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Abstract—Energy storage is becoming increasingly important,
both to mitigate intermittency in renewable generation and
to reduce peak demand. However, storage remains expensive
and so must be managed optimally. This paper considers the
optimal management of storage that is subject to inefficiency
in charging/discharging and to self-discharge, with the objective
of minimizing energy costs. Notably, it shows that the less
efficient the storage is, the less capacity is required to achieve
the maximum peak-shaving benefit.

I. INTRODUCTION

As increasing demands are placed on an aging grid, there is
an increased need to incorporate large scale energy storage to
smooth the peak loads placed on the generation, transmission
and distribution systems.

To minimize demands on the network, the storage should be
placed near the most variable elements, be they wind turbines,
photovoltaic systems or loads. We will consider a storage
device placed near the load, and managed by the customer.
It is unclear who should pay for such storage; the primary
beneficiary of reduced transmission peaks is not the customer
but the load serving entity (LSE). Thus, we assume that the
storage is purchased by the LSE, but managed by customer
to minimize the customer’s electricity costs. This type of
arrangement is being explored by Australian LSE SP Ausnet in
response to serious fires on Black Saturday in 2010 caused by
overloaded distribution circuits. It is facilitated by the roll-out
of smart meters in Australia.

This paper investigates the structural properties of the
optimal charging schedule for such storage. Prior work [1],
[2] typically assumes that batteries are lossless. In contrast,
this paper will consider the effects of two types of losses.
The first is inefficiency in charging, such as electrolysis of
the solvent in a chemical battery or pumping inefficiency in a
pumped hydro storage system. The second is self-discharge,
such as friction losses in a flywheel. These two types of losses
have different effects, but both significantly reduce the ability
of the storage to reduce the peak load.

The optimal action at any point in time depends on the
load and price at future instants. Look-ahead is assumed by
many algorithms such as [3] for distributed computation in
demand-response settings, in which different customers predict
their daily demands and the LSE calculates corresponding
prices. The computer science on-line algorithms community
has developed techniques that achieve almost optimal results
for models similar to this [2], [4]. These algorithms motivate
us to investigate the structure of the optimal solution, since
they do not themselves give insight into that structure. A
contribution of this paper is to demonstrate that, in many
practical situations, only a limited amount of future knowledge
is required to make optimal charging decisions. This is due

to the presence of quasi-renewal points beyond which future
conditions do not affect the current optimal action.

After introducing the model in Section II, we investigate
the structure of the optimal solution for ideal batteries in Sec-
tion III. We then consider charging inefficiency in Section IV
and self-discharge in Section V.

II. MODEL

The current electricity grid relies on the balance between
supply and demand. This means that without energy storage,
the draw from the grid, g(t), should be able to satisfy the
demand (load) D(t) > 0 at all time ¢, i.e., g(t) = D(¢).
We consider demand to be inelastic (independent of changes
in price). Now consider a situation where an energy storage
system with maximum capacity B > 0 is installed between the
generator and the load. This would enable the user to either
consume energy straight from the grid, or to store some energy
b(t), by drawing power at a rate of ¢(¢) during low energy
prices, and consume the stored energy at a rate of d(¢) when
the energy price is high. The storage device has a maximum
rate at which it can charge and discharge given by Chyax, Dmax
respectively. Further the storage has a charging efficiency of
1n < 1 and also loses energy over time such that, if no charging
occurs, then b(t) = Sb(t — 1) for some S € (0, 1].

The cost of drawing power g(¢) from the grid is assumed to
have the form P(t)N(g(t)) for some positive price function
P(-) and some nonlinearity N (-), which is strictly convex in-
creasing, which models the fact that peak grid power increases
the cost for the utility and increases the strain on the grid.

This gives rise to an objective that would require the utility
to minimise its generation cost, assuming that the cost savings
by the utility will be passed on to the user by reducing the
electricity bill of the users who shift their demands on the grid.
In particular, we would like to know the optimal charging and
grid use schedule under arbitrary prices and arbitrary demands.
That is, the user seeks to minimize the energy cost over a
horizon 7', subject to the final storage level being F':

T

arg min > P(t)N(g(1)) )
subject to,

b(t) = Sb(t — 1) — ne(t) +d(t) =0 [6(t)] (2a)
D(t) 4 c(t) — d(t) — g(t) =0 [0(t)] (2b)
g(t) =0 [A@®)] (20
B-bt)>0 b(t)=>0  [3(1),8(t)] (2d)
Ciax — c(t) >0 c(t) >0 xX(®),x®)] Qe
Dpax —d(t) >0 d(t) >0 [6(t),8(t)] (2D
WT)—F=0 €l Qg



with b(0) = 0, where the variables in square brackets are the
Lagrange dual variables corresponding to each constraint. Note
that capital letters denote parameters of the problem instance,
lower case letters denote decision variables and Greek letters
(except 1) denote Lagrange multipliers.

If » = 1 the solutions for ¢ and d need not be unique.
We consider only the solution in which min(c(¢),d(t)) = 0
for all £, which corresponds to the storage never charging and
discharging simultaneously.

When dimensioning a storage facility, it is useful to consider
long time horizons, and so it is useful for the solution to be
well defined in the limit of large T Let (g%, b, cL, d%) be a
solution to (1)—(2) for a given F. Under mild conditions, the
limit for large 7" exists.

Theorem 1. Consider a system and a time t for which one of
the following conditions holds:

1) there exists a T >t such that b5(t) =0 ;

2) there exists a T >t such that b} (t) = B.

Then g*(t) = Th_r)r;O gL(t) and b*(t) = q}gnm bL(t) exist.

Indeed, the first main structural result, Theorem 3, will show
that exact convergence occurs for finite 7', which allows us to
focus on the finite horizon formulation.

III. STRUCTURE OF OPTIMAL SOLUTION

First, let us explore structural properties for the optimal
solution, that will later allow us to study the behaviour of
the optimal charging and generation schedules.

We will start with some preliminary results. As may be
expected, requiring the storage to end at a higher state of
charge never reduces the storage level at an earlier time. The
following lemma is proved in the appendix.

Lemma 2. For any Fy, F» € [0, B] with Fy < F,, we have
that b, (t) < bL,(t) for all t € [0, T).

The first main structural result, proven in the appendix,
shows that the optimal solution can often be found with
knowledge of conditions only a finite distance into the future.

Theorem 3. If b5 (t) = 0 or bl (t) = B, for some t € [0,T],
then for all T' > T, all t' < t and all k € [0,B],
b{i(t’) = b/OT/ ) = / bE (t') = b*(t'), and consequently
g (') =g5 (t')=gp (') = g*(t').

We call ¢ a quasi-renewal point. In a stochastic process,
a renewal point is a point £ such that the process after £ is
independent of the process before £ given the value at time
t. Similarly, any future demand or prices beyond 7' will not
affect the optimal schedule prior to the quasi-renewal point
t. Diurnal patterns mean that, when the storage capacity is
small, 7" is often less than a day ahead of ¢. This means that
demand-response schemes such as [3] do not need predictions
substantially more than a day ahead. However, if the storage is
large, then T'—t can be multiple days, as illustrated in Fig. 1.
This example, and others in the paper, uses total demand from
the Australian state of New South Wales (NSW) in March
2012 [5]. This is a highly aggregated load, with regular diurnal
variation. We have also produced the results in this paper for
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Figure 1. NSW Renewal point for 20 days, with a 22500MWh, 90% efficient
storage facility.

the much burstier demand of a single house, and found that
our qualitative conclusions still hold, but space does not allow
the figures to be included.

Provided that the charging schedule results in renewal
points, let us first consider the case of ideal storage (n =
S =1, Chuax = Dmax = o0), to obtain insight into the
structure of the solution. A consequence of these conditions
is the following

Proposition 4. Consider an ideal storage facility and any
interval [t1,t2] in which the storage is partially filled
(b*(t) € (0,B)). Then the optimal incremental grid power
cost P(t)N'(g*(t)) is constant on [t1,1s).

Moreover, P(-)N'(g*(-)) increases from time t to t+1 only
if the storage is full b*(t) = B, and decreases from t to t + 1
only if the storage is empty b*(t) = 0.

This is a consequence of the more general result Theo-
rem 5 in Section IV. Note that this is in contrast to the
structure observed in [1], in which the storage level increased
monotonically, then remained constant, and then decreased
monotonically over the horizon. That is because the model
of [1] imposed a penalty for the storage being less than
completely full. This penalty accumulates over time, and so
there is a greater incentive to charge the storage early, and less
incentive nearer to the horizon.

IV. IMPACT OF EFFICIENCY

We now investigate the effect that inefficiency has on the
optimal charging schedule. At first, it may seem intuitive that
the loss of energy would simply require that the rate of charg-
ing of the storage be greater when the system is inefficient,
but that the structure would be otherwise unchanged. It turns
out that inefficiency causes a substantially greater effect, as
explained in the following theorem.

Theorem 5. Consider an interval [t1,ts] on which b*(t) €
(0, B). There exists a constant

R=¢+ TZ s (87 - B7(n) 3)

T=t
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Figure 2. Generation schedules for 22500MWh storage devices with 100%
and 90% efficiency.

such that, when the storage is neither charging at maximum
rate nor discharging at maximum rate (i.e., d < Dp.x and
¢ < Chax) then

P(t)N'(g"(t))S" € [nR*, RY] €))

where RT™ = max(R,0). The left hand side is at the lower
limit of this interval when the storage is charging, c(t) > 0,
and the upper limit when the storage is discharging, d(t) > 0.

Moreover, when the storage is discharging at maximum rate,
P(t)N'(g*(t))S* > R and when it is charging at maximum
rate, P(t)N'(g*(t))S* < nR™. When P(t)N'(g*(t))S?t is in
the interior of the interval, the storage is neither charging nor
discharging.

This theorem demonstrates that the marginal generation cost
is no longer constant on intervals in which the storage is
partially charged. If the charging and discharging rates are low,
the fluctuations are by a factor of »; if the maximum charge
or discharge rate is reached, the fluctuations are even higher.
Note also that the storage only charges when the marginal cost
of grid power is low compared to other times in [tq, 2] and
only discharges when the cost is high.

This structure is illustrated in Figure 2, which shows the
fluctuations in the generation required to meet the NSW
demand with a storage of 22500MWh that is either 90% or
100% efficient,with the price function P(.) = 1.

This fluctuation reduces the ability of the storage device to
shave the demand peaks. As a result, the less efficient a storage
facility is, the larger it must be to shave the peak demand to
a given level. This is illustrated in Fig. 3. For a fixed budget,
the optimal design for peak shaving will need to balance the
choice of an expensive storage technology with high efficiency
versus a cheaper technology for which a higher capacity can
be deployed.

However, this natural intuition (that lower efficiency storage
should be larger) only applies for small capacities. Remark-
ably, the reverse is true for high capacity storage. This is
illustrated in Figure 4, which shows the peak generation
required as a function of the efficiency for several storage
capacities. For high efficiencies, the larger storage capacities
provide more smoothing and so reduce the peak demand. The
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Figure 3. Capacity vs Efficiency for the March 2012 NSW demand.
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Figure 4. NSW Maximum generation vs efficiency.

diagonal slope on the left of the graph indicates that, at lower
efficiency, having storage larger than a threshold does not
provide further shaving. Moreover, that threshold of storage
capacity is smaller as the efficiency drops.

To understand why, consider fully efficient storage smooth-
ing a given demand. Once the capacity is large enough to
supply all the peaks without fully discharging, increasing the
capacity does not provide further smoothing. For inefficient
storage, the charging “dead zone” identified above means that
it is not optimal to charge or discharge unless the difference
in marginal costs differs sufficiently, resulting in a smaller
range between the maximum and minimum state of charge,
even without capacity constraints. Thus the size of storage
required to accommodate the maximum range of states of
charge decreases as the efficiency decreases.

Another striking feature of Fig 4 is that, for small capacities,
increasing the efficiency beyond a certain point does not
further reduce the peaks. The explanation is the counterpart
to that of the above. The peak generation is determined by
the single largest peak. To obtain optimal smoothing, all that
is required is that the storage be fully charged before that
peak and fully discharged after it'. Even an inefficient storage
facility will fully charge and fully discharge provided that the

Note that our definition of capacity is the amount of energy that the storage
can deliver, not the amount required to charge it fully
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Figure 5. NSW total generation vs efficiency for a 20 day period.

difference in prices is sufficient.

This may suggest that the transmission and distribution
providers are indifferent between different efficiencies, pro-
vided the capital costs are the same. However, if the storage
is distributed to individual customers, the retailer sometimes
has a perverse incentive to install lower efficiency storage.
That is because the customer must pay for the energy lost due
to lower efficiency. However, this effect does not provide an
incentive to reduce the efficiency to zero, since the customer’s
optimal policy will then be to ignore the storage completely.
Figure 5 shows the total energy generated as a function of the
storage efficiency for the NSW load.

V. IMPACT OF SELF-DISCHARGE

Let us now investigate the effect of self-discharge on the
optimal charging schedule. This is important for some storage
technologies such as flywheels, which lose up to 50% of their
stored energy in 24 hours [6]. As can be seen from (4), if the
fraction of energy retained from one time step to the next is
not S = 1, then we no longer have the qualitative conclusion
that the marginal cost is constant on intervals during which
the storage is either being charged or discharged. Instead, the
charging rate will be such that the incremental cost increases
exponentially. This is because the earlier energy is stored, the
more of it will have leaked away by the time it is needed.
Note that this may be an artefact of decision to model leakage
as a constant fraction of the current charge, rather than as a
fixed loss of energy per unit time.

Since the only way S appears in the Theorem 5 is as this
multiplicative factor of S?, it is tempting to assume that the
optimal charging schedule for S < 1 will be the same as
that for S = 1 with the exception that intervals on which the
marginal cost is flat are replaced by exponentially increasing
periods. Figure 6 shows that this is not the case. The increased
leakage causes the storage to empty and fill more frequently.
As a result, intervals over which the marginal cost is constant
with S = 1 are split into multiple intervals of increasing
marginal cost, separated by downward jumps.

It appears that, whenever the price decreases for a low rate
of leakage, the price also decreases for a higher rate of leakage.
Conversely, whenever the price jumps up for a high rate of
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Figure 6. Optimal generation with leakage.

leakage, it also jumps up for a lower rate. This is because these
decreases occur when the storage is empty, and the storage is
empty with high leakage whenever it is with low leakage.

VI. CONCLUSION AND ACKNOWLEDGEMENT

We have demonstrated that optimal management of storage
must consider inefficiency. Inefficient storage shares the use-
ful “renewal” structure of ideal storage, which allows exact
calculation of the optimal schedule knowing load only a
finite time into the future. However inefficiency introduces
conflict between the goals of reducing peak load and reducing
total energy consumption, and also competing arguments for
both larger and smaller storage capacities. We hope that this
encourages future theoretical studies to consider the non-trivial
implications of imperfections in storage technology.
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Steven Low for valuable feedback on drafts of this paper.
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APPENDIX A
STRUCTURE OF FINITE HORIZON OPTIMUM

We first investigate the structure of the finite horizon prob-
lem (1), using Lagrange duality [7]. In particular, we identify
the Karush-Kuhn-Tucker (KKT) conditions.



The Lagrangian of the above optimisation problem L is then
T

[P(ON(9(6)) + 6(¢) [ot) = Sb(t = 1) = ne(t) + d()]

+0(6) [D(1) + e(t) — d(t) — 9(0)] = MD)g (1)
— BHb(E) = B()(B = b(1) + E(B(T) — F)
= X(elt) = (1) (Conae = (1))

— 3(8)d(t) = 3(t)(Dax — d(1))|

Stationarity with respect to g(t), b(t), c¢(¢) and d(t) gives

P(LN'(g" (1)) =67 (t) =AT(t) =0 (5a)
¢" () + (=S¢ (t+ 1) — BT () + BT (1) Le<r
+"l=r =0 (5b)
07 () = o™ (t) = x" (1) + X" () =0 (5¢)
oT () =0T (t) =87 (t)+ 07 (t) =0 (5d)

where 14 = 1 if A is true and O otherwise. The complemen-
tary slackness conditions are

b (15" (1) =0 (B=b"(1)5"(t) =0
()X () =0 (Cinax — " ()X (1) =0
dT(t)s" (t) =0 (Diax — d*(1))87(t) = 0
g OAT(t) =0

Next by subtracting (5¢) from (5d) and making 67 (¢) the
subject we get,

%[(1+77)¢T(t)+xT(t)—>‘<T(t)—éT(tHgT(t)] (6)

Then solving (5b) iteratively gives
é—T + Z ST t [

Finally by substituting (6) and (7) in (5a) and applying the
primal feasibility condition g? () > 0 to eliminate A7 (¢), we

get the optimal solution
(8" () - B%)))

5B+ W ®

0T (t) =

-] @

+x" (1) — xT(t)i

Note in particular that under the ideal storage assumption,

T-1
PN (6" (1) =5 (1 +7) <5T+ S5

T-1 +

P(t)N'(g" (1)) = [Z(ﬁT(T) —Br(m) +¢"

T=t

©))

Proof of Theorem 5: Add (5¢) and (5d) and substitute
(7) to get

) (€7 +ZST tL

=x"(t) = x"(t ()—éT( ) +07 (1)

- A7(7)])

(10)

Next by substituting either 8" (£) — 67 (¢) or X7 (t) — x7 (t)
from (10) into (8) and substituting (3) we get respectively

P(ON'(g" (1) = [nST'R+X"(1) - X" ()] (D
PION'("(1) = [s~R~s" () +57()] (2
When the storage is charging (c(t) >
xT(t) = 67 (t) = 0. Thus (11) implies P(t)N'(¢7(t)) <
(St R — T (t)] " which establishes that P(t)N'(g7(t)) <

nST!R* with inequality only if x7(f) > 0 which, by (2e)
only occurs if ¢(t) = Cpax.

0), then

When the storage is discharging (d(t) > O), then
5" () = x¥(t) = 0. Thus (12) implies P(t)N'(¢7(¢)) >
[5‘4R—|—5T(t)]+ which establishes that P(t)N'(g7(t)) >

S—tRT with inequality only if 67 () > 0 which, by (2f) only
occurs if d(t) = Dax.
Since the sum in (3) starts at ¢, R increases when BT(t) >0
and decreases when 7 (t) > 0. [ |
Next, consider the?ollowing lemmas.

Lemma 6. For any Fy,F» € [0, B), if bL, (1) = bLy(7) for
some T € [0,T), then b, (t) = bL,(t) for all t € [0, 7).

Proof: Let A = bL (t) = bL,(t). Since the costs and
constraints at different times are only coupled by (2a), for all
t € [0,7], both b, (t) and bL,(t) are equal to the solution
b7, (t) to the problem with 7" replaced by 7 and (2g) replaced
by b(7)= [ |

Lemma 7. For any Fy,F> € [0, B] with F\ < Fy and any
7 € [0,T), if there is no such t € [,T), that b%, (t) = bL, (1),
then bL (t) < bL,(t) for all t € [1,T).

We can now prove our main monotonicity result.
Proof of Lemma 2: Since Fy < Fs, (2g) gives bl (T) <
bL,(T). Let T € [0, T be the last time that b%, (1) = bL,(7);
this exists since b%,(0) = bL,(0) = 0. It follows from
Lemma 6 that b%, (t) = bL,(¢) for all ¢ € [0, 7]. By definition
there is no t € (r,T] such that b%,(¢t) = bL,(¢), and so
Lemma 7 states that b%, (t) < bL,(¢) forall t € (r,7]. m
Since the prefix on [0,7] of an optimal solution is itself
optimal (i.e., bf; (t) = bf,(t) where Fy = bl (7)), Lemma 2
implies that, for a given ¢, bl (¢) is monotonic increasing in T
and bL(¢) is monotonic decreasing.

Lemma 8. If at some time t we have b5 (t) = 0 (resp. b} (t) =
B ) then for any j € [0, B] the optimal solution to any problem

where j € [0,B), also saturates below at time t, and
b%( t) = b]T( ") for all time t' < t.

Proof: If at some time ¢ € [0, 7] we have b5 (t) = 0, then
at time t, bjT(t) = 0 by Lemma 2 (i.e., due to monotonicity).
Then Lemma 6 implies that b5 (t') = b7 (') for all ¢/ <¢. m

Proof of Theorem 3: We will prove the case that b5 (t) =
0; the case for bl (t) = B is analogous.

Choose an arbitrary k& € [0, B].
Lemma 6, bl (') = bL(t') for all ¢/ < t.

Next consider a horizon 77 > T. Let A = b% (T
Then b% (t) = b%(t) by Lemma 6, whence b% (t)
Theorem 2. Then again b7 (t') = b% (') for all t’

By Theorem 2 and

) < B
=0b
<t



