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Abstract— We consider an important performance measure of being placed deterministically. Therefore, random demiest

wireless sensor networks, namely, the least number of noded’, s a widely accepted sensor network implementation scheme
required to facilitate routing between any pair of nodes, alowing and motivates this research

other nodes to remain in sleep mode in order to conserve energ . .
We derive the expected value and the distribution ofV for singie It should be noted that 1-dimensional (1-D) sensor net-
dimensional dense networks. works have practical importance. For example, there have

been proposals for networking cars on main roads [5] [6]
for purposes such as reporting traffic disruptions, andaens
networks monitoring rivers, or deployed along a mountain
To prolong network lifetime, energy conservation is a maidge, etc., which can be approximated as 1-D networks.
jor concern for wireless sensor networks due to the diffiMore importantly, recent research shows that the optimdéno
culty of battery replacement. To achieve this goal, shog-h placement pattern to achieve both coverage and conngctivit
communication are generally considered as a better choine-D networks is a strip-based pattern [7], which implieatt
compared to its long-hop counterpart, mainly because it reingle dimension results are useful when considering MCDS
quires, in principle, less power than longer hops. Howeagr, asymptotically in 2-D networks.
sensors often lack power control, power consumption depend Our main contributions are new approaches to computing
primarily on the number of hops taken. More importantlythe distribution and the mean of cardinality of MCDS. These
making fewer, longer hops allows nodes to spend longer ligsults are important because they can be adopted to evaluat
a low-power “sleep” mode, prolonging the overall networkhe performance of sensor network routing protocols in serm
lifetime. Thus it is important that the number of nodes imeal  of the least number of nodes involved in routing. Moreover,
in routing is kept small. they also allude to the critical performance measure, nétwo
To traverse least number of hops in routing, we need lifetime, in sensor networks. Though our results are foglgin
construct a wireless backbone, and minimize its size. Ordymension networks, the approaches to obtain these raults
nodes in that backbone set are involved in routing. Orgiggest a potential methodology to evaluate MCDS in two
promising approach to construct such a backbone is baseddimensional networks.
Connected Dominating Set [1]. The rest of this paper is organized as follow. In Section II,
A ConnectedDominating Set (CDS) of a sensor networkwe define our problem and notation first, and then introduce
is defined as a subset of nodes, called 'relay nodes’ whigh1-D network model; in Section Ill, we provide a simple
form a connected network, such that any node in the origingbproach to obtain the mean &f; a numerical method for
network is either a member of the CDS or is within theénhe distribution of N is proposed in Section IV. Simulation
transmission rangeof at least one node in the CDS. The CDSind numerical results in Section V show the validity of our
with minimum cardinality is known a#linimum Connected evaluation approaches. We discuss 2-D cases briefly indecti
DominatingSet (MCDS). Finding the MCDS in a connectedy/| and conclude this work in Section VII.
network was proved to be NP-complete [2]. Publications
related to the utilization of CDS in ad hoc network routing
include [1], [3], [4], and references therein. Those stadie
are mainly concentrate on developing heuristic algorithtons For a 1-D sensor network witlh nodes randomly and
compute approximated MCDS. uniformly distributed in an interval, we study the minimum
In contrast with previous works, we do not aim at providingardinality of its CDS, which is also the necessary number
algorithms to obtain the sub-optimal CDS for a given networf nodes involved in the Route Request (RREQ) broadcasting
instance. We consider a single dimension stochastic nktwadn routing to achieve complete RREQ delivery in the entire
and derive the probabilistic properties of the cardinatify network.
MCDS instead of finding MCDS explicitly. Indeed, wireless In the network we are considering, let the coordinates of
sensor networks are often deployed in inaccessible tewidin the n sensors beX; < X,... < X,,. In order to make CDS
a large number of sensor nodes, which prevent them framinimum in 1-D topology,greedy routing must be applied.

I. INTRODUCTION

Il. PROBLEM STATEMENT AND NETWORK MODEL



Greedy routing is defined as a routing scheme in which eveuyis large,W;’s, fori =1,2,..., N are considered to be IID
node involved in data transmission forwards packets to thendom variables roughly. Furthermore, each individidds
neighbor that is closest to the destination [8]. In 1-D toggl is approximately independent f. These approximations are
networks, the resulting hops will have longest length in th&upported by simulation results in Section VII. The network
direction toward the destination among all possible hops, model is shown in Figure 1. As the following analysis are

we also call it longest hop routing in this paper. based on the Poisson approximation, our results will nog onl
This paper uses the following notation: apply to uniformly distributed network with large value of
« n — total number of nodes in the network. but are also applicable to networks with all nodes forming
« d— total network distance, which is the length of intervah Poisson process, which increases the applicability of our
that all sensor nodes uniformly distributed in. results.
« r — radio transmission range, which is identical for all . . .
the sensor nodes. =1y
o N¢ps — the cardinality of a particular CDS. : : LWL T, :
e N — N =mincpss(Neps). L Loy T
o P(N) — probability mass function ofV. We will denote & H R — P
P(N = k) the probability thatV takes a particular value ;— Network Coverage L —}
k. ‘ "

« C, C — C denotes event that the network is connectegI o
i.e., there exists at least one path between any pair o
sensor nodes; and is complement event of, i.e.,
network is disconnected.

Network Model for Poisson Approximation

e L — the network spanl. = X,, — X;. 1. MEAN OF N ) )

« F (), Fp(I|C) — cumulative distribution function [N ordgr to evaluate the performance of a given routing
(CDF) of L and the CDF ofL conditioning on the Protocol in terms of the necessary number of relays to be
network connectivity. involved, N, we derive its expectation directly, not via its

« f1(.) — probability density function (pdf) of.. distribution, which is done numerically in Sgction Iv.

« W; — W, is the length of theth hop in greedy routing, "N @ system of many nodes that provides a connected
in whichi = 1.2. ... N. network, after each hop there will usually be another node

e T; — the resi(’ju;u (’)fith hop, i.e.T; = r — W;. “near” the radio range, and so all hops will be only slightly

« D;, — sum of length of first; hops, D), = ZLI W;. _below r. Moreover, theS(_a hop I_en_gths will be appro_ximately

Variables N, L, W;, T; are all random, dependent on thdndependent. (In the Poisson limit, the length- W; is an
random placement of sensors. exponential truncated t&; ;, with the dependence between

The standard assumption that direct links only exist betwe&i @1dW;_1 only through this truncation.) Thus
any two nodes with straight distance no more than a predefined
thresholdr is adopted here. This may not be the case in E(N) =~ E(L|C)/E(W) ~ E(L)/r. 1)

some practical situations. However, in addition to its gtieal The rest of this section quantifies how much belowhe
tractability, this model implies a bound if we selectas ayerage hop is, refining the second approximation above, and

the smallest value of transmission range. Without 10ss ghtainsE (V) by studyingE(L|C) and E(W). We first derive

generality, we normalized all the distance parameters Wi distribution and density functions of the network ceger
transmission radius, therefore,r = 1.

In a sensor network, when the number of nodds small,
It is h|gth. p953|ble t.hat the netvyork will be dlsconnectecb space, forming a Poisson point process with paramegter
Therefore it is meaningless to discuss the number of relﬁgt n be the number of nodes falling i d]. The expected
nodes in this situation, and it is not the case that we are . 910, d]. P
interested in. We assume thais large such that the networkvaIue of the network coverage is:
is connected with high probability. From [9] pages 23 - 25, B(L)=d— 2 +O0(e). )
we know that a collection of: Independent and Identically A
Distributed (11D) uniform random points o0, d] has identical Proof: Let Z, — X; and Z, = d — X,,. Note they are
exponentially distributed distance with parameten between - exponentials, with pdfn "
any pair of adjacent points in the limit asgoes to infinity, ’
i.e., (Xiy1 — Xi) ~ Exzp(d/n), i = 1,2,...,n — 1. In this Fo(@) = Aexp(—Az) e [0,d]
work, since we are considering dense sensor network, it is 1 —exp(=Az)’ ’
reasonable to adopt this approximation and we approxima{edo otherwise, and hence have mean
the uniform point process as a Poisson process. In [10], the M1 1 d ]
expected number of hops with longest hop routing until a 1-B(7) = =~ S5 =5+ O(e™) (3)
Poisson distributed network is getting disconnected idistli Aler —1) Aet—1 A
Our work differs from it as we assume the network witlior large A and fixedd. Combining (3) with the fact that the
volumed is connected and obtain the cardinality of MCDS. Asetwork coverage i€ = d — (Zy + Z,,) gives (2). [ ]

Lemma 1. Consider sensor nodes randomly deployed in 1-



Equation (2) shows that as goes to infinity,F(L) =~ d — and the expectation di, is:

2/), which indicates thatl is approximately the difference 1 1 1

betweend and the sum of two exponential RV's. Based on EWy) =~ m(r Y + XGXP(—)\T))
this observation, we can approximate the probability dgnsi E 1

function (pdf) and cumulative distribution function (CDB} = — - (12)

the network coveragé, f7(1) and Fr (1) as: L= exp(=Ar) A

fr(l) = N2(d —1)e =0, 1€0,d] (4) Equation (10) is only strictly true for the first hod/,,

which is proved in [11]. In fact, for other hop®/, i =

and 2,3,..., N, the distribution of-— W; is truncated at —W;_.

D) However, this dependence is negligible for largge., large

Frll)=e (1+A(d =1)), L€ [0,d] ®) ). Therefore, in a Poisson point process with lafgewe

consider theith hop, wherei < N, the distance between

the next hop relay to the radio radius limit, denoted by
T; = r — W;, has an exponential distribution with parameter
The following lemma shows that(L|C) is a good approx- ), in particular,T} is less than or equal to radio transmission

imation to E(L) for dense networks; both of them tenddp ranger, thus it is a truncated exponential distribution, with
but the difference betweeli(L|C) and E(L) is much smaller probability distribution:

than the difference between either of them ahd
_1—exp(=X)

Lemma 2: Consider sensor nodes randomly distributed in Fr(t) ~ Tp(—)\?“f O<t=r (13)
1-D space according to a Poisson point process with paramet%
A. Nodes within the required network terrain, which is aW
interval [0,d], forming an sensor network. A3 — oo,
the cumulative distribution function (CDF) of the networl%
coverage,l,, and the CDF ofL conditioned on the network
being connected satisfy

Indeed, we approximaté, andZ,, as 11D exponential RV’s,
resulting in (4) and (5).

ich leads to equations (10), (11), and (12) follows.

For r << N/, the expected length of the last hop will
e half the expected length of the other hops, since the
destination will be approximately uniformly distributedtkin
the maximum possible range of the last hop. Thus

F(l|C) — Fp(1) = O(e %) = o(1/A), A = 00.  (6) E(NWo + Wo/2) ~ E(L). (14)
In particular, the expectel and conditional expectation df Lemma 2 implies that it is reasonable and accurate to
given the connectivity of the network satisfy replaceE(L|C) with E(L) when computingZ' () via (1) for
dense networks. The basic idea of above lemmas is follow: in
E(L|C) — E(L) = o(d — E(L)), A — oc. (7)  a dense network that all the nodes forming Poisson prodess, i
Proof: To show (6), note that is highly possible to be connected. So we can use the network
spanX,) — X(1), to approximate the coverage of a connected
Fr(1|C) — Fr(1) (8) network, E(L) can serve as an accurate approximation of

=F1(I|C)P(C)+FL(I|C)P(C)— (FL(1|C)P(C)+ FL(1|C)P(C)) E(L|C). Therefore, combining (14) with (2) and (12) gives
=(F1,(I|C) — F1(1|C))P(C). 9) d—2/A+2exp(-N)/A 1 _d—2/x 1

. ) E(N)Nr/(l—exp(—/\))—l/)\_§N7“—1//\_5 (15)
The factor in brackets is bounded above by= O(1). .
To bound C, partition [0,d] into 2d/r intervals, each of Neglecting terms 0D(e™).
length at mostr/2. A sufficient condition for the network
to be connected is that each interval has at least one node,
which occurs with probability at leagt — e=*"/2)24/7 Thus IV. DISTRIBUTION OF N
P(C) = O(e~*"/?) for large A and fixedr, d. In this section, we propose an approach to compute the dis-
Also, note thatd — E(L) = 2/ + o(1/)) from Lemma 1, tribution of N numerically. In order to derive the distribution
giving (7). m of N, note that the following proposition is a straightforward

result of the law of total probability.

To derive the distribution ofi¥’’s, we consider a sensor y ) .
. : . . Proposition 1: Consider sensor nodes randomly deployed
network with sensor nodes forming a Poisson point proceg,gcordin 10 POISSON Drocess with parametén 1-D space
with parameter\ in 1-D space. LetV, be the random hop L 9 P P pace.

length in the longest hop routing scheme, for any but the las t n be the Poisson distributed number of nodes in the net-
' y work terrain|0, d]. The probability mass function of cardinality

hop. The CDF and pdf of; can be approximated by of MCDS of this network,P(N — k — 1), is given by:

~ 1—exp(=A(r —1))
1—exp(=Ar) '

F, (t) ~ 1 0<t<r (10)

P(N=k—1)= /dP(N: k—1L=10)f.(l)dl. (16)
0

_Aexp(=A(r —1))

The following proposition derives the probability that =
Jwo (t) = )
1 —exp(—Ar)

—1 given that the network coverageli? (N = k—1|L = 1).

0<t<r, (12) k



Proposition 2: In 1-D space, if all nodes are randomly
deployed forming a Poisson process with paramgténen the
conditional probability that the size of the minimum conteec
dominating set isk — 1, given the network coveragde is:

e

——CC between W, and W, | |
-= = CC between W, and W,

d=12,r=1

PIN=k—-1L=1)=P(Dy_1 <l)-P(Drp<1),0<i<d
17)
where Dy, = ZLWZ-, is the sum ofk approximately 11D
RV’'s W, with probability density given by (11).
Proposition 2 follows because the evebt,_; < [ is
equivalent to the union of two mutually exclusive events:

Correlation Coefficients (CC) between W's

Dk < l’ or Dk_l < 1 while Dk z L. ° 100 Totalzl\lot?mber o?r?gdes n 400 50
We computeP(Dy—1 < () by numerical inversion of
Laplace transform. Fig. 2. Simulation results for Correlation Coefficients (QetweeniV’s
The Laplace transform of (11) for=1is
Aexp(=A) [exp(A—s)—1 0
L t)) = . 18
(fW( )) 1—eXp(—/\) A\ — s ( ) 4

-0.051

As the pdf of Dy, is the k fold convolution of fy (), by
transform method, we can obtain the Laplace transform of pdf
of Dy_1, which denote a£(Djy_1) is:

1A—ez£]§>(_j,)\)rl [GXP%: Z) - 1} e

=01

—<— CCbetween W, and N

ots —— CC between W, and N

AP = [ d=12

“0.2} r=1

(19)

By numerical inversion (19), we can obtain pdfiof_; and
Dy, denote agp, ,(z) andfp, (x), which lead taP (Dj,_1 <

-0.25 . . . . . . . .
50 100 150 200 250 300 350 400 450 500

Correlation Coefficients (CC) between W’'s and N

1) andP(D,, < I) where the probability thaD,_, = [ and Total number of nodes n
Dy, = [ are ignored as they are zero for continuous distributed ) ) . . ;
nodes Fig. 3. Simulation results for Correlation Coefficients (QietweeniV’s

Combining (4), (17) and (19), by (16), we can numerically

compute the probability mass function of. between thel¥’s and N is high, however, the variance of

For networl_<s with uniformly Qistrib_ute_d nodesyifis large, ihe 7’s and N are also large, which produces a relatively
we adopt Poisson approximation yielding~ E(n) = Ad, gma|l correlation coefficient. As increases, strong correlation
which enables the above approach to compute the distributigenyeen tha’s and NV still exists, while the variances of the
of . W’s and N become small. This results in large correlation
coefficients. Asn increases further, the dependence between
the W’'s and N decreases, resulting in correlation close to

VALIDATION zero. These figures verify that the approximation of tiés

To verify our preliminary assumptions thHt’s are approx- being independent of each other and/éfis valid for large
imately independent of each other in dense sensor netwasksy.
well as are independent &f, we conducted0®> Monte Carlo To illustrate Lemma2, Figure 4 compares the CDF of
simulation sessions for = 25, 30, ..., 500, in a network with the network coverage given by equation (5) and the network
all nodes uniformly distributed withif0, 12] andr = 1, and coverage conditioning on the network connectivity obtdine
obtain the values ofV’s and N. The Correlation Coefficients by simulation, for a network that all nodes are uniformly-dis
(CC) between differeni¥’s, and betweeri¥’s and N are tributed within intervall0, 12], other parameters are indicated
computed. The results are shown in Figure 2 and Figure 3irdtthe graph. The solid lines in the graph represent the CDF
is clear in Figure 2 that the correlation coefficients betwe®btain from (5), while the markers indicate the simulation
different W’s are close to zero as the number of nodes results. We can see from the figure that for a network with
increasing, as we expected. normalized total distancd = 12, r = 1, results given by

In Figure 3, theWW’s are negatively correlated witlv, (5) shows good agreement with simulation results when the
and the correlation coefficients become smaller in magaitudumber of nodes is high, which is as expected.
as n increases but remain negative. That is to be expected;The algorithm to do the numerical inversion of (19) is
as N is inversely proportional to the sample mean 16f. based on [12]. To demonstrate the accuracy of our ap-
The magnitude of correlation coefficient betwe®nand W3 proaches to obtain the mean and the pmf\gfwe conducted
increases slightly fon < 150 before quickly increasing. This 105 Monte Carlo simulation sessions fet = 12, n =
can be understood as follows. Wheris small, the correlation 60,100, 140, 180, 200, obtain the expected value of minimum

V. SIMULATION, NUMERICAL RESULTS AND MODEL
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Fig. 5. Comparison of analytical and simulation results &xpected
minimum number of relays

equal to the ceiling ofl/r, i.e., E[N] — [d/r] asn — oo,

as the example obtained from simulation shown in Figure 5.
Figure 6 compares the simulation results of probability snas
function of NV for an sensor network with uniformly distributed
nodes and analytical result of probability mass functiodvof
given by (16). Forn = 90, d = 12 andr = 1, 10° Monte
Carlo simulation yields the empirical pmf @f. Filled circles
represent analytical results while empty circles for sitioh
results. This example illustrates that our approach pes/&h
acceptable accuracy level.

VI. EXTENSION TO2-D ANALYSIS

Obtaining the MCDS and evaluating its cardinality in a 2-
D network are more difficult as there are then multiple routes
available to the destination. However, our approach semges
a stepping stone towards understanding 2-D networks, and
suggests a potential way to evaluate MCDS in 2-D networks,
especially for dense networks. Moreover, even though the
optimal 2-D case asymptotes to parallel 1-D backbones in
a first dimension and a small number of 1-D ribs in the
other dimension [7], the results in this paper will require
extension before they can be applied to even dense 2-D
networks, because the maximum spacing allowed between the
ribs depends on how well the relays on neighbouring ribsalig
This is the subject of ongoing research.

VII. CONCLUSION

In this paper, we show that for a 1-D sensor network with
uniformly distributed nodes, the cardinality of the minimu
connected dominating set can be evaluate probabilistie. Th
classic result that a point process with alpoints uniformly
distributed can be well approximated by Poisson process as

number of relays nodes that maintain the whole netwoB€comes large is adopted here, which enables our resules to b

coverage, comparing with the analytical results calcdldtg

valid for networks with nodes have either uniform or Poisson

(1). It can be seen that good agreement is achieved betwégiribution.

simulation and analytical results, shown in Figure 5. More The expected value and distribution 6f obtained from
importantly, as shown in Figure 5, our analytical resul@uUr approaches are important measures to evaluate existing
provide conservative estimates for the expected numba¥.of and potential routing protocols, especially for strictiyeegy

—® Analytical
—=© Simulation
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Fig. 6. Example for probability mass function &f

As the number of nodes: becomes large, it is with
increasing probability that the minimum number of nodes

constraint sensor networks.
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