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Abstract—This paper proposes a novel method for estimating
non-technical losses (NTL), typically due to electricity theft
caused by bypassed meters in low-voltage distribution networks.
First, the voltage sensitivity coefficients are estimated by a
weighted least squares based approach using the residuals ob-
tained from an ordinary least squares-based approach. Then,
the voltage measurements of smart meters and the estimated
sensitivity coefficients are used to estimate the actual consumption
of customers. The differences between the measured and the
estimated consumption values are compared against a threshold
and customers whose differences exceed the threshold are flagged
as fraudulent customers. The performance of the algorithm is
evaluated on the IEEE European Low Voltage (LV) network in
various case studies, and on large randomly generated distribu-
tion networks. The results exhibit the capability of the proposed
algorithm in correctly identifying fraudulent meters, together
with their actual consumption values.

Index Terms—Power distribution networks, non-technical
losses, smart meters, electricity theft.

I. INTRODUCTION

ELECTRICITY demand in distribution networks has been
increasing in recent years due to the electrification of

transport and buildings. With distribution network service
providers (DNSP) having to supply this substantial demand,
electricity loss becomes an increasingly important challenge.
Electricity losses can be classified into two major categories:
technical and non-technical losses. Technical losses, such as
Ohmic losses, are inherent to electrical systems. On the other
hand, any use of electricity that does not get reported to
DNSPs and is not consequently billed is classified as non-
technical losses (NTL) [1]. NTL is often theft, such as illegal
connections of meters (including electricity theft by bypassed
meters) and meters deliberately rendered faulty.

In this paper, the objective is to identify NTLs in the form of
electricity theft caused by meters being bypassed at the point
of connection.

A. Prior Art

Detection of NTL events has been extensively studied in
the literature. A traditional method is in-person meter inspec-
tions [2], [3]. However, the substantial cost of the on-site
inspections, especially for large networks, and the recurrence
of human errors lead to such traditional methods being in-
feasible. With the advent of advanced metering infrastructure
(AMI), such as smart meters, used for billing and operational
procedures, the access to regular intervals of measurements
opened up new avenues for NTL detection.

State estimation has been one of the approaches used in
detecting NTL events. In [4], AMI measurements and the
network model is provided to a distribution system esti-
mator (DSE). The DSE outputs estimated measurements of
customers that are compared to the measured ones. Based
on an Analysis of Variance (ANOVA) statistic, customers
with biased differences in the measurements are flagged as
fraudulent. In [5], a load flow algorithm is presented in which
the differences between the measured and estimated power
measurements, using input voltage measurements and line
impedance values, are compared to a derived threshold.

Due to the full network model not readily accessible to
DNSPs, new studies have focused on data-driven approaches
to estimate NTL events. In [6], phasor measurement units
(PMU) and intelligent electronic device (IED) are installed
in the distribution network to obtain an active representation
of the network model. Variance analysis and path finding
algorithms based on the differences between measured and
estimated power measurements are used to identify the NTL
location. In [7], a method based on the disturbances in the
estimated line resistances is presented. The incorporation of
temperature sensors allows accurate estimation of the resis-
tances of transmission lines, which are then used to separate
the technical losses from the total losses in the network. An
intermediate monitoring device is used in conjunction with
smart meter readings in [8] to detect differences between the
upstream and downstream power flow. The main limitations
of the aforementioned papers are the cost of the additional
metering devices and determining their optimal location in
distribution networks.

In the context of NTL detection using smart meter data,
in [9] a residuals-based approach is presented. The distribution
of the residuals between the estimated and measured active
and reactive powers captures NTL events as outliers that
can be readily identified, albeit requiring the noise distri-
bution to be known. If the NTL event is consistent across
a sampled period, the authors in [10] present a multiple
linear regression approach that calculates customers’ anomaly
coefficients. These anomaly coefficients coupled with a t-
statistic test are used for determining whether a particular
customer is maliciously stealing electricity or whether its smart
meter is faulty. Correlation analysis has also been employed
in [11]. A master metering device measurements obtained
from the distribution transformer is correlated with the smart
meter readings, with any correlation below a specific threshold
signifying possibility of electricity theft. While the correlation
technique provides a means of identifying fraudulent meters,
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it fails to provide any information about the quantity of power
that was being misreported. A new technique that detects
NTL through spectral properties of the consumption curve is
presented in [12]. The downside of using spectral techniques
is that any change in the theft pattern can lead to either a false
positive or false negative.

Using certain patterns in electricity theft, machine learning
algorithms have also been applied onto smart meter readings
with the goal of identifying NTL events. While there are mul-
tiple studies presenting the applications of machine learning in
NTL detection, with some being [13]–[15], these approaches
require accurate and large training samples, which might not
be readily accessible to DNSPs.

B. Contributions of Paper

Compared to the aforementioned limitations of requiring the
full network model [4] (which includes the line impedance val-
ues and the topology), or additional metering devices installed
in the network [8], or accurate training samples [16], this paper
proposes an algorithm that

1) estimates the network parameters from smart meter data,
which can be corrupted with electricity theft occur-
rences, using a weighted least squares method adapted
from [17];

2) identifies the times during which the NTL events occur;
and

3) estimates the true consumption of the corresponding
customers based solely on the voltage measurements and
the estimated network parameters.

C. Paper Organisation

The rest of this paper is detailed as follows; The optimiza-
tion problem estimating the voltage sensitivity coefficients is
formulated in Section II. Section III presents the proposed
theft detection algorithm that estimates the true consumption
of customers based on a novel iterative approach. Section IV
demonstrates the performance of the proposed algorithm on
the IEEE European LV test feeder and large networks. Finally,
Section V provides the concluding remarks.

II. VOLTAGE SENSITIVITY COEFFICIENTS

This section describes the proposed voltage sensitivity co-
efficients estimation process in the presence of NTL. First,
a brief background on the voltage sensitivity coefficients is
provided, followed by the ordinary least squares algorithm.
Finally, the weighted least squares approach is described.

A. Background

Voltage sensitivity coefficients relate the changes in voltages
of customers to changes in their imported/exported power
from/to the grid. Voltage sensitivity coefficients have been
used in various applications including, operation and main-
tenance procedures [18], overvoltage mitigation [19], state
estimation [20], topology estimation [21]. These coefficients
inherently capture the relationship between the consumption
of customers and their measured voltages, i.e, they reflect

the distribution network model. From [21], the sensitivity
matrices, Sr and Sx, are given as

∆V = Sr∆Ire + Sx∆Iim , (1)

where V, Ire and Iim correspond to the synchronized matrices
of customers’ instantaneous voltages, real and imaginary parts
of currents respectively and the ∆ operator denotes differences
between measurements at different times (typically consecu-
tive). Since smart meters do not provide voltage and current
phasor information, the real and imaginary parts of the load
currents, Ire and Iim, are defined based on the power factor
angle, ϕ, whilst assuming the voltage angles are the nominal
angle.

Corresponding to a particular voltage level, if these coef-
ficients are known, the imported power from the grid can be
estimated and subsequently compared to measured ones. The
deviations between the measured and estimated quantities are
useful tools in detecting electricity theft caused by bypassed
meters [22]. However, the estimation of the sensitivity matrices
is not trivial in the presence of NTL, as will be explained in
Section II-C. As such, a novel application of the weighted least
squares algorithm in [17] is proposed to improve the estimates
of the voltage sensitivity coefficients, despite interference from
electrical theft. In the rest of this section, the method of
estimating the sensitivity matrices, Sr and Sx, in the presence
of NTLs is presented.

B. Ordinary Least Squares (OLS)

With no explicit details on the NTL and the model of
the network, the first step is to obtain a crude estimate
of the sensitivity matrices, Sr and Sx. Given smart meter
measurements of voltages, V, currents, I and power factor
angle, ϕ, (1) can be formulated with the sensitivity matrices
as the main decision variables. For a distribution network with
N customers, the measurement matrices are of sizes N × T ,
where T is the number of sampled measurements (recorded
time stamps by smart meters), while the sensitivity matrices
are each of size N × N . The approach of estimating the
sensitivity matrices is taken from [21].

The method in [21] is summarized as the following. The lin-
ear problem in (1) is formulated as a least squares error func-
tion. Linear constraints derived from the physical properties of
sensitivity coefficients and from the topological properties of
distribution networks are imposed onto the least squares error
function. The linear constraints force the estimated sensitivity
matrices to be symmetric and the diagonal elements to be
the largest in their respective rows. The constraints dealing
with the topological properties of distribution networks involve
estimating net positive values of distance matrices (impedance
found in the path linking two customers), and obeying both
the semi-definiteness rule and triangle inequality for distance
matrices of radial trees.

After vertically concatenating the real and imaginary parts
of currents, the resultant second order cone programming
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problem is defined as

min
Sr,Sx

∥∥∥∥∆V −
[
Sr Sx

] [∆Ire

∆Iim

]∥∥∥∥2
F

subject to: (3) - (7), (9) in [21] .
(2)

The first estimates of the sensitivity matrices obtained from (2)
are denoted as Ŝr and Ŝx.

C. Weighted Least Squares

When electricity theft occurs, the values of I above are not
accurate. It is useful to break (1) into two parts

∆V = Sr∆Ire + Sx∆Iim + Sr∆Ire,ntl + Sx∆Iim,ntl , (3)

where ∆Ire,ntl and ∆Iim,ntl correspond to the real and
imaginary current differences being consumed by the bypassed
meters. As such, the estimates of Ŝr and Ŝx (2) have high
errors. If these errors are ignored, this can result in significant
deviations in the estimated consumption of the customers lead-
ing to erroneous estimates of NTLs as documented in [5]. Note
that, the errors due to the bypassed meters are encapsulated in
the voltage residuals of the fitted equation (1). If ∆Ire,ntl ̸= 0
or ∆Iim,ntl ̸= 0, then ∆V in (1) using Ŝr and Ŝx will not
match the measured ∆V. This will cause a dramatic shift
in the residuals, which signifies the period during which the
bypassed meters are active. These residuals have been used in
previous works with the objective of identifying the bypassed
meters [23]. In this paper, the relationship between shifts
in residuals and electricity theft occurrences is exploited to
reduce the errors in the estimates of Sr and Sx. A weighted
least squares (WLS) scheme based on the residuals of the OLS
approach is proposed to improve the estimate of the sensitivity
matrices when the dataset is corrupted with theft occurrences.

WLS is a modification to OLS that incorporates a weighting
matrix, W, that can indicate which samples t ∈ T contain
more useful information and less noise [17]. Ideally, the
weights should be chosen based on the variances of the
different components, but in this application those variances
are not known. Instead, the residual matrix, r, corresponding
to Ŝr and Ŝx is first calculated as

rn,t =

∣∣∣∣V tr
t − Vn,t −

[
Ŝr Ŝx

] [Iret
Iimt

]∣∣∣∣ , (4)

where V tr
t is the measured voltage at the secondary side of

the distribution transformer at time t.
Instead of weighting each time step, the region where the

residuals are high is identified. This ensures that the period
where the bypassed meter starts and stops consuming is under
weighted. A simple moving average process with a window
size of 12, which corresponds to a 1-hr sampling period for
a smart meter recording at 5−mins intervals, is applied on
r. In this paper, smart meters recording at 5-mins intervals
were used, but the proposed approach can be applied to smart
meters with coarser resolutions. The mean residual taken over

P + jQ

Pntl + jQntl
240.0

S = Σ (R + jX)

Fig. 1. NTL in the form of bypassed smart meter which measures P + jQ,
while the unmetered load consumes Pntl + jQntl. The overall model of the
distribution network is encapsulated in the sensitivity estimates, S.

all customers, r̄t, is calculated at each time t and the weighting
matrix, W, is defined as the reciprocal of the mean residual,

W =


r̄t1 0 . . . 0
0 r̄t2 . . . 0
...

...
. . .

...
0 0 . . . r̄T−1


−1

. (5)

Finally, the weighted least squares error problem is formulated
as

min
Sr,Sx

∥∥∥∥W(
∆V −

[
Sr Sx

] [∆Ire

∆Iim

])∥∥∥∥2
F

subject to: (3) - (7), (9) in [21]
(6)

with the same constraints as in (2). The process is iterated until
the maximum difference between the new and old weighting
matrices is below a tolerance of 10−4.

III. NTL ALGORITHM

Once an estimate of the sensitivity model of the network
is obtained, the actual consumption of customers can be
estimated by solving the voltage sensitivity equation (1), with
the load current being the main decision variables. This section
first presents a description of the NTL that is caused by the
electricity theft through a bypassed meter. Then, the algorithm
that identifies which customer is misreporting their energy
usage, together with their actual usage, is detailed.

A. Electricity Theft

In this paper, the objective is to identify customers that
bypass their smart meters. This type of NTL is shown in
Fig. 1. A bypassed meter is present when an unmetered load
is connected at the point of connection [24]. As such, the
true consumption value does not get reported to the DNSP.
However, assuming negligible electrical distance between the
bypassed meter and the unmetered load, not only can the
voltage of the unmetered load be considered equal to that of
the bypassed meter but the estimated Sr and Sx matrices up to
the point of theft still serve as a viable sensitivity model of the
distribution network. The remainder of this section introduces
an algorithm that identifies the bypassed meters based on the
measured voltages and the estimated sensitivity model.

The complete equation relating the estimated sensitivity
model, the measured voltages, V, and currents, I, is

V tr
t −V∠θv = SI∠θi , (7)
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where S = Sr + jSx, θv and θi correspond to the voltage
phasor angle and current phasor angle, respectively. In the
presence of a bypassed meter, (7) is expanded with I consisting
of both the measured current Imea and the bypassed current
Intl as

V tr −V∠θv = S
(
Imea∠θi,mea + Intl∠θi,ntl

)
. (8)

If V tr, V, θv , S, Imea and θi,mea are known, solving (8)
will yield the actual current being drawn by the bypassed
meter, Intl∠θi,ntl. However, smart meters do not provide the
voltage and current phasor angles. Therefore, (8) is simplified
to a case for which a solution can be obtained by a novel
iterative approach.

In distribution networks, the power factor of all the loads
is close to unity, i.e, the differences between power factor
angles are negligible [25]. This leads to the simplification,
ϕmea ≈ ϕntl. If ϕ is defined as θv − θi, this simplifies (8) to

V tr −V∠θv = S
(
Imea + Intl

)
∠(θv − ϕmea) . (9)

The simplification of the bypassed meter having the same
power factor angle as the measured load will be shown
numerically to have minimal impact on the performance of
the algorithm, even in extreme scenarios. The unknowns in (9)
are the bypassed meters’ currents Intl and the voltage phasor
angles θv . To find these, an iterative algorithm that estimates
the voltage phasor angle together with the actual load currents
is proposed.

B. Estimating the load currents and voltage phasor angles

Starting with the measured voltages, currents and power
factor angles, the goal is to obtain the actual current and
voltage phasor angles that fit (9). First, the voltage phasor
angles, θv , are initialized as zero. The load currents, in the kth
iteration, corresponding to the measured voltages, estimated
network model, power factor angles and voltage phasor angles
in the k − 1st iteration is calculated as

Ik = S† V tr −V∠θv
k−1

∠(θv
k−1 − ϕmea)

, (10)

where S† is the pseudo-inverse of the complex sensitivity
matrix. A temporary variable, βk, is calculated from the
currents estimated in the kth iteration as

βk =
V tr − SIk∠(θ

v
k−1 − ϕmea)

V
. (11)

At the last step, the voltage phasor angle is adjusted given the
calculated temporary variable, and is calculated as

∠θv
k =

βk

|βk|
. (12)

The overall process continues until the maximum difference
in I between the kth and k − 1st iteration is below 10−4 A.
The region of convergence of the proposed iterative approach
was tested in 1000 random instances of topologies with several
values of V, I, and ϕ and the algorithm always converged for
average power factors higher than 0.25.

C. NTL Detection

Once the estimates of load currents, I, and the voltage
phasor angles, θv , have been obtained from the iterative
process, the bypassed meter can be detected by observing
Pmis = P̂ − P, the difference between the estimated and
measured active powers of the customers, respectively. The
mismatch matrix, Pmis, is the stolen active power.

The mismatch matrix is compared to a threshold, Pτ , called
the minimum detectable power (MDP) [5]. In [5], MDP
is calculated using the full network model, which includes
knowledge of the line impedance values and topology of
the network. However, the full network model is seldomly
accessible to DNSPs. To this end, a method of estimating the
MDP parameters using the voltage sensitivity coefficients is
proposed. The threshold must reflect several parameters, such
as the measurement uncertainty, ev , and the network sensitiv-
ities, but there is no specific formula that must be satisfied.
For concreteness, the MDP threshold, Pτ , is calculated by
considering the maximum voltage error at all customers in the
network and is given as

Pτ =
1

N
ℜ
(
V tr
1 evJT

NS†JN

)∗
, (13)

where the ∗ operator corresponds to the conjugate function,
ℜ corresponds to the real part operator,and JN is an N × 1
matrix of ones. The mean is considered since the spread in
the values of Pτ is wide. This is due to upstream customers
closer to the distribution transformer having a net smaller
impedance compared to downstream customers which result
in a broad spectrum of Pτ . The definition of ev is based on
the type of smart meters present in a network. Smart meters
are categorized in different classes with the most notable one
being the 0.2S model, in which the maximum voltage error
can be 0.2% [26]. For a LV distribution transformer with a
nominal voltage of 240 V, this corresponds to a maximum
error of ev = 0.48 V.

Measurement noise affects this estimation in two ways: it
causes inaccuracy in the sensitivity estimate S, and errors in
the individual estimates of the power mismatch. In principle,
the accuracy of S can be restored by sampling over a longer
window, proportional to the noise variance or the square of
the meter tolerance. Errors in the power mismatch estimates
can also be addressed by smoothing, as follows.

First, a simple moving average process with a window size
of 12 samples is applied on Pmis to mitigate the short-term
fluctuations due to ev . If the noise samples are independent
(like thermal noise and not, for example, like noise dominated
by limited resolution of the meter) the probability of a consec-
utive sequence of samples of Pmis being false positives drops
exponentially in the length of the sequence, whereas theft is
highly correlated. Then, to identify the bypassed meters, the
entries of the mismatch matrix are compared against Pτ . The
matrix E of size N × T is defined as

En,t =

{
1 if mini=0,...k−1 P

mis
n,t+i ≥ Pτ ,

0 otherwise ,
(14)

where k = 6 samples correspond to 30 minutes at 5-minute
intervals. For all cases in which E = 1, the estimated
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Fig. 2. Flowchart for proposed algorithms.

consumption value, P̂ of the corresponding customers is also
output by the algorithm. The overall algorithm is summarized
by the flowchart shown in Fig. 2.

IV. PERFORMANCE EVALUATION

The performance of the proposed algorithms is evaluated by
simulations on the IEEE Low Voltage European Test Feeder
network [27]. The IEEE network, shown in Fig. 3, is imple-
mented in Matlab [28] and various case studies are presented:
i) base scenario showing improvement in estimated sensitivity
matrices using WLS; ii) impact of random theft occurrences;
iii) impact of different theft levels ranging from 300 W to 5
kW; iv) impact of dissimilar power factor angles; v) impact
of multiple NTLs; and vi) impact of network topology.

The algorithm has two major outputs: i) status of electricity
theft (active/inactive) at customer i at time t; ii) the estimated
consumption of customer i at time t, if theft occurs. The
performance of the algorithm in terms of the two outputs
is assessed using the three statistics, namely sensitivity (true
positive rate), specificity (true negative rate) and accuracy
(Acc) [29]. Sensitivity is defined as the fraction of correctly
classified theft occurrences penalized by the number of false
negatives (FN), while specificity is defined as the fraction
of correctly classified non-theft occurrences penalized by the
number of false positives (FP). Finally, accuracy is defined as
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Fig. 3. IEEE European LV Test Feeder [27] with the customers numbered
from 1 to 55. The customers are grouped into 11 different clusters shown by
the various colors. The clusters are formed based on the approximate distances
between the customers and the LV transformer.

TABLE I
METRICS DEFINITION

NTL Status Predicted Active Predicted Inactive

Active TP (Predicted Active
NTL as Active)

FN (Predicted Active
NTL as Inactive)

Inactive FP (Predicted Inactive
NTL as Active)

TN (Predicted Inactive
NTL as Inactive)

the ratio of the sum of true positives (TP) and true negatives
(TN) over the total number of samples. The basic metrics are
summarized in Table I and the statistics are calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
, (15)

Specificity =
TN

TN + FP
, (16)

Sensitivity =
TP

TP + FN
. (17)

The customers have been grouped into 11 clusters based
on their approximate distances to the LV transformer, repre-
sented by various colours. It consists of an LV distribution
transformer at 0.416 kV and 55 customers. To simulate
Australian distribution networks which are multiple-earthed-
neutral (MEN) networks [30], ground rods are attached to the
neutral lines at each customer’s premises.

The active and reactive load profiles, corresponding to a day,
are taken from the PES database [27]. To increase the size of
the data-set to 1 month, power factor samples are drawn from
independent uniform random distributions with minimum and
maximum of 0.9 and 1, following which additional reactive
power consumption values of customers are calculated given
the active power load profiles. The active and reactive power
samples are input to the algorithm.

To simulate the electricity theft, a random period in the
active power samples corresponding to a particular customer
is chosen and increased by random values drawn from an
independent Gaussian distribution with mean µ and standard
deviation σ. The reactive power of the bypassed meter is ad-
justed to keep the overall power factor similar to the measured
load, except in subsection IV-D. In all subsequent studies,
only NTLs in the aforementioned form are simulated; in
particular, none are located between metered loads. The load-
flow analysis is performed to calculate the customers’ voltages,
which are then given as the last input to the algorithm.

A. Base scenario

In the base case scenario, 55 cases are simulated, each with
theft occurring at a different one of the 55 nodes. In each
case, µ = 3 kW and σ = 500 W . The set of measured
voltages, active and reactive power obtained from the load-
flow analysis are given as input to the voltage sensitivity
algorithm. The 2-norm error (matrix norm induced by the
vector 2-norm) between the true and the complex sensitivity
matrices (Sr + jSx) estimated using the two different ap-
proaches, namely OLS [21] and the proposed weighted least
squares, is plotted in Fig. 4. The proposed weighted least
squares scheme clearly outperforms [21], with more accurate
sensitivity coefficients returned across all cases as the location
of the electricity theft changes.
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Fig. 4. 2-norm (matrix norm induced by the vector 2-norm) error between
true and estimated S for an NTL with µ = 3 kW and σ = 500 W at different
customer in the distribution network.
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Fig. 5. Base case with µ = 3 kW and σ = 500 W theft at different customers.
Boxplot of relative error between true active power consumption of customer
stealing electricity and its estimated value. The 11 clusters are color coded in
a similar fashion to Fig. 3.

The estimated sensitivity coefficients from the weighted
least squares are then given as input to the NTL detection
algorithm. The NTL algorithm has two outputs: 1) whether
a particular customer is stealing electricity at time t and 2)
the actual consumption of the customer stealing electricity.
The proposed NTL detection algorithm correctly detects the
NTL location across all instances and times, t, i.e., accuracy
= 1, sensitivity = 1 and specificity = 1. The distribution
of the relative error, as a percentage, between the true and
the estimated active power profile of the customer stealing
electricity is plotted in Fig. 5. The 11 boxplots correspond to
the 11 clusters represented by similar colors in Fig. 3. The
maximum relative error is consistently below 3% (≈ 60W).
This shows that the iterative approach accurately converges to
the true consumption of the customer stealing electricity.

B. Impact of random theft occurrences

1) Fraction of Time Theft Occurs: To study the impact of
the amount of theft occurrences on the dataset, random theft
occurrences corresponding to different portions of the data-set
are simulated. One month of samples is used and in this case
study, different lengths of theft occurrences are simulated. The
fraction of time theft occurs is defined as the ratio between
the number of samples during which theft occurs and the total
number of samples. With a fraction value of 1% indicating
that across the 8640 samples (corresponding to 1 month), theft
occurs on 864 independently chosen samples, the model is
simulated with various fraction of times ranging from as low
as 1% to 100% (electricity theft occurs across all samples).
Across all instances, the characteristics of the electricity theft
are µ = 3 kW and σ = 500 W and its location is swept

TABLE II
PERFORMANCE EVALUATION FOR VARIOUS ACTIVE PERIODS OF THEFT

Fraction of Time
Theft occurs (%) Accuracy Specificity Mean Relative

error in P (%)
1 1 1 0.0111
5 1 1 0.0129

10 1 1 0.0165
25 1 1 0.0374
50 1 1 0.142
75 1 1 0.450
90 1 1 1.195
100 0.999 0.9991 12.105

across all customers. The accuracy, sensitivity and specificity
with respect to each fraction of time is calculated.

The results are summarized in Table II. The theft detection
algorithm correctly identifies the instances in which the status
of the NTL is active, i.e., the sensitivity is 1 across all simu-
lated theft occurrences. The accuracy and specificity is 1 across
all fractions except for the case where the NTL is active across
the whole sampled period (worst-case scenario). In the worst-
case scenario, the data-set is significantly contaminated with
theft such that the proposed weighted least squares scheme
estimates higher errors in the voltage sensitivity matrices.
This is shown in Fig. 6. The 2-norm error can be seen
to dramatically increase for the case in which the NTL is
always active, because if WLS applies low weight to all of
the corrupted measurements then it reduces to OLS. This
error gets carried forward to the theft detection algorithm in
which, at the same fraction, the mean relative error between
the true and estimated active power consumption values of the
bypassed meter increases to around 12% (≈ 360W). However,
this error is still much less than the 3 kW of mean stolen active
power.

2) Random step changes in stolen active power: In the
previous section, the impact of the fraction of time the NTL is
active was studied. In this section, the ability of the algorithm
to track changes in the active power theft profile is studied. In
this scenario, the stolen active power starts at exactly 3 kW.
Within the period in which the NTL is active, random step
changes ranging from ±100 W to ±500 W are added to the
theft profile at every 10-mins intervals. The fraction of time
theft occurs is kept to 50%. The experiment is repeated with
the location of the NTL swept across all customers and the
accuracy, sensitivity and specificity is calculated.

The accuracy, sensitivity and specificity are all 1. A spe-
cific theft period is plotted in Fig. 7. The measured active
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Fig. 6. 2-norm (matrix norm induced by the vector 2-norm) error between
true and estimated S for electricity theft with µ = 3 kW and σ = 500 W
across various active periods of theft.
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Fig. 7. Active power profiles within a 1-hr period during which NTL is
active. The blue, orange, yellow and dashed-red lines correspond to the
measured active power, stolen active power, true active power consumption
and estimated active power consumption of the customer 55, respectively.

power (blue), active power theft profile (orange), true active
power consumption (yellow) and the estimated active power
consumption (dashed red) are shown for a 1-hr period in which
the NTL is active at customer 55. The plot exhibits successful
tracking of the true consumption of the customer as the theft
profile changes dynamically.

C. Impact of different theft levels

To assess the proposed MDP threshold, the algorithm is
applied to scenarios with different values of active power
being stolen by the customers. The bypassed meter’s active
power consumption is varied from 500 W to 5 kW, with its
reactive power adjusted such that the power factor of the
unmetered load matches the measured load’s power factor.
The fraction of time theft occurs is kept fixed at 50% across
the sampled period and the times at which theft occurs are
randomly determined. The threshold Pτ is 270 W for the test
network.

The results are shown in Table III. For any stolen active
power exceeding Pτ , the proposed algorithm not only correctly
identifies the instances when the bypassed meter is active but
also estimates the actual consumption of the customer stealing
electricity with minimal errors (0.1% on average). While the
specificity remains constant, the sensitivity drops below 1 for
mean stolen active power below 400 W. This is due to the
randomness in the stolen active power which leads to some
values of stolen active power being below Pτ . It is worth
noting that having different thresholds for different customers
could entail a more sensitive algorithm in which, based on the
location, some bypassed meters might not be easily identified.

TABLE III
PERFORMANCE EVALUATION FOR VARIOUS LEVELS OF THEFTS

Stolen
Active
Power.

Accuracy Specificity Sensitivity Mean Relative
error in P (%)

300 0.999 1 0.867 0.0878
400 1.0 1 0.999 0.115
500 1 1 1 0.0847
1000 1 1 1 0.0900
2000 1 1 1 0.0728
3000 1 1 1 0.1439
5000 1 1 1 0.0686

TABLE IV
PERFORMANCE EVALUATION FOR DISSIMILARITIES IN POWER FACTOR

OF MEASURED AND BYPASSED METERS

Power Factor of
bypassed meter Accuracy Specificity Mean Relative

error in P (%)
0.5 0.9995 0.9995 15.0
0.6 0.9999 0.9999 10.8
0.7 1 1 7.4
0.8 1 1 4.51
0.9 1 1 1.66

0.95 1 1 0.119
1.0 1 1 2.05

D. Impact of dissimilar power factor angles

In this sub-section, the impact of the assumption of the
bypassed meter having a similar power factor as the measured
load is investigated. In previous studies, the bypassed meter
had the same power factor as the measured load. In this case
study, the bypassed meter’s power factor is varied from 0.5 to
unity irrespective of the measured power factor, which is on
average 0.95. The active power distribution of the bypassed
meter’s has the parameters µ = 3 kW and σ = 500 W across
all instances and all locations. The model is simulated with
the particular power factor and the results are tabulated in
Table IV.

The sensitivity is 1 across all values of the power factor,
indicating the ability of the proposed algorithm in correctly
detecting the times during which the NTL is active. In terms
of accuracy, for minute differences between the power factor
of the measured load and the bypassed meter, the proposed
algorithm is successful in identifying the instances in which
the bypassed meter is active. The mean relative error also
increases with increasing dissimilarities between the measured
load’s and the bypassed meter’s power factors. When the
power factor of the bypassed meter drops below 0.7, the
latter’s phase angle becomes significant. The proposed iterative
approach does not converge to the true solution but instead
has some FPs, i.e., specificity < 1. The mean relative error
increases to approximately 15% in the worst case scenario.
While not insignificant, this worst case scenario of 15% only
amounts to approximately 450 W of active power, which is
low compared to the mean stolen active power of 3 kW. It is
worth mentioning that it is unlikely that the bypassed meter’s
power factor would be this far from unity.

E. Impact of measurement errors

1) Impact of uniform smart meter class: To study the
impact of measurement noise on the performance of the
proposed algorithm, three accurate smart meter classes corre-
sponding to 0.1S, 0.2S and 0.5S and two less accurate smart
meter classes 1, and 2 are considered [26], [31]. A class x
meter is defined as having a relative error up to x% on the
voltage readings. Similar to [31], current measurements can
have larger errors compared to voltage measurements, and to
model this, errors up to 0.1%, 0.5%, and 1% are added to
the current and power factor measurements from smart meter
classes 0.1S, 0.2S, and 0.5S, respectively while for the less
accurate smart meter classes 1 and 2, errors up to 2% are
added. Truncated zero mean normal distributions are taken as



8

TABLE V
PERFORMANCE EVALUATION FOR SEVERAL SMART METER CLASSES.

OUTPUTS MARKED WITH ‘–’SIGNIFIES INACCURATE ESTIMATES.

Smart
Meter Class 0.1S 0.2S 0.5S 1 2

||Strue −
Sest||2

0.0312 0.0599 0.146 0.295 0.609

Accuracy Strue 0.963 0.870 0.731 0.664 0.623
Sest 0.967 0.805 0.641 0.648 0.679

Specificity Strue 0.963 0.870 0.730 0.664 0.623
Sest 0.967 0.805 0.642 0.649 0.680

Sensitivity Strue 1 0.979 0.870 0.704 0.582
Sest 0.998 0.753 0.305 0.300 0.296

Mean Relative
error in P (%)

Strue 34.0 67.8 176 338 –
Sest 34.5 155 – – –

the noise distributions with the truncated values depending on
the smart meter classes. Across all smart meter classes, the
characteristics of electricity theft are µ = 3 kW and σ = 0 W,
and its location is swept across all customers.

Table V shows that the norm error between the true and
estimated S matrices increases proportionally to the meter
error. This error is carried forward to the NTL detection
algorithm. Using the estimated sensitivity model, Sest, the
smart meter class 0.1S is the best performer with accuracy,
specificity, and sensitivity all above 0.9. A drop in performance
is seen going from the 0.1S class to the class 2 smart meter.
However, the accuracy does not drop linearly to zero but
rather flattens around 0.6. The relative error in the estimated
P increases as the meter error increases. Using Sest, for smart
meter classes 0.5S and worse, the estimated consumption of
consumers cannot be accurately estimated and is marked by
‘–’. The impact of measurement errors on the estimated S
depends on the number of available measurements. The sample
size can be increased to decrease the errors in the estimate of
S for a smart meter class 2 compared to the 0.1S, without
changing the number of samples of real-time data required
for the NTL detection step.

The performance metrics improve as errors in S decrease.
This is shown in the rows of Strue, in which the true value of
the sensitivity model is given as input to the NTL detection
algorithm. With Strue, the sensitivity improves significantly to
0.582, from 0.296 using Sest, for the class 2 smart meters.
The accuracy for the class 2 smart meters using Sest is higher
than that of Strue since higher errors in Sest leads to a higher
threshold Pτ , following which it is less likely that the higher
threshold will be surpassed for k = 6 consecutive samples for
a meter not associated with electricity theft. The reliability of
indicating theft is happening is important in terms of cost to
network operators. As shown by the results, as the smart meter
class worsens, the performance of the proposed algorithm
degrades, albeit remaining reliable (sensitivity above 0.7) in
detecting theft using Strue for class 1 smart meters.

2) Fraction of class 1 smart meters: In this case study, a
scenario is studied in which the network consists of different
classes of smart meters. Two smart meter classes, namely
0.2S and 1, are considered. The penetration level of class 1
smart meters, defined as the percentage of class 1 smart meters
divided by the total number of smart meters (both 0.2S and
1), is varied from 0% to 100%. The customers associated with
each smart meter class are chosen at random. The errors are

TABLE VI
PERFORMANCE EVALUATION FOR VARIOUS PENETRATION LEVELS OF

CLASS 1 SMART METERS

Accuracy Specificity Sensitivity
Penetration

Level
(%)

||Strue−
Sest||2

Strue Sest Strue Sest Strue Sest

0 0.0599 0.870 0.805 0.870 0.805 0.979 0.753
20 0.150 0.804 0.645 0.804 0.646 0.874 0.441
40 0.198 0.750 0.647 0.750 0.647 0.840 0.488
60 0.233 0.714 0.664 0.714 0.664 0.722 0.351
80 0.266 0.686 0.654 0.686 0.654 0.744 0.316
100 0.295 0.664 0.648 0.664 0.649 0.704 0.300

drawn from the aforementioned truncated normal distributions
and the characteristics of electricity theft are µ = 3 kW and
σ = 0 W, and its location is swept across all customers. The
accuracy, specificity, and sensitivity are tabulated in Table VI.

As the fraction of class 1 smart meters increases, the 2-
norm error between the true and estimated S matrices also
increases with the sharpest increase going from a penetration
level of 0% to 20%. Accuracy, specificity, and sensitivity also
decrease as the penetration level increases. With the inclusion
of class 1 smart meters, the consumption of the customers
cannot be accurately estimated. In terms of reliability, using
Strue the sensitivity metric has a drop in performance going
from a penetration level of 40% to 60% but remains above
0.7 in all cases.

F. Impact of multiple NTLs

The performance evaluation of the algorithm is extended to
scenarios where more than 1 bypassed meter is present in the
network. The occurrence level of bypassed meters, defined
as the number of bypassed meters divided by the number
of customers, is varied from 5% to 100% (every meter is
bypassed). The mean value of the active power being stolen
by the bypass is chosen randomly from the range µ = 2
kW to µ = 5 kW, with σ = 500 W. The level of theft
is chosen uniformly at random between 2 kW and 5 kW in
order to evaluate the effectiveness of the proposed algorithm in
detecting both high and low level of thefts. The fraction of time
theft occurs at each bypassed meter is uniformly distributed
between 10% and 95%, chosen independently.

First, the performance of the proposed weighted least
squares method is shown in Fig. 8. As the occurrence level of
bypassed meters increases, the 2-norm error in the sensitivity
estimates also increases. This is due to more time samples
being down-weighted since more customers steal at different
times (excluding the overlap periods). A significant increase
is seen going from an occurrence level of 25% to 50%.
The sensitivity estimation process can be improved by using
historical data as this can provide more measurement periods
during which electricity theft does not occur.

This error gets carried forward to the theft detection algo-
rithm as shown in Table VII. While the accuracy, sensitivity
and specificity remain close to 1 as the occurrence level
increases from 5% to 10%, the mean relative error between
the estimated and true consumption at the bypassed meters
increases from 0.4% to 3.36%. Beyond the 10% occurrence
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Fig. 8. 2-norm (matrix norm induced by the vector 2-norm) error between
true and estimated S against various occurrences level of bypassed meters in
the network.

TABLE VII
PERFORMANCE EVALUATION FOR VARIOUS OCCURRENCE LEVEL OF

BYPASSED METERS

Occurrence
Level (%) Accuracy Specificity Sensitivity

Mean
Relative
error in
P (%)

5 1 1 1 0.376
10 0.9895 0.9889 1 3.36
25 0.9860 0.9843 1 19.36
50 0.9663 0.9523 9995 9.21
75 0.9088 0.8544 0.9933 12.1
90 0.8722 0.7749 0.9721 137
100 0.5620 0.5982 0.5284 1400

level, the accuracy starts decreasing, reaching 0.59 for ubiq-
uitous theft. This is attributed to the specificity which implies
that the number of FN increases, i.e., for some instances in
which the NTL is inactive, some customers are estimated to be
connected to active bypassed meters. The mean relative error
between the estimated and true consumption of the bypassed
meters also increases beyond 100% in the high occurrence
cases, which are highly unlikely to occur.

G. Impact of distributed energy resources (DERs)

Distribution networks increasingly host more distributed
energy resources (DERs). To study the impact of DERs,
customers with photovoltaic (PV) systems are simulated, with
generation profiles generated from the PV generation profiles
in [32]. For customers with PVs, voltage, net current, and
power factor of the aggregated load are measured by the
smart meter. The customers with DERs are chosen as the
ones stealing electricity from the grid and the theft instances
are randomly determined. The theft characteristics are µ = 3
kW and σ = 500 W. The PV penetration level, defined as
the percentage of customers with PVs, is varied from 25% to
100%. The location of the DERs (and theft) is swept across
all customers in the network. To focus on the impact of DERs,
these simulations had no measurement errors.

The accuracy and specificity are tabulated in Table VIII.
Across all penetration levels, the sensitivity is 1. The accuracy
and specificity are slightly below 1 but always above 99%. The
negligible decrease in performance is attributed to an increase
in the 2-norm error of the estimated sensitivity matrix, from
0.0018 for no PV penetration to 0.006 on average across all
penetration levels. The mean relative error between the actual
and the estimated active power profile increases to 4.92% for

TABLE VIII
PERFORMANCE EVALUATION FOR VARIOUS PV PENETRATION LEVEL

PV Penetration Level
(%) Accuracy Specificity Mean Relative

error in P (%)
0 1 1 0.1

25 0.9974 0.9974 2.25
50 0.9997 0.9971 2.86
75 0.9966 0.9966 3.52
100 0.9958 0.9958 4.92
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Fig. 9. Boxplot of relative error in the estimated active power profile of
customer stealing electricity.

the case with 100% PV penetration, compared to 0.1% without
DERs, all due to the error in the estimated sensitivity matrix.
This shows that the proposed methodology remains robust on
active distribution networks with high DER penetration.

H. Impact of Network Size

To study the impact of the size of the networks, networks
with 75, 100, 125, 150, 175 and 200 customers, with 50
different topologies per size, are randomly generated using
constrained Prüfer sequences [33]. Realistic distribution net-
works are generated by constraining the maximum number of
branches of buses to less than 5. The line impedance values are
sampled from independent uniform random distributions with
the bounds similar to the minimum and maximum impedance
values of the lines in the IEEE network. The load profiles are
sampled from the aforementioned independent distributions.
The network is simulated with the distribution of the NTL
having parameters µ = 3 kW and σ = 500 W. Across all
network sizes, accuracy, sensitivity and specificity are 1. The
proposed approach correctly identifies the instances in which
the bypassed meter is active and its location, irrespective of
the size of the network. The distribution of the relative error
between the estimated and actual active power of the bypassed
meter is plotted in Fig. 9.

The relative error increases slightly from 0.4% to 1.7%, on
average, as the size of the network increases from 75 to 200
customers. This can be attributed to the mean 2-norm error in
the estimated sensitivity matrices which also increases from
0.0015 for a network with 75 customers to 0.004 for another
with 200 customers. However, the error in the estimated active
power profile is still much lower than the true consumption at
the bypassed meter.

I. Computation Time

The proposed method has two main steps: voltage sensitivity
estimation and NTL detection algorithm. The estimation of the
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voltage sensitivity coefficients via the weighted least squares
algorithm has computational complexity O(N3 + N2T +
T 2N) [34]. For a similar T , the NTL detection algorithm
comprises of matrix multiplication and inversion and has
computational complexity O(K(N3 + N2T )), where K is
the number of iterations taken to reach convergence [35].
Thus, the overall complexity of the algorithm is O(N(KN2+
N2 +KNT +NT +T 2)). As N increases, K also increases
such that N3 = O(KN3). Thus the overall computational
complexity is simplified to O(K(N3 + N2T ) + T 2N). This
shows that N has a clear impact on computing time.

With T fixed to 1 month of samples, the time cost of
the proposed method is measured for networks of several
sizes ranging from 10 customers to 100 customers. The
simulation was carried out in MATLAB 2022a with MOSEK
as the solver. The average computation time required for the
entire process increases quadratically from 2.4 seconds for 10
customers to 3 minutes 100 customers, with most of the time
taken by the voltage sensitivity estimation algorithm. While
the voltage sensitivity estimation algorithm is expensive to
perform, due to dealing with large data matrices, it can be
performed infrequently, such as once per month. However, the
NTL algorithm needs to be applied to incoming smart meter
samples. The average computation time for the NTL algorithm
increases from 0.14 seconds to 1.8 seconds for 10 and 100
customers, respectively (around 0.02 seconds per customer).
This shows that the process is scalable to a large number of
customers.

J. Comparison with the state-of-the-art

The proposed approach is compared against state-of-the-
art methods [5], [9], [11] in terms of their required inputs,
methodology, and their outputs. Table IX summarizes the dif-
ferences between the approaches. While [11] and the proposed
method do not require the prior network model (including
line parameters), they are prerequisites for [5] and [9]. All
approaches make use of smart meter readings, with the caveat
in [11] being an additional master meter placed at the LV
transformer. Methodology-wise, [5] and [9] employ load flow
and state estimation analyses which are comparable to the
weighted least squares approach in the proposed method. The
Pearson correlation approach in [11] is the simplest out of all.
In terms of the outputs, all approaches estimate the location
of the NTL. However, only the proposed method and the
algorithms in [5] and [9] can output the actual stolen power
associated with the NTL.

V. CONCLUSION

In this paper, a model-less method for estimating electricity
theft using smart meters in distribution networks has been
presented. The proposed approach of estimating the sensitivity
coefficients has been shown to provide improved estimates
compared to an ordinary regression technique. The key idea
in the proposed method is incorporating a weighted least
squares scheme that can accurately estimate these coefficients
despite interference from electricity theft. These coefficients
are given as input to a novel NTL detection algorithm, which

TABLE IX
COMPARISON WITH THE STATE-OF-THE-ART

[5] [9] [11] Proposed
Method

Inputs

Model-Less ✗ ✗ ✓ ✓

Smart Meter ✓ ✓

✓*
Mas-
ter

Meter

✓

Methodology Algorithm Load-
flow

State
Esti-
ma-
tion

Pearson
Corre-
lation

Weighted
Least

Squares

Outputs NTL Location ✓ ✓ ✓ ✓
Theft Amount ✓ ✓ ✗ ✓

both identifies the customers associated with bypassed meters
and their actual consumption data. The extensive simulation
results, conducted on the IEEE network, exhibit the ability of
the proposed algorithms to correctly identify the customer with
a bypassed meter, together with its actual consumption value
with minimal errors. A promising direction of future research
would be extending the algorithm to scenarios with missing
measurements.
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