the splitting 
approach to reduce the size of the network in the 
initial stages. 

111. SPLITTING ARBITRARY TOPOLOGIES 

Since the LBG algorithm provides no means for 
enforcing order on the mapping between splits, it is 
limited to  implementing one topology. An increased 
range of topologies can be generated by including ex- 
plicit local interactions at  each stage, as the SOFM 
does by means of its neighbour updates. Any topol- 
ogy can then be generated as long as the new neu- 
rons introduced by the splitting can be fitted into 
the lattice without disrupting its structure. Since the 
expansion of the network replaces a shrinking neigh- 
bourhood, only the winner and its nearest neighbours 
need to be updated (19(t) = l), further reducing com- 
putation from that of the SOFM. Care must be taken 
that the splitting process does not disturb the or- 
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der introduced by the SOFM, or equivalently, care 
must be taken that the two sources of order cooper- 
ate rather than competing. Below are descriptions of 
how the splitting algorithm may be combined with 
some common topologies. 

A .  Linear Chain 
No special care is required to generate a linear 

topology, since that is very close to the topology al- 
ready generated by the splitting algorithm. Indeed, 
this linear splitting is already in common usage (see 
for example [IO]). Splitting is achieved by the assign- 
ment 

w r  = WrJ2,  

where wv denotes the new neuron weight, w, denotes 
the old weight, and / denotes integer division with 
truncation. This inserts the new nodes next to the 
nodes from which they split. A final network whose 
size, m, is not a power of two may be generated by 
replacing the final split with one of the form 

Wv- = w ( r 2 - ) ~ m >  (2) 

where 2" is the size of the network before splitting. 
If the final size, m, has a factor which is a power of 
two then the partial split can be performed before 
the final stage, allowing more time for the network 
to  smooth out the non-uniformity caused by the un- 
even split. Clearly the same strategy can be used to  
split a closed loop, changing only the neighbourhood 
function. 

B. Rectangular Lattice 
One of the most useful topologies [3] is a rectangu- 

lar lattice on either a flat sheet or a torus. In order 
to form the two dimensional mapping, the splitting 
must occur in each dimension of the output space. 
This could be achieved by splitting each neuron into 
four, but a simpler way is to split each dimension al- 
ternately. Thus the mappings have dimensions l x l, 
2 x 1, 2 x 2, 4 x 2, and so on up to the desired size. 
Thus splitting alternates between 

wr,r2  = W,,/2,r2 

and 
Wr,rt = W ~ , , r o / 2  

This generates networks whose final size is a power of 
two and whose sides are in the ratio 1:l or 2:l. Net- 
works whose sides are not powers of two, but which 
are in a ratio between 1:l and 2:l may easily be gen- 
erated by applying a partial split analogous to  (2) on 
each of the last two splits, while ratios n:l, n > 2 can 
be achieved by splitting one way more often than the 



other. Again this splitting can easily be used to split 
a cylinder or torus by adjusting the neighbourhood 
function appropriately. 

C. Other Topologies 
In general, n dimensional splitting of a hyperrect- 

angular lattice can be achieved by cycling through 
the dimensions, splitting one at  a time. In the case 
of the hypercube topology [4], each dimension only 
gets split once before the final size is reached. Thus 
extra training after the final split is required in order 
to make sure that each dimension is fully exploited. 

Although it is less straightforward, a hexagonal lat- 
tice can be split in several ways by splitting the net- 
work as though it were a rectangular lattice, but u s  
ing the explicit interactions of a hexagonal network. 

IV. DIRECTION OF SPLITTING 

In the original LBG algorithm [6], splitting was 
achieved by simply adding a random vector to each 
duplicate neuron. This is a simple but clearly sub- 
optimal method. It may not provide a split in a use- 
ful direction, requiring more iterations to cause the 
weight vectors to represent the true clusters, or in 
the case of an ordered map, it may disturb the order 
of the network. A solution to the first problem has 
been proposed [ll], based on splitting the neuron in 
the direction of greatest variance. This is an effec- 
tive solution to the first problem, at the expense of 
a small amount of work to calculate the appropriate 
direction. A simple solution to the second problem is 
to split in the direction of the line joining the neuron 
to its neighbour. If the probability density is locally 
approximately uniform, as is the case with smooth 
clusters or large output maps, then the optimal posi- 
tion for the new neuron is the midpoint between the 
two neurons which will be on either side of it in the 
new lattice (midpoint splitting). If the distribution is 
not known to be approximately uniform then the new 
neuron can be formed close to the existing neuron, 
but still in the same direction. This is the direction 
which can be expected to be optimal. It is shown 
experimentally that even with no explicit interaction 
between neurons this can produce substantial order- 
ing. 

V. RESULTS 

Results of computer simulations are shown in fig- 
ure 1. These are the results of training a 16 x 16 
node flat network with random data uniformly dis- 
tributed on a square using batch updates. Each of 
the 80 batches consisted of presenting 256 random 
vectors, and the network was split after every eight 
batches until its full size was reached. In trials with 
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(e) (f) 
Fig. 1. Results of networks trained with neigh- 
bourhood radius 6' and various splitting strategies. 
(a) 6' = 0, no splits (b) 6' = 1 ,  no splits (c) 6' = 0, 
random splits (d) 6' = 1, random splits (e) 6' = 0, 
midpoint splits (f) 6 = 1, midpoint splits 

6' = 0, only the winner was updated, and when 6' = 1 
a neighbourhood of eight neurons was also updated 
with a constant interaction of h(1,t) = 0.1. In both 
cases the learning rate for the ith batch was ~ ( i )  = 

Clearly the map in fig. l (a )  suffers from severe un- 
deruse (many of the vectors have not been updated 
at all) and is quite unacceptable. Local interactions 
without splitting cause a map with fair local order 
but no global order (fig. l(b)).  Even the least ordered 
of those using splitting, that using random splitting 
and no explicit interaction (fig. l(c)), provides a de- 
tectable degree of global ordering. Midpoint split- 
ting clearly increases the local order considerably, 
while neurons with explicit local interactions as well 

2/(2 + i). 
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as splitting form highly ordered maps (fig. l(d),(f)). 
Greater order could have been achieved using a larger 
number of vectors per batch to obtain greater aver- 
aging of the random process, or by increasing the 
explicit interactions, but parameters have been se- 
lected which highlight the effect of splitting, and the 
results suffice to  demonstrate the superiority of nets 
employing splitting over those only using explicit lo- 
cal interactions between neurons. 

VI. CONCLUSION 
It has been shown that feature maps with good 

global and local ordering can be produced efficiently 
using only local interactions between neurons by ini- 
tially training small maps and then splitting them 
to  form larger ones. By using an appropriate split- 
ting procedure, different topologies can be generated 
by the splitting alone, even without explicit interac- 
tions. 
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