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Abstract— We consider an important performance measure of
wireless sensor networks, namely, the least number of nodes, N ,
required to facilitate routing between any pair of nodes, allowing
other nodes to remain in sleep mode in order to conserve energy.
We derive the expected value and the distribution ofN for single
dimensional dense networks.

I. I NTRODUCTION

To prolong network lifetime, energy conservation is a ma-
jor concern for wireless sensor networks due to the diffi-
culty of battery replacement. To achieve this goal, short-hop-
communication are generally considered as a better choice
compared to its long-hop counterpart, mainly because it re-
quires, in principle, less power than longer hops. However,as
sensors often lack power control, power consumption depends
primarily on the number of hops taken. More importantly,
making fewer, longer hops allows nodes to spend longer in
a low-power “sleep” mode, prolonging the overall network
lifetime. Thus it is important that the number of nodes involved
in routing is kept small.

To traverse least number of hops in routing, we need to
construct a wireless backbone, and minimize its size. Only
nodes in that backbone set are involved in routing. One
promising approach to construct such a backbone is based on
Connected Dominating Set [1].

A ConnectedDominatingSet (CDS) of a sensor network
is defined as a subset of nodes, called ’relay nodes’ which
form a connected network, such that any node in the original
network is either a member of the CDS or is within the
transmission ranger of at least one node in the CDS. The CDS
with minimum cardinality is known asM inimum Connected
DominatingSet (MCDS). Finding the MCDS in a connected
network was proved to be NP-complete [2]. Publications
related to the utilization of CDS in ad hoc network routing
include [1], [3], [4], and references therein. Those studies
are mainly concentrate on developing heuristic algorithmsto
compute approximated MCDS.

In contrast with previous works, we do not aim at providing
algorithms to obtain the sub-optimal CDS for a given network
instance. We consider a single dimension stochastic network,
and derive the probabilistic properties of the cardinalityof
MCDS instead of finding MCDS explicitly. Indeed, wireless
sensor networks are often deployed in inaccessible terrainwith
a large number of sensor nodes, which prevent them from

being placed deterministically. Therefore, random deployment
is a widely accepted sensor network implementation scheme
and motivates this research.

It should be noted that 1-dimensional (1-D) sensor net-
works have practical importance. For example, there have
been proposals for networking cars on main roads [5] [6]
for purposes such as reporting traffic disruptions, and sensor
networks monitoring rivers, or deployed along a mountain
ridge, etc., which can be approximated as 1-D networks.
More importantly, recent research shows that the optimal node
placement pattern to achieve both coverage and connectivity
in 2-D networks is a strip-based pattern [7], which implies that
single dimension results are useful when considering MCDS
asymptotically in 2-D networks.

Our main contributions are new approaches to computing
the distribution and the mean of cardinality of MCDS. These
results are important because they can be adopted to evaluate
the performance of sensor network routing protocols in terms
of the least number of nodes involved in routing. Moreover,
they also allude to the critical performance measure, network
lifetime, in sensor networks. Though our results are for single
dimension networks, the approaches to obtain these resultsdo
suggest a potential methodology to evaluate MCDS in two
dimensional networks.

The rest of this paper is organized as follow. In Section II,
we define our problem and notation first, and then introduce
a 1-D network model; in Section III, we provide a simple
approach to obtain the mean ofN ; a numerical method for
the distribution ofN is proposed in Section IV. Simulation
and numerical results in Section V show the validity of our
evaluation approaches. We discuss 2-D cases briefly in Section
VI and conclude this work in Section VII.

II. PROBLEM STATEMENT AND NETWORK MODEL

For a 1-D sensor network withn nodes randomly and
uniformly distributed in an interval, we study the minimum
cardinality of its CDS, which is also the necessary number
of nodes involved in the Route Request (RREQ) broadcasting
in routing to achieve complete RREQ delivery in the entire
network.

In the network we are considering, let the coordinates of
the n sensors beX1 ≤ X2... ≤ Xn. In order to make CDS
minimum in 1-D topology,greedy routing must be applied.
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Greedy routing is defined as a routing scheme in which every
node involved in data transmission forwards packets to the
neighbor that is closest to the destination [8]. In 1-D topology
networks, the resulting hops will have longest length in the
direction toward the destination among all possible hops, so
we also call it longest hop routing in this paper.

This paper uses the following notation:
• n — total number of nodes in the network.
• d — total network distance, which is the length of interval

that all sensor nodes uniformly distributed in.
• r — radio transmission range, which is identical for all

the sensor nodes.
• NCDS — the cardinality of a particular CDS.
• N — N = minCDS′s(NCDS).
• P(N) — probability mass function ofN . We will denote

P(N = k) the probability thatN takes a particular value
k.

• C, C̄ — C denotes event that the network is connected,
i.e., there exists at least one path between any pair of
sensor nodes; and̄C is complement event ofC, i.e.,
network is disconnected.

• L — the network span,L = Xn − X1.
• FL(.), FL(l|C) — cumulative distribution function

(CDF) of L and the CDF ofL conditioning on the
network connectivity.

• fL(.) — probability density function (pdf) ofL.
• Wi — Wi is the length of theith hop in greedy routing,

in which i = 1, 2, ..., N .
• Ti — the residual ofith hop, i.e.,Ti = r − Wi.
• Dk — sum of length of firstk hops,Dk =

∑k
i=1 Wi.

Variables N , L, Wi, Ti are all random, dependent on the
random placement of sensors.

The standard assumption that direct links only exist between
any two nodes with straight distance no more than a predefined
thresholdr is adopted here. This may not be the case in
some practical situations. However, in addition to its analytical
tractability, this model implies a bound if we selectr as
the smallest value of transmission range. Without loss of
generality, we normalized all the distance parameters with
transmission radiusr, therefore,r = 1.

In a sensor network, when the number of nodesn is small,
it is highly possible that the network will be disconnected.
Therefore it is meaningless to discuss the number of relay
nodes in this situation, and it is not the case that we are
interested in. We assume thatn is large such that the network
is connected with high probability. From [9] pages 23 - 25,
we know that a collection ofn Independent and Identically
Distributed (IID) uniform random points on[0, d] has identical
exponentially distributed distance with parameterd/n between
any pair of adjacent points in the limit asn goes to infinity,
i.e., (Xi+1 − Xi) ∼ Exp(d/n), i = 1, 2, ..., n − 1. In this
work, since we are considering dense sensor network, it is
reasonable to adopt this approximation and we approximate
the uniform point process as a Poisson process. In [10], the
expected number of hops with longest hop routing until a 1-D
Poisson distributed network is getting disconnected is studied.
Our work differs from it as we assume the network with
volumed is connected and obtain the cardinality of MCDS. As

n is large,Wi’s, for i = 1, 2, . . . , N are considered to be IID
random variables roughly. Furthermore, each individualW ’s
is approximately independent ofN . These approximations are
supported by simulation results in Section VII. The network
model is shown in Figure 1. As the following analysis are
based on the Poisson approximation, our results will not only
apply to uniformly distributed network with large value ofn,
but are also applicable to networks with all nodes forming
a Poisson process, which increases the applicability of our
results.

Fig. 1. Network Model for Poisson Approximation

III. M EAN OF N

In order to evaluate the performance of a given routing
protocol in terms of the necessary number of relays to be
involved, N , we derive its expectation directly, not via its
distribution, which is done numerically in Section IV.

In a system of many nodes that provides a connected
network, after each hop there will usually be another node
“near” the radio range, and so all hops will be only slightly
below r. Moreover, these hop lengths will be approximately
independent. (In the Poisson limit, the lengthr − Wi is an
exponential truncated toWi−1, with the dependence between
Wi andWi−1 only through this truncation.) Thus

E(N) ≈ E(L|C)/E(W ) ≈ E(L)/r. (1)

The rest of this section quantifies how much belowr the
average hop is, refining the second approximation above, and
obtainsE(N) by studyingE(L|C) andE(W ). We first derive
the distribution and density functions of the network coverage
L.

Lemma 1: Consider sensor nodes randomly deployed in 1-
D space, forming a Poisson point process with parameterλ.
Let n be the number of nodes falling in[0, d]. The expected
value of the network coverageL is:

E(L) = d −
2

λ
+ O(e−λd). (2)

Proof: Let Z0 = X1 andZn = d − Xn. Note they are
truncated exponentials, with pdf

fZ(x) =
λ exp(−λx)

1 − exp(−λx)
, x ∈ [0, d]

and0 otherwise, and hence have mean

E(Z) =
eλd − λd − 1

λ(eλd − 1)
=

1

λ
−

d

eλd − 1
=

1

λ
+ O(e−λd) (3)

for largeλ and fixedd. Combining (3) with the fact that the
network coverage isL = d − (Z0 + Zn) gives (2).
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Equation (2) shows that asλ goes to infinity,E(L) ≈ d −
2/λ, which indicates thatL is approximately the difference
betweend and the sum of two exponential RV’s. Based on
this observation, we can approximate the probability density
function (pdf) and cumulative distribution function (CDF)of
the network coverageL, fL(l) andFL(l) as:

fL(l) = λ2(d − l)e−λ(d−l), l ∈ [0, d] (4)

and

FL(l) = e−λ(d−l)(1 + λ(d − l)), l ∈ [0, d] (5)

Indeed, we approximateZ0 andZn as IID exponential RV’s,
resulting in (4) and (5).

The following lemma shows thatE(L|C) is a good approx-
imation toE(L) for dense networks; both of them tend tod,
but the difference betweenE(L|C) andE(L) is much smaller
than the difference between either of them andd.

Lemma 2: Consider sensor nodes randomly distributed in
1-D space according to a Poisson point process with parameter
λ. Nodes within the required network terrain, which is an
interval [0, d], forming an sensor network. Asλ → ∞,
the cumulative distribution function (CDF) of the network
coverage,L, and the CDF ofL conditioned on the network
being connected satisfy

FL(l|C) − FL(l) = O(e−λr/2) = o(1/λ), λ → ∞. (6)

In particular, the expectedL and conditional expectation ofL
given the connectivity of the network satisfy

E(L|C) − E(L) = o(d − E(L)), λ → ∞. (7)

Proof: To show (6), note that

FL(l|C) − FL(l) (8)

=FL(l|C)P(C)+FL(l|C)P(C̄)−(FL(l|C)P(C)+FL(l|C̄)P(C̄))

=(FL(l|C) − FL(l|C̄))P(C̄). (9)

The factor in brackets is bounded above by1 = O(1).
To bound C̄, partition [0, d] into 2d/r intervals, each of
length at mostr/2. A sufficient condition for the network
to be connected is that each interval has at least one node,
which occurs with probability at least(1− e−λr/2)2d/r. Thus
P(C̄) = O(e−λr/2) for largeλ and fixedr, d.

Also, note thatd − E(L) = 2/λ + o(1/λ) from Lemma 1,
giving (7).

To derive the distribution ofW ’s, we consider a sensor
network with sensor nodes forming a Poisson point process
with parameterλ in 1-D space. LetW0 be the random hop
length in the longest hop routing scheme, for any but the last
hop. The CDF and pdf ofW0 can be approximated by

FW0
(t) ≈ 1 −

1 − exp(−λ(r − t))

1 − exp(−λr)
, 0 < t ≤ r, (10)

fW0
(t) ≈

λ exp(−λ(r − t))

1 − exp(−λr)
, 0 < t ≤ r, (11)

and the expectation ofW0 is:

E(W0) ≈
1

1 − exp(−λr)
(r −

1

λ
+

1

λ
exp(−λr))

=
r

1 − exp(−λr)
−

1

λ
(12)

Equation (10) is only strictly true for the first hopW1,
which is proved in [11]. In fact, for other hopsWi, i =
2, 3, . . . , N , the distribution ofr−Wi is truncated atr−Wi−1.
However, this dependence is negligible for largen(i.e., large
λ). Therefore, in a Poisson point process with largeλ, we
consider theith hop, wherei ≤ N , the distance between
the next hop relay to the radio radius limit, denoted by
Ti = r − Wi, has an exponential distribution with parameter
λ, in particular,Ti is less than or equal to radio transmission
ranger, thus it is a truncated exponential distribution, with
probability distribution:

FT (t) ≈
1 − exp(−λt)

1 − exp(−λr)
, 0 < t ≤ r (13)

which leads to equations (10), (11), and (12) follows.

For r << N/λ, the expected length of the last hop will
be half the expected length of the other hops, since the
destination will be approximately uniformly distributed within
the maximum possible range of the last hop. Thus

E(NW0 + W0/2) ≈ E(L). (14)

Lemma 2 implies that it is reasonable and accurate to
replaceE(L|C) with E(L) when computingE(N) via (1) for
dense networks. The basic idea of above lemmas is follow: in
a dense network that all the nodes forming Poisson process, it
is highly possible to be connected. So we can use the network
spanX(n)−X(1), to approximate the coverage of a connected
network, E(L) can serve as an accurate approximation of
E(L|C). Therefore, combining (14) with (2) and (12) gives

E(N) ≈
d − 2/λ + 2 exp(−λ)/λ

r/(1 − exp(−λ)) − 1/λ
−

1

2
≈

d − 2/λ

r − 1/λ
−

1

2
(15)

neglecting terms ofO(e−λ).

IV. D ISTRIBUTION OF N

In this section, we propose an approach to compute the dis-
tribution of N numerically. In order to derive the distribution
of N , note that the following proposition is a straightforward
result of the law of total probability.

Proposition 1: Consider sensor nodes randomly deployed
according to Poisson process with parameterλ in 1-D space.
Let n be the Poisson distributed number of nodes in the net-
work terrain[0, d]. The probability mass function of cardinality
of MCDS of this network,P (N = k − 1), is given by:

P(N = k − 1) =

∫ d

0

P(N = k − 1|L = l)fL(l) dl. (16)

The following proposition derives the probability thatN =
k−1 given that the network coverage isl, P(N = k−1|L = l).
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Proposition 2: In 1-D space, if all nodes are randomly
deployed forming a Poisson process with parameterλ, then the
conditional probability that the size of the minimum connected
dominating set isk − 1, given the network coveragel, is:

P(N = k− 1|L = l) = P(Dk−1 < l)−P(Dk < l), 0 < l < d
(17)

where Dk =
∑k

i=1 Wi, is the sum ofk approximately IID
RV’s W , with probability density given by (11).

Proposition 2 follows because the eventDk−1 < l is
equivalent to the union of two mutually exclusive events:
Dk < l, or Dk−1 < l while Dk ≥ l.

We computeP(Dk−1 < l) by numerical inversion of
Laplace transform.

The Laplace transform of (11) forr = 1 is

L(fW (t)) =
λ exp(−λ)

1 − exp(−λ)

[

exp(λ − s) − 1

λ − s

]

. (18)

As the pdf ofDk is the k fold convolution offW (t), by
transform method, we can obtain the Laplace transform of pdf
of Dk−1, which denote asL(Dk−1) is:

L(Dk−1) =

[

λ exp(−λ)

1 − exp(−λ)

]k−1 [

exp(λ − s) − 1

λ − s

]k−1

.

(19)

By numerical inversion (19), we can obtain pdf ofDk−1 and
Dk, denote asfDk−1

(x) andfDk
(x), which lead toP(Dk−1 <

l) and P(Dk < l) where the probability thatDk−1 = l and
Dk = l are ignored as they are zero for continuous distributed
nodes.

Combining (4), (17) and (19), by (16), we can numerically
compute the probability mass function ofN .

For networks with uniformly distributed nodes, ifn is large,
we adopt Poisson approximation yieldingn ≈ E(n) = λd,
which enables the above approach to compute the distribution
of N .

V. SIMULATION , NUMERICAL RESULTS AND MODEL

VALIDATION

To verify our preliminary assumptions thatW ’s are approx-
imately independent of each other in dense sensor networks,as
well as are independent ofN , we conducted105 Monte Carlo
simulation sessions forn = 25, 30, . . . , 500, in a network with
all nodes uniformly distributed within[0, 12] and r = 1, and
obtain the values ofW ’s andN . The Correlation Coefficients
(CC) between differentW ’s, and betweenW ’s and N are
computed. The results are shown in Figure 2 and Figure 3. It
is clear in Figure 2 that the correlation coefficients between
different W ’s are close to zero as the number of nodesn
increasing, as we expected.

In Figure 3, theW ’s are negatively correlated withN ,
and the correlation coefficients become smaller in magnitude
as n increases but remain negative. That is to be expected,
as N is inversely proportional to the sample mean ofW .
The magnitude of correlation coefficient betweenN andW3

increases slightly forn < 150 before quickly increasing. This
can be understood as follows. Whenn is small, the correlation
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Fig. 2. Simulation results for Correlation Coefficients (CC) betweenW ’s
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Fig. 3. Simulation results for Correlation Coefficients (CC) betweenW ’s

between theW ’s and N is high, however, the variance of
the W ’s and N are also large, which produces a relatively
small correlation coefficient. Asn increases, strong correlation
between theW ’s andN still exists, while the variances of the
W ’s and N become small. This results in large correlation
coefficients. Asn increases further, the dependence between
the W ’s and N decreases, resulting in correlation close to
zero. These figures verify that the approximation of theW ’s
being independent of each other and ofN is valid for large
n.

To illustrate Lemma2, Figure 4 compares the CDF of
the network coverage given by equation (5) and the network
coverage conditioning on the network connectivity obtained
by simulation, for a network that all nodes are uniformly dis-
tributed within interval[0, 12], other parameters are indicated
in the graph. The solid lines in the graph represent the CDF
obtain from (5), while the markers indicate the simulation
results. We can see from the figure that for a network with
normalized total distanced = 12, r = 1, results given by
(5) shows good agreement with simulation results when the
number of nodesn is high, which is as expected.

The algorithm to do the numerical inversion of (19) is
based on [12]. To demonstrate the accuracy of our ap-
proaches to obtain the mean and the pmf ofN , we conducted
106 Monte Carlo simulation sessions ford = 12, n =
60, 100, 140, 180, 200, obtain the expected value of minimum
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number of relays nodes that maintain the whole network
coverage, comparing with the analytical results calculated by
(1). It can be seen that good agreement is achieved between
simulation and analytical results, shown in Figure 5. More
importantly, as shown in Figure 5, our analytical results
provide conservative estimates for the expected number ofN .
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Fig. 6. Example for probability mass function ofN

As the number of nodesn becomes large, it is with
increasing probability that the minimum number of nodes is

equal to the ceiling ofd/r, i.e., E[N ] → ⌈d/r⌉ as n → ∞,
as the example obtained from simulation shown in Figure 5.
Figure 6 compares the simulation results of probability mass
function ofN for an sensor network with uniformly distributed
nodes and analytical result of probability mass function ofN ,
given by (16). Forn = 90, d = 12 and r = 1, 105 Monte
Carlo simulation yields the empirical pmf ofN . Filled circles
represent analytical results while empty circles for simulation
results. This example illustrates that our approach provides an
acceptable accuracy level.

VI. EXTENSION TO 2-D ANALYSIS

Obtaining the MCDS and evaluating its cardinality in a 2-
D network are more difficult as there are then multiple routes
available to the destination. However, our approach servesas
a stepping stone towards understanding 2-D networks, and
suggests a potential way to evaluate MCDS in 2-D networks,
especially for dense networks. Moreover, even though the
optimal 2-D case asymptotes to parallel 1-D backbones in
a first dimension and a small number of 1-D ribs in the
other dimension [7], the results in this paper will require
extension before they can be applied to even dense 2-D
networks, because the maximum spacing allowed between the
ribs depends on how well the relays on neighbouring ribs align.
This is the subject of ongoing research.

VII. C ONCLUSION

In this paper, we show that for a 1-D sensor network withn
uniformly distributed nodes, the cardinality of the minimum
connected dominating set can be evaluate probabilistic. The
classic result that a point process with alln points uniformly
distributed can be well approximated by Poisson process asn
becomes large is adopted here, which enables our results to be
valid for networks with nodes have either uniform or Poisson
distribution.

The expected value and distribution ofN obtained from
our approaches are important measures to evaluate existing
and potential routing protocols, especially for strictly energy
constraint sensor networks.
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