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Abstract—Rate allocation among a fixed set of end-to- go in the network, a situation better modeled through
end connections in the Internet is carried out by congestion stochastic processes. This issue was identified by Roberts
control, which has a well established model: it optimizes and Massoué [21], who studied queueing systems with
a concave network utility, a particular case of which is . ' .
the alpha-fair bandwidth allocation. This paper studies r"’.md.Om arrivals and yvorkloads, and a processor sharing
the slower dynamics of connections themselves, that arrive discipline where service rates depend on bandwidth allo-
randomly in the network and are served at the allocated cation, assumed to occur at a faster time-scale. This leads
rate. It has been shown that under the condition that the to a basicstability question, first posed by De Veciana
mean offered load at each link is less than its capacity, the et al. [7]: under which connection level demands (job

resulting queueing system is stochastically stable, for the _ . | rat d Kload) is th i .
case of exponentially distributed file-sizes. The conjecture arrival rate and mean workload) is the resulting queueing

that the result holds for general file-size distributions has Process stable? The answers given in [7] apply to Poisson
remained open, and is very relevant since heavy-tailed arrivals and exponentially distributed job sizes, and max-
distributions are often the best models of Internet file sizes. min fair or proportionally fair bandwidth allocation. In

In this paper, building on existing fluid models of the sys- s case the numbers of connections per route form a
tem, we use a partial differential equation to characterize Mark hai hich is sh to be stable (i di
the dynamics. The equation keeps track of residual file size arkov chain, which is S ownto ) .e stable (i.e., ergodic)
and therefore is suitable for general file size distributions. Under the natural stability condition: namely, that the
For alpha fair bandwidth allocation, with any positive alpha mean load in each link of the network is strictly less
param_eter, a Lyapunov function_ is constructed Wiish nega- than the link capacityln a subsequent paper by Bonald
tive drift when the offered load is less than capacity. With - 5q \Massoué [3], these results were generalized to
this tool we answer the conjecture affirmatively in the fluid . . . . . .
sense: we prove asymptotic convergence to zero of the fluid the a-fair case; othe.r Ut'“_ty functions gre Cons!dered In
model for general file-size distributions of finite mean, and [26]. Further extensions include relaxing the time-scale
finite-time convergence for those of finitgp > 1 moment. In ~ separation [14] and relaxing the model of fixed-capacity
the stochastic sense, we build on recent work that relates |inks [15].
fluid and stochastic stability subject to a certain light- We note that the natural condition is not sufficient for

tailed restriction. We further provide the supplementary all allocation olicies. such as when the network seeks to
fluid stability argument to establish the conjecture for this lon policies, su w W

class that includes phase-type distributions. Results are Maximize instantaneous throughput € 0, see [3]) or
supplemented by illustrative network simulations at the under certain forms of prioritization. For a demonstrative

packet level. example we refer to Section VI. Verloop et al. [24]
show that the form of scheduling that is optimal for a
single link (shortest remaining processing time, SRPT)
can cause networks to be unstable even if the maximum
A fundamental step in the understanding of resourdedividual link utilization approaches 0. The intuition is
allocation mechanisms in the Internet has been tiieat a flow on a multi-link path can be bottlenecked by
formulation by Kelly et al. [10] of congestion controlflows on any one of its links, leaving other links under-
in terms of network utility maximization. In a scenarioutilized at some instant; if the bottleneck link shifts as
of a fixed number of connections across routes in flows arrive and depart, the multi-link path could be
network, this approach characterizes an equilibrium anghstable even though the mean load on each link is
leads to the formulation of dynamic, distributed methodstrictly less than its capacity.
to achieve it. An interesting class of utility functions is Therefore the cited stability results establish a non-
the “a-fair” family of Mo and Walrand [18]; by varying trivial fact. They are, however, critically restricted by
the o parameter it encompasses various notions of flokhe assumption of exponentially distributed inter-afriva
level fairness, in particular proportional fairness=£ 1) times and file sizes. The latter is particularly unsatis-
and max-min fairnesso( — oc). These notions are factory, since it has been observed that file sizes in the
commonly used to describe various current or proposétternet follow a heavy tailed Pareto-type distribution
network protocols (e.g., [1], [25]). [5]. This has motivated recent efforts in extending the
However, this analysis with fixed numbers of connecstability results for general file-size distributions. Re-
tions does not capture the reality that flows come andoving the exponential file-size assumption isetl-
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known to be a difficult problei[14]; without it, the Il. PROBLEM FORMULATION AND PARTIAL

number of ongoing connections is no longer a Markov DIFFERENTIAL EQUATION MODEL

state. Some existing partial results are th_e following: The problem under consideration is the stability of
[16] has showed that forv = 1, the stability result 5 queueing system in which customers are flows that
can be generalized to an appropriate Jackson-type rogfze at various routes, and are served according to rates
ing scheme, thus providing the tool to establish thgncated by a congestion control algorithm. The latter

condition for phase-type file distributions; [12] give§s modeled through the network utility maximization
a result for phase-type file distribution and general problem

in two particular network topologies through Lyapunov

functions obtained numerically; [27] proves stability for, . Z 2l <‘P7") , subject toz Rimom < ¢
quite general arrival and service times in both stochastic , Zm - B
and worst-case settings, for a variant in which at most (1)

one flow on each route is allocated capacity at a given .
time. Herem denotes the route,,, the number of connections

in the route, andyp,, the total allocated rate of all

I%onnections of routen®. Matrix R is the routing matrix

Ry, = 1 if route m uses link! and zero otherwise)
dc = (¢) the vector of link capacity constraints. The

A strategy that has proven relevant for this problem
the use offluid limits, already invoked in [3] and further
studied in [11], for the exponential case. The extension. - ; . . .
to general distributions is developed by Gromoll anyt'“ty. functu_)n Un Is assigned to each connection as a
Williams [8], [9], as briefly reviewed in Section II. unction of its per-flow rater,, = ¢ /zn. For back-
Based on these models, [4] obtains a stability reSLﬂfound on these “moqs,-ls we refer 'to [2.2]' In this paper
for general file size distributions of bounded suppor e focus on /the O"fa'rfc';'t'“ty funct|on_s mtrodu_c_ed n
for a sufficiently smalla. In [8] it is also established 18], whereUm(o:? = for some S.t”Ctly positiven.
that the stability condition guarantees the fluid model is From a modeling p_ersp_ect_lvef‘, this does_ not assume
stable in the special cases of linear and tree networkY particular scheduling d|5C|pI!ne, buffer size or aetiv
In a recent thesis by Lee [13], the connection betweﬁ:l"eue management (AQ.M) settings. When al! ﬂO\.NS see
fluid and stochastic stability was investigated, for the'€ SaMe congestion price, such as under first-in-first-

models of [9]: it was found that under a certain “Iight-om scheduling, the capacity allocation is determined by

tailed” restriction on the distribution (which includesthe senders, with congestion control algorithms such as

phase-type, but not Pareto) fluid stability indeed implie'geno [1] and FAST [25] approximating-fairess with

stochastic stability. The main missing piece is then t?ig 2 arr]]dg |: 1 rfTspectivilly. Similarly, under round-
establish, for these models, that fluid stability hold®PnN scheduling flows achieve approximate max-min

under the natural condition on the loads. This is th&' — oo) faimess for a wide range of congestion control

- algorithms.

subject of the present paper. Givenz = (z,,), it is assumed the congestion control

First, in Section Il we build on the results of [8], [9] sets ¢ - (50’”)_ to the opt!mum of (1); We assume
and obtain a fluid model of the process in terms of geparatlon of t|me_-scales, €. th_e mapping= ¢ 1
partial differential equation (PDE) for the distributioh o Instantaneous. _Th's assumption Is standard_m most of
remaining job workloads. A main step in Section IlI iéhfa I|teratqre, .W'th the excep_t|on of [14]; we will require
to show that the natural stability condition allows foth'S to maintain the tractability of the model.
the construction of a Lyapunov function with negativiRemark 1. A property ofa-fair utility functions (with
drift along trajectories of the PDE, regardless of the jofommona across routes) is that the resource allocation
size distribution and the underlying network topologyis invariant under scaling: namely, if al,, are scaled
and for any value ofv. In Section IV we use this tool by a common factor, the resultingy,, do not change.

to prove fluid stability results: asymptotic convergence i K where fl )
to zero of the state in the general case, and finite-time CONSider now a network where flows arrive at route

convergence under a mild moment condition satisfietHrSUQh a stocih(?sti(_:bprpcess% Orf] mft_elan intensify > 0,
with great generality, including the heavy-tailed cas@"d @ general distribution of the file sizes: &, (o)
Some of the above material appeared in the confereri® (€ complementary cumulative distribution function
paper [20], although the finite-time result is new. Ir(CCDF)' r']'e' the p;Fl’bat,’"'W, thz?‘t the file size is greater
Section V we reconsider the stability question in thf!ano. The mean file-size is given by
original, stochastic queueing model. We show that for I A dG ] = OCG d
the distribution class considered in [13] the required fluid wm  Jo ° [~dGm] = o m(0)do,
stability assumptions are indeed satisfied, and thus the - . . .

. . X . aissumed to be finite. At any given time, active flows are
problem is closed for this class. Section VI provides a se .

. . - served with the rate,,, /2, that results from (1).

of packet-level simulations to demonstrate the validity
of the models and the relevance of the results to reallOnIy routes with a nonzero number of connections particijiate

networks. the resource allocation, the rest recejvg, = 0.



The arrival process is independent of the numbdéhat at the optimal point of (4), the feasible set must
of flows at all earlier points in time. In particular,be inside a negative half-space defined by the gradient
this excludes “closed loop” traffic models in which thevector.
completion of flow may cause a user to request anothEL;.

The present “open loop” model is appropriate when ea emma 1. Let(p,,) be the vector of rates tha_t optimizes
: o . ), and (v¢,,) another vector of rates satisfying the
independent user initiates a single flow, or stream

' i < :
contiguous flows. constraints) |, Rim¥m < ¢. Then:

The aim is to prove that if the loads,, := A\, /pm Om
strictly satisfy the network capacity constraints, Z Un ( 7 ) (¥m = om) < 0. ®)
m:Zp, >0 m
Z Rippm < ¢ vi, (2)

B. Behavior atZ,, =0
e o e omar ot mrvisiog e model (3) applies whildZ,. > 0, it must be
a r?etwork t)(/), ach:)ommod:Ete the mean Ioadps suﬁicges fa\rpropriately modified to include the behavior when

e . : . t) reaches zero.
stabilization, provided the underlying resource allomati m() S . .
. To understand the behavior in this case, consider
corresponds to some form affairness.

The classically studied case [7], [3] is when the arrivaH1e foIIovymg example.: a network with a single link
f capacityc, and a single class, such thatp,, =

process is Poisson, and .the file dlstr|but.|on _exponenu%m i < c. In this case, whenevef,, (£) > 0 we
In that case the process is a Markov chain with state havey,, — c, thereforeZ,, (t) decreases linearly to zero
(zm), and stability means positive recurrence [2]. Fq Prm = G m y

the general case, the system state requires substantifzgmowmg (3). WhenZ,, reaches zero, then by definition

. ) - om suddenly becomes zero (a discontinuity); but then
more information, as discussed later on. We now tu i . - I
the arrivals term\,,, would moveZ,,, again into positive

our attention to fluid models for this problem, which are i - : MR
the basis of our stability studies. values: this “chattering” behavior around,, = 0 is

modeled by replacing (3) with

A. Fluid model dZy, {A — P (O ppm I Zy(t) > 0; ©)

We first recall the fluid model for the exponential dt |0 if Z,,(t) =0,
case, following [3], [11]. This is obtained in the limit . . B
by scaling time and the initial condition of the processv,w:'ChhaHOWS_the state tol remain & = 0. is th d
leaving fixed the network capacity and the external load, n the previous exampre, staying at zero is the steady-
Let be the scaling parameter, and defifié0) = rz(0), state egwhbnum behavior. In more complex networks,
where||z(0)]| = 1 in a suitable vector norm. I£"(¢) is the trajectory may be such that,, spends an interval

the resulting stochastic process as described above, %éime f_’lt Zero and_later c_Jeparts 16, > 0; this may
fluid limit is defined by happen if the capacity available for route later moves

below p,, due to competition from other routes that

Z(t) = lim 2'(rt) share a bottleneck withn. In that case, equation (6)
r—oo T exhibits non-uniqueness of solutions, since it still akow
Invoking the strong law of large numbers, [3] writes théhe solutionZ,,, = 0. While this solution should be ruled
following ordinary differential equation model: out for physical reasons, the model (6) is less descriptive
dz,, and allows it. The same issue appears with the PDE
T Am = @ () o (3) model (13) to be introduced below. In terms of stability

studies, however, this issue does not create a difficulty: if

for eachm. Here o, (t) corresponds to the service rat§ye show thasll solutions to this broader model converge
with re-scaled tim& Due to the scale invariance of theto zero, in particular the “physical” one will.

resource allocation (see Remark 1) the fluid versions of
¢ and Z are still related by the the analog of (1), i.e.

©(t) is the maximizer of C. PDE Model
©Om In the general distribution case, bandwidth allocation
max Z ZmUn, <Z7n) ’ S't-Zle‘Pm <a. is still a function only of the numbers of flows per route,
m:iZm >0 m Z = (Z,,). However, once we remove the memoryless

) property of the exponential distribution, characterizing
We now state a basic inequality that will characterizthe network state requires keeping track of residual file-
the resource allocation. It follows directly from the facsizes, not just their number. Furthermore, the resource al-
s ' o _ location per route is a processor sharing discipline, where
We emphasize that in this model queue occupancy is the numbgy fio\ys present receive equal service. This complicates
of flows on a path, not the amount of data in a buffer. The stgbili L. . . .
issue thus decouples from buffer size considerations. the description since we must keep track of residual file

3We refer to [11] for more extensive details on this type ofiscal  Sizes ofall flows. In order to proceed, we look at the



problem in more detail by modeling, in a fluid setting, In the fluid limit under appropriate scaling, the lim-
the evolution of the residual file distribution. iting measure(,, (t) satisfies (for allt except a set of
Let F,,.(t,0) (t > 0, ando > 0) be the number of Lebesgue measure zero) the following:
class (route)n files at timet with residual file size larger
than, in the fluid limit. F,,(t,0) is a finer descriptor —(f, (m (1)) =
of the system thar¥,,(¢), indeed the definition implies { %(t) (B + A Fo v, fOF Ziy > 0
01

9
for Z,,, = 0. ©

Zm(t) = Fn(t,0). (7)
We now model the evolution of}, (¢, o) through the This equation coincides with (5.62) in [9], modulo
following partial differential equation: notational changes. Here the measwrg represents
the probability distribution of arriving jobsf (o) is an
OFm(t,0) = OFm(t,0) om(t) + MG (o). (8) arbitrary bounded and continuously differentiable test
ot 0o Zm(t) function in the class
The above equation holds under the assumption that - 1 e .
Zm(t) > 0; again it will be suitably complemented for C={f¢ Ob (R+) F(0) = £'(0) = 0}
Zm = 0in (13) below. and(f,v):= [;° f
Note that (8) reduces to (3) in the exponential file size In this model the probability of an arriving job being
distribution case(,, (o) = exp(—pu,o). This can be larger thans, and the number of jobs at time with
readily checked by using,, (¢,0) = Z,,(t) exp(—umo)  residual workload greater than are represented by

in (8), which reduces it to (3). oo oo
G (o) = / dvm; Fn(t,o) = / dlm ().

D. An intuitive derivation of the PDE To derive the PDE we assume that the measuyesnd
At time ¢+ dt, jobs that have residual file size at least,, (¢) are absolutely continuous with respect to Lebesgue

o come from two sources: measure. In particular,
o New arrivals between andt + dt of size greater ) OF(t,0)
thano. With arrival rate),,,, we have\,,dt G, (o) dvy = =G, (0)do, dm (t) = T 90 do.

such jobs, in the fluid limit.

. Files already present at time which had at that By integration by parts we have the following identities:

time a residual size of at least+ “”’"(t) dt. Note _
( ) f7 V’UL - f m
each file receives a service rate, (¢ )/Z (t).
Therefore _ —f( )G (@) gy +/O F(0)Gon(0)do
m(t) ) .
F,(t+dt,o) = F, (t, o+ dt | + A\, Gyn(0)dt.
(o) Zu(0) D gnttn = [ 102D
SubtractingF,,, (¢, o) from both sides and dividing byt
gives — —f(@)Fnlto)| + / £(0) Fu(t, 0)do
= 0
Fo(t+dt,o) — Fu(t,o) Due to the definition of the clag the incremental terms
dt n above vanish, which turns (9) into
Fp (t,o+ 228 dt) — Fy(t,0) ap (t,o
( (d)t ) + A G (0). / f F,.(t,o)do = / f )
In the limit whendt — 0 we obtain (8). +>\m/ f'(o)G
0

for the casez,, > 0. Assuming the differentiation

with respect tot on the left can be interchanged with
We now explain how to relate (8) to the rigorous fluidntegration, the above yields

limit set up in Gromoll and Williams [9]. oo

In this formulation, the system state is characterized / f(0)D[Fy,(t,0)]do = 0,
by a time-dependent, positiv@easure(,,(t) for each
class (route)m. The measure is defined over the poswvhereD|-] is the differential operator given by
itive real numbers, representing distribution of residual OF OF )
workload. In particular, in the stochastic modg](¢) at D[F,] = — — —™— Pm
any given time is a finite sum of Dirac deltas, located ot 00 Zn(t)
at the sizes of remaining workloads for currently activ8ince f’'(o) is a free continuous function, we must have
jobs. The integral of this measure is the number of acti®[F,,,] = 0, i.e. (8).
jobs Z,,,(t).

E. A formal justification based on [9]

- )\m Gm (U) .



Remark 2. [9] contains integral versions of (9), which By differentiation we obtain for anyt,o) € R,
define the PDE in the distributional sense beyond the
D A A
above assumptions (absolute continuity, differentiation 0 ((;t, o) = 9 g;’ o) 9 ;t’o) zp(t)=0. (11)
under the sign). We will not pursue this issue here, and 7

assume a solutiod(t, o) to (8) of enough smoothnessAISO, ®(to,o) = 0. Note that for any(t,o) € R, the
to allow for a classical treatment. line segmentty, ¢] x {c’} is contained irRk, therefore by

integration of (11) in this segment we ha®ét,o) =0
on R. ThereforeA = ® o I' is also identically zero,

F. Locally integrating the PDE which establishes (10). O
It will also be convenient to have an integral form for The solution form (10) also applies tpenintervals
the PDE solution. We state the following. in which Z,,(t) > 0, as is now shown.

Proposition 2. Consider a solution/” of (8) such that Corollary 3. Consider a solutionF' of (8) such that
Zm(t) > 0int € [to,t1]. Denotexp ,, (t) = emll) for  Z,,(t) > 0in t € (to,t;). Then (10) holds for any

Zm (1) . ) .
this . Then for any(t, o) € [to, 1] x R, we have (t,0) € (to,t1) x Ry. In particular, if Z,,(t) = 0 it
. takes the form
F,(t,o) = Fy,, <t0,a —|—/ Zpm (7) dT) t t
to F,(to)= )\m/ Gm (J +/ Zpm (7) dT) dT.
t t to T
—l—)\m/ Gm (U+/ Tpm(T) dT) dT. (10) (12)
to T

Proof: If Z,,(tp) > 0 then this is a special case of
Proposition 2. It remains to consider the cdg(ty) =
0. Fort € (to,t1), consider at, € (to,t). Applying
Proposition 2 tdt,, t] gives

Proof: For simplicity we omit the subindex:. Note
from continuity of Z(¢) and boundedness @f(t) that
xp(t) is bounded in the intervdty, ¢1], so the integrals
above are well defined, and finite.

Define F(t,0) to be the right-hand side of (10). It B ¢
remains to show thaF(t,0) = F(t, o) for all t > ¢, Fn(t,0) = F { ta, 0 + " 2rm(T) d7
ando > 0. By differentiation, t t
n t +Am Gm (0' +/ 3?F7m(7') d7> dT.
oFt,oc) OF ta T
=— (to,o+ [ ap(r)dr|ap(t) ] o )
ot do to Now consider the limit ag, | to. The left hand side

L, b remains constant. Sineg,, is bounded, the second term
+AG(a) + >‘/ G o +/ ap(r)dr ) dTzp(t) tends to the right hand side of (12). The first term is

aﬁjzt o) ! bounded below by zero and above By, (t,,0), which
= “r(t) +2G(0). tends toF,,(to,0) = Zn(t) = 0 by continuity of F7,.
O

This has a similar form to (8), differing in the use of
zp(t) defined in terms off’, in place ofz(t) defined m

in terms of £'. The similarity suffices to show that indeed , ) )
= In this section we present a Lyapunov function and

F'=F, as follows. Define . o . k .
bounds on its derivative, which will be used in the later
A(t,0) :== F(t,0) — F(t,0), sections to prove that network stability holds when the
loads satisfy the capacity constraints (2). Before pro-
ceeding we recapitulate the partial differential equation

. LYAPUNOV BOUNDS

which is a solution to the homogeneous equation

OA(t,o)  OA(t,o) model
= A =
ot do zr(t), (to,0) =0, OFy(t,0)
where the boundary condition holds siné&t, o) = %tF (t.0) om(®)
F(to,0). Consider now the mappin Im\L,9) Pm
(to, o) pping { 9o Zm() + A G (o) Zm >0, (13)
0 Zm =10,

t
I'(t,o) = <t,a +/ ZL'F(T)dT) .
to and establish some basic facts involving tlesidual
I' is a diffeomorphism betweejty, t1] x R, and the set workload functioni,, () for each routem. This mea-
sures the total residual workload at timein the fluid

t
R :={(t,0) : t € [to, t1],0 > / zp(7)d7). limit, and can be expressed as
to

By composition define a function oR, W (t) = /O odGn(0) = /0 Fo(t,o)do.  (14)

B(t,0) = AoT L (t,0) = A <t,a _ /th(T)dT

to

Here the second step follows by integration by parts. We
will assume that the initial workloa@/,,, (0) is finite for



all m. The following Lemma (analogous to Lemma 3.&long the trajectory, for any» : Z,, > 0. We have:
in [9]) describes the evolution o, (). OF,,(t,0)

5% Ly = )[E, (¢, m(0)d
Lemma 4. Given a solutionF,, (¢, o) to (8), the work- fm /O (a4 DFm(t; )] o " (0)do
load functionW,,,(t) defined in (14) satisfies om(t) [ OFSTL(t,0)
=7 0 / 5o W, (0)do
W _ pm_‘aom(t)v Zm>07 7:0 0
w=10 7y + / (@ + 1) [t 0)]" Ao G (010 ()
0
and therefore the bound (18)
Integrating by parts in the first term, we have
Win(t) < Wi (0) + pint. (15)
In particular, W,,(t) remains finite for all time. /OO OF (¢, ) 0 (0)do
Proof: Focusing on the casg,, > 0, integrating the ~° do - .
PDE with respect ter and using (7) yields = FTH(t, 0)wpy, (o) —/ Fo(t, o) ! (o)do
o=0 0
. *©oF,,(t,o oo
W(t) = / 7(% ) do = —Zp ()T —/ Fo(t,0)* " wy, (0)do
0 0
_ ?ng‘; [Fm(t,ff)ro + )\m/ Gy (0)do Substituting in (18) we obtain
m 0 0 SN a
- _<pm(t) + Pm- mem = @m(t)Zm(t) ( )
>~ af _ Pm l /
. + [ Balto{ = ZEREu ol (0)
+ (a+ I)Ame(U)wm(a)}dU. (29)
A. Lyapunov function
Choose a sufficiently smadl satisfying B. Choice of weightv,, (o)

Condition 1. For all I, g, = (1 + &)p,, satisfies We now specify thatw, (o) satisfies the following
S Rimpm < ¢, and(1—0)(1+6)*+ > 1 andg > 0. differential equation inv,

a+1

Recall thaiv > 0 is the fairness parameter used by the Wi, (0) = Kpm Gy (0)wp, (o) =
congestion control. The second inequality always holqg
r somek
for0 < < a/(2+4«); noted — 0 asa — 0. Introduce <
the Lyapunov function

(0, ) to be specified later. This equation
can be readily solved (fow,,(0) = 1) to yield

L(t) = Ln(t) Wy (0) = (1 - % /O 0 Gm(u)du> R . (20)

1 [ Note that sinceu,, [~ G (u)du = 1, for K < «
LG [Fn(t,0)]* wm(0)do. (16)  the term in brackets is strictly positive, bounded away
"o from zero, sow,, (o) is well-defined, non-negative and
Herew,, (o) is a “spatial weight” to be selected shortly;bounded. With this choice, (19) becomes
we impose that it is non-negative and bounded ir 0,

and normalized tau,,(0) = 1. P Lo = 7fom(t)Zm(t) +
As. a first rema'rk, note that sin.cEm.(t,a) is by / Fm(t7a_)a{ ~ pml(t) Fm(t,a)wm(o)éK
definition monotonically non-increasing in, we have 0 Zm (1)
Fo(t,0)°L < Zy(8)° Fon(t, 0), + @+ 1) imGon () ()
(21)
therefore
mlleo Z2 (£) [ C. Bounding the Lyapunov derivative.
Lin(t) < M/ F(t,0)do i yap c
e, o We wish to upper bound the terms involvitdg, (¢, o)
= K ZE W (1), (17) in the above integral. For this we calculate the maximum
’ of the function
With & = || W ||cop®. SO Ly, is finite for all time N
using Lemma 4, and the Lyapunov function is well- G(F) = F{(a+1)pm — bF},
defined. We now compute the time derivative of over F > 0. Here we have denoted
o m( 1
[Bm]® Ln = / [Fon(t,0)]* e, (0)dor p= 2D ()K.
0 Zm(t)



By differentiation we have
¢'(F) = F*"Ha(a + 1)pm —

which has a root

(a+ 1)bF},
pm  Apm;m

b K(pmwl/a
and yields a maximum

. aPmm “ a®patize
P(F") = 71/0‘ m = Kavew.

Returning to (21), we obtain the bound
ﬁ%Lm < = om(t) Zm ()" +

T AP I (1) W, (0)do
o Kepn @ (o))
:_QOHL() m(t)a
a+1Zm(t)

Ko (t)>
== pn(t)Zm ()" +

F* =

+ 2 / G (0)do
0

A%t Z (1)
Kaﬂﬁm( )a

Since K is a free parameter, restricted only By < «,
we can now choose it to satisfy

(22)

g @ _ _ a+1
(K) = (1-8)(1+6) >1. (23)
Then (22) becomes
r @m(t) ﬁm(l_é)}
Ly < Zp(1)® 4 =22 ) 24
( ) { P me(t)o‘ 24)
Lemma 5. For any positive numberg, o,
LIy ik O3 (25)
p P P

Proof: Bounding the convex functioh(z) = z>! by
its tangent around the point= p gives

e > 5 4 (a+ 1)5%(0 — )

Dividing by p“¢® and reordering terms yields (25).
O

We now state the main result of this section, that . on
shows the Lyapunov function has negative drift along L=<~
trajectories, provided the natural stability conditior) (2

holds.

Theorem 6. Suppose that the capacity constraints (2)
are satisfied, and consider the Lyapunov functibn

defined in (16) withw,, (o) in (20), K in (23) and
satisfying Condition 1. Theh satisfies

L<—5 ) pm<m)a.

m:Zm >0 m

(26)

Proof: We use the bound (25) in (24), and obtain
. Zm [e% ~ ~ Zm @
Lm S (O[ + 1) (99) (p'm - @'rn) - 5pm ()

m

for any m where Z,, > 0. Note also thatL,, = 0
when Z,, = 0, (refer to Remark in Section II-E).
Superimposing all terms we get

L= hnstosn) ;>0 (Zm) (P — om)

m gpm
(o9
B
mM: Ly, >0 Pm
Noting that Z'" =U/, , We are in a position

to apply (5), Wlth Y = pm that satisfy the capacity
constraints. This is the only step that relies on the
underlying congestion control resource allocation]

IV. STABILITY RESULTS

A. Asymptotic convergence

We show first anasymptotic stability result under
very general conditions: requiring only that loads styictl
satisfy the capacity constraints, the solutions to the fluid
model (8) asymptotically converge to zero.

Theorem 7. Under the capacity constraints (2), the
Lyapunov functiorL defined in (16) witho,, (¢) in (20),
K in (23) and/ satisfying Condition 1, satisfies
tlim L(t) =0.
Proof: First note that a bound of the form
L, <(A+Bt)Zg (27)

follows from from (17) and (15), by definingd =
maxX,, Km Wi (0), B = max,, Kmpm. This leads to

~ Zm ¢ meO
pm - Z ANl AT DN
©m C*(A+ Bt)
where pg = min,, p,, and C' = max; ¢;.
poC~¢, and apply Theorem 6 to obtain

on
L, —=—— "1 _p
Zm: (A + Bt)

Taken :=

(A+ Bt)

While L(t) > 0, we can integrate to obtain

t 577
log L(t) < log L(0) — ——du.
og L(t) < log L(0) /0 (A + Bu) Y

As t — oo the integral diverges, sf(t) — 0. O

Remark 3. Since the definition of.,,(¢) involves a
weighted norm of the statd,(¢,-) in the function
spaceL! ", it follows that F,,(¢,-) converges to zero
in this space. Now, given that the functiafig (¢, o) are

monotonically non-increasing ia, there must also be
pointwise convergence to zero for evene (0, o).



B. Finite time convergence the inequality in Lemma 4. Indeed, if we upe= 1 in
In order to relate fluid stability with the stochastid31) below, we obtain (15).

models, convergence of the fluid models to zerdinfte  proposition 9. Under the conditions of Proposition 8,
timeis often required [8], [13]. We show in this section 1 1
that such a result follows from a very slight strengthening Win(t) < (Am + BnAmt)? Zm(t) "7 (31)
of the hypothesis: requiring that the file-size distribotio Proof: Apply Holder’s inequality to the integral
vm have a finitep moment for some > 1. Specifically, o0
Wlt) = [ ol-dF{ (o)
0

B, = /000 oPdv,, = /000 oP[—=dGp(0)] < c0. (28)

= Lp oo -3
Notice that this still allows for heavy-tailed distributis: = [/o Up[_dFr(rf)(U)]] [/0 [—dF) (U)]}

];?Jrr:]r:j;?ir\lzeaitshtﬁbz%féof::]ittzf:“on with complementar.}zhe desired bound then follows from (30). O
Using the above bounds, we are now ready to prove
Gy (o) = min{1, i} our result about finite time convergence.
o7

has finite mean if and only i > 1. In this case it will 1heorem 10. Supposés,, and Fy satisfy respectively
also have a finitg-moment forp close enough td. (28t and (29). Then, under the capacity constraints (2),
We will impose an analogous restriction to the initiaf " Converges to zero in finite time.

condition £, (o) := F,,,(0, ). This is the complemen- proof: It suffices to show thak(¢) chosen as in Theorem

tary CDF of a finite measurg;, (0) (note thatf,,(0,0) is 6 reaches zero in finite time. Applying (31) to (17) yields
assumed finite, not necessarily unity), and we can write

P , 1 _a+ -1
the moment condition Ly, < (kP A+ nﬁle)\mt)iZm v
Ap 1= / " oPde(0) = / T P dFO) (0)] < 0o, WhiCh we simplify to
0 0 29) L < (A+ Bt)!=Bzo+8, (32)

i 0) ) by setting A = max,, kP, A,,, B = max,, k-, B;yAm,
Proposition 8. SupposeG,,, and F,,’ satisfy respec- andj3 =1 — 1/p. Note thatd < 3 < 1.

tively (28) and (29), ther}) (o) == F,,(t,0) satisfies  Note the similarity between (32) and (27). Proceeding

the finite moment condition as in Theorem 7, whet,, # 0, whencey,, # 0, we
o0 . write
/ oP[—dF® (0)] < Ay + BpAmt.  (30) o
0 ~ Zm “ Lo ’;:L+ﬁ
Proof: For brevity we drop the subindex from all pm © = CY 44 g2
m t a+pB
variables. Sincég£ <0, the PDE (13) gives (A+BY)
i Therefore
aF(t, J) 7 a o N
o < AG(o), Z Om (sam) > % Z (Ly)o+7
m a+p3
which can be integrated in time to give m:Zm>0 (A+ Bcf)ﬂ T miZn>0
F(t,0) < F(0,0) + AG(o)t > P max (L)
7) =2 ' (A+ Bt)Se77 m
Now invoke integration by parts to write oo (L S 1 )aiﬂ
- M m m
‘ (®) T (A+ By
/0 o[ — dF D (o)) _ n L
(A+ Bt)“5+

_ 2 p® /a =1 0 ()
“ (a) + 0 b (0)do Here M is the number of routes, angis appropriately

@ defined. Returning now to (26), we obtain
S/ p o?HFO(0) + AG(0)t]do g (26)
0

. LU —
_ / o?[=dF O (0] + a? FO (a) + (A+ Bt)“
0 “ When L > 0, this yields
x| /O P |=dG(o)] + aG(a)]. Ao B
o . . dt a+ B
Taking limit with ¢ — oo, the “tail” terms vanish due 38 &n
to the finite moment assumption @) andG, and we < - e
obtain (30). 0 @+ 08 (a+ Bty s
As a corollary we derive the following bound on the _ —ei(A n Bt)ﬁgﬁjﬂl)

residual workload function. This is a generalization of dt ’



where we defing = -2

> 0 and use the identity

B(14«)
[ al-5) et
a+ g a+p

Integrating we have
Blat+1)

B 8 (ot 1) Blatl)
L(t)=t8 < L(0)a+7 —¢(A+ Bt) ¥ + €A

atpB |

(33)

V. STOCHASTIC STABILITY

As explained in Section I, the PDE model under
consideration is mainly motivated by takinglaid limit
on a stochastic queueing model. The question we now
pose is whether, having established the stability of the
fluid model, can we infer the corresponding result for
the original stochastic model.

Since the second term on the right of (33) grows without A first issue is what is meant by stochastic stability.

bound int, L(t) must reach zero in finite time. O

In the exponential file size case, the stochastic process

Note that both here and in Theorem 7, the speed g‘f a Markov chain where the number of connections

convergence is controlled hy, and this parameter goes
to zero asy — 0. This is consistent with the fact that fo

2 = (2,,) per class is the state; in this case stability is

rusually defined to be positive recurrence of the Markov

a = 0, the network need not be stable [3, Example 1]_(:hain (see [2]). The natural generalization of the Markov

Convergence time.

We will additionally show that the convergence tim
grows linearly as a function of the “size” of the initial

condition F,,(0,0), expressed in terms of,,(0) =

F,,(0,0) and thep-moment4,,, defined in (29). We have

the following result.

model to general arrival times and file sizes (G/G) that
form a renewal process is the one used by Dai [6].
There, a Markov process is defined where the state

ﬁ‘keeps track of residual arrival times and service times of

currently active jobs, in addition to queue sizes. Stapilit
is defined as the positive Harris recurrence of such
Markov process. Dai [6] also obtains a fluid limit model,
and defines a notion of stability for fluid models in terms

Proposition 11. Under the assumptions of Theorem 100f convergence to zero in finite time, similar to the one

there exists an constant with the following property:

for everyr > 0, if the initial condition satisfies
F,,(0,0) <r A, <r for eachm, (34)

then F,,(¢t,0) = 0 for everyt > xr and everyo, m.

Proof: Since by definition L(¢) 0 implies
F,.(t,0) = 0 for all o, m, we focus on the time, when
L(t) reaches zero. From (33), this time satisfies

Blat1) Blat1)

(A4 Btg) 5 = A at5

+ %L(O)%ﬁ. (35)

It is sufficient to show that when (34) holds, the abaye
can be bounded byr for a fixed constant. We bound
the terms on the right-hand side of (35).

The first term is bounded directly sincel
max,, kb A,, <rmax,, P . S0

B(atl)

A oFB

. Blat1)
< RKr ofpB

obtained in Theorem 10.

Does fluid stability imply stochastic stability? Dai [6]
establishes this for service disciplines where the number
of residual times in the state remains bounded. This does
not cover processor sharing disciplines, where all jobs
present in the system receive service, as is the case
for our problem. Although [6] claims that extensions
to this case “should be evident”, we share the view of
Gromoll and Williams [8], [9] that such extensions are
not straightforward.

The recent PhD thesis of Nam Lee [13] has addressed
precisely this problem: using the fluid models of [8],
[9] mentioned in Section Il, conditions are given under
which fluid stability implies stochastic stability (Harris
recurrence). We now highlight some aspects of this
work, without getting into technical details which are
far beyond our scope.

A number of technical assumptions are made in [13]

for an appropriate:. For the second term, apply (32) alon the processes of inter-arrival times and file-sizes. We

t =0 to get
L (0) < AU 7z, (0)o+F

< max ﬁmr(l_ﬁ)r‘”ﬁ
m

=T max k,,.
m

Therefore
B(atl)
a+f

L(0)7%F < ir

for an appropriaté:. Combining now both terms on the

right of (35) we write

B(a+1) B(a+1)
(Bto) %5~ < (R + k/e)r atr,

from which the bound, < xr follows. The resultings

focus here on a “light-tails” condition (Assumption 2.2.1
(i) in [13]) that is imposed on the file size distribution.
If X is a random file, the condition can be stated as

lim sup E[(X — a)l{x_q>.}|X > a] = 0.

70 a>0

(36)

This condition is not too restrictive: in particular,
phase-type distributions, which are known to be dense in
the space of distributions [2], satisfy (36). Still, it is a0
restrictive than what we imposed in the previous section;
in particular Pareto distributions do not satisfy it. Under
the condition (36), [13] proves that the stochastic model
is stable provided fluid stability holds in the following
sense:

depends on a number of fixed constants, including the
p-moment of the arriving file-size distributions, but noDefinition 1 (Def 2.6.3, [13]) The fluid model is stable

on the initial condition. O

if for eachr, there exists, such that any fluid model



10

solutions with initial conditionF’ = (F}r?)) in Integrating overs € [a, 00) gives

B, :={F:F,0,0) <7, W0 <r V 37 % o0 t
{ (0,0) <7 0)<r Vm} (37) / Fgu(a)d(,:/ Fto) (H/ mm(T)dT>d(,
satisfiesF,, (t,0) =0 for t > t,. a to

a
t1 o0 t1
Note the strong similarity of this statement and the  + )\m/ / Gm <0’ +/ T (T) dT) do dT
result we obtained in Proposition 11; here as well we are fo Ja ¢ r

requiring convergence in a finite time that depends on the g@Fr(rfo) (a + / L (7) dT)

size of the initial condition. The only slight difference is to

that the set described by (34) (let us calBjt) involves h h

the p-moment,p > 1, whereasB, is in terms of the +OAn " Gm a+/T m(7)dr | dT

1-moment. It is not difficult to see that? C B5,, so —OF)(q)

Proposition 11 falls short of establishing fluid stability m '

in the sense of Definition 1. The change in order of integration is admissible since

We are not certain as to whether this issue is signifunctions are non-negative. If instedt}, (t,) = 0, then
icant, or if instead the theory in [13] can be extendegle start with the form in Corollary 3, and perform the
to work with the initial set of (34). Nevertheless, Wesame manipulations with the first term omitted. [
will show that under the light-tailed condition (36), the Note also that (39) is trivially propagated during
requirements of Definition 1 can indeed be satisfiedq interval of time whereF,,(¢,o) remains at zero.

leading to a complete answer in this case. Therefore, if we assume the initial condition and the
For simplicity, we will replace (36) with arriving file-sizes satisfy Condition 2, the solutidt,’
of the PDE will satisfy it for all time.
El(X —a)|X >a] =06 < 0. 38 _ . ,
(Sé% ( o) e > (38) An importance consequence is the following bound on
the workload, which follows from applying (39) B

It is not difficult to see that (36) implies (38). Therefore
we can use this fact when invoking the theory of [13]:

We can also express (38) in terms of the complementary Wi (t) < OZum (t). (40)
cumulative distribution function (CCDF), as follows. -

ta=0:

This bound is a strengthening of (31), which holds
under these narrower (light-tailed) conditions. Indeéd, i
corresponds to setting = oo in (31), or equivalently
B = 1 in the proof of Theorem 10. Referring back to

/ F(o)do < OF(a) Va > 0. (39) this proof, we have:
a e (32) can be now replaced by

Condition 2. A finite measur& on R, has light tails
if there exists©® < oo such that the complementary
cumulative distributionf' (o) = (((o, 00)) satisfies

We will apply Condition 2 to the file-size distribution
v (With CCDF G,,,(0)). To see the equivalence with
(38), note that the CCDF of the variahlé — a, condi-
tioned onX > a, is Gy, (a+0)/G,,(a). We also impose
the bound (39) to the initial conditiog),, (0) (with CCDF
F,S?)); in this case the measure is not normalized, but . on o

. . . L <-— — La+1
(39) is still meaningful. =

The key property of Condition 2 is that pfropagates

through time when one follows the PDE (8).

Ly, < AZSTH

by settingA = max,, £, 0.
« Analogous steps lead to the condition

o For L > 0, this yields

Proposition 12. Consider a solution of (8) in a time iL#l < f‘si"a,
interval (to,t;) where Z,,(t) > 0. AssumeF () and dt (a+1)A=+
G,, satisfy Condition 2 with a comma®. Then F(t1)

satisfies Condition 2 with the sang The right hand-side is now a constant, which we

denote—e¢, and leads to

Proof: If Z,,(t1) = 0, thenF(*2) = 0 and the propo- . .
sition holds. It remains to consider the cd$g(t;) > 0. L(t)=+ < L(0)~¥T — et,
If Z.(to) > 0, we can invoke the integral form in

Proposition 2: and thus again finite-time convergence.

We can now state the final result:

ty
F{ (o) =F{) <U +/ T (T) dT) Theorem 13. Assume that the initial conditions and file
fo size-distributions satisfy Condition 2. Then, under the

t t
+ )\m/ ' G (U +/ ' L (T) dr) dT. capacity constraints (2), the fluid model is stable in the
to T sense of Definition 1.
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Route 2 Link 1: 100 Mbps Link 2: 100 Mbps

Proof: We start with an initial condition i3, as in
(37). We bound the convergence time from the previous )

derivation by Route 0 ( ) 1 ((Rfl

1 1 1 N N
t < —L(0)TT = (Y L(0) = < AFt M sty

T € Fig. 1. Simulated “parking-lot” topology.
Here againM is the number of routes. If we denote by
t, the right-hand experssion, we see tligt) = 0 (and 120
thus F(t,0) =0 for t > ¢,. O

Putting all pieces together we are able to state ares 100
on the stochastic system, invoking the theory in [13].

iy | | ‘ Zo(t) simLJIated
) ~Z,(t) simulated
Zz(t) simulated
_ _ _Z ("), Zl(t) model |

o Zz(t) model

= 80
Corollary 14. Consider a stochastic model that satisfie 2

the technical Assumptions 2.2.1 and 2.2.2 from [13], i3 g

particular the light-tailed condition (36). Suppose tha‘é
the loadsp,,, satisfy 2 40
Zlepm < ¢ for eachl, 20
1
and jobs are served with as-fair bandwidth allocation, 0 b s
0 < a < co. Then the stochastic system is stable (Harri 0 100 20(%_ 300 400 500
recurrent). ime (s)

Fig. 2. Number of ongoing connections on each path of a two-hop
V1. PACKET-LEVEL VALIDATION network, in ns2 simulation (solid lines) and according to thad

o th f this th tical h model (dotted lines). In the fluid model, routes 0 and 1 havetican
ver the course o IS theoretcal paper We Nhavgmpers of flows. TCP Renax(= 2), with 90% load of Pareto-1.5

worked with highly idealized models of network pro-flows.
tocols. In this section we offer evidence that the results
remain relevant to real networks, by matching model pre-

dictions with packet-level simulations using the network Another issue that may compromise applicability is
simulator ns-2 [19]. is that for large numbers of flows and fixed capacity,

as stipulated in the second fluid limit, the BDP of each
A. Fluid model validation flow Wi|| be low, caI_Iing ilnto qgestion the accuracy.of
. o the first. The following simulation shows that applying
Our models have involvetivo fluid limits: both fluid models simultaneously can retain predictive
o A lower-layer fluid model that replaces the packefgo\,\,er on the packet network dynamics.
counts of the TCP algorithm by a continuous rate \ye yse the network of two links and three routes of
satisfying thea-fair resource allocation of (1).  Figyre 1. Links have 100 Mbps capacity. Flows use TCP
« A connection-level fluid model that replaces &eno (which approximates-fairness witha = 2), and
stochastic queueing system of jobs served by TCEach link has a round trip delay of 20ms. Over each
by the PDE (8) where a continuous statét, o)  route we generate a Poisson process of TCP connections,
quantifies jobs with residual work larger than  ang transmitted files with sizes independently drawn
The former has been the subject of many empirform a Pareto distribution with mean 5Mbit and shape
cal studies (see for example [23]), which have showgsarameter 1.5. The mean load on each path was 45 Mbps,
that models representing flows as fluids are good agiving a load on each link of 90%. Since the fluid model
proximations for systems in which each flow has groposed here describes the return from excursions in the
large bandwidth-delay product (BDP). In particulamumber of flows, each path initially had 100 flows.
(weighted) a-fairness is a useful model for TCP Reno Figure 2 plots the number of ongoing flows for the ns2
with o = 2 and for TCP-Vegas and TCP-FAST withsimulation, in comparison with a numerical integration
a =1 (see [22], [25]), in steady state. One remainingf the PDE. As expected, the number of flows in the
issue here is the validity of neglecting the congestiogacket-level simulation varied randomly around the value
control transient in connection-level studies. predicted by the fluid model, in particular the model

The latter fluid limit is supported by the theory in [11],captures the main characteristics such as the time to
[9], which shows convergence to the fluid model whepeturn to the steady state.

time, and initial conditions, are re-scaled as described in

Section Il. This is sufficient to answer the question of - ) )
stability, which is defined in terms of boundedness &3 Stability under different TCP resource allocation
the number of flows as time goes to infinity. HowevelM°dels

a natural question is its predictive power beyond this Figure 2 demonstrates the stability of the network
asymptotic. under less than 100% load, for the fairness model of
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Fig. 3. Simulation example of a parking lot network with TCPiRe Fig. 4. Simulation example of a parking lot network with TCHfa
(oo = 2), with Pareto-1.5 flow sizes. (o = 1), with Pareto-1.5 flow sizes.

Short flow 1
Short flow 2

TCP-Reno that corresponds o= 2. We now present

simulations that illustrate the sort of instability that Sy

occurs when the load limit is exceeded, for two different : A

fairness models. ; /f ,
Figure 3 compares the situations of 90% and 110% |

f

load, for zero initial conditions, still for thex = 2
case. We see the instability of the latter case, in which

Number of flows in progress

the number of pending jobs starts to accumulate in the sof ; WM“ kf W Uy ﬂ
network. 2ol J \L /“J\‘“ ! JJb

In Figure 4 we replace the underlying transport pro- © |
tocol with TCP-FAST, which can be modelled by a MM I N —_—
proportionally fair allocationd = 1). We use the same s e e am o w0 w0 4o

loads as in the previous example, and obtain similar
results in regard to stability. Fig. 5. Instability with each link underloaded (load 80%)thay = 0.
The number of flows on each path is plotted against time.

C. Example of instability when = 0

As mentioned in [3], am-fair network witha = 0 to still give priority to the single-hop flow present. In that
(i.e., the maximum throughput resource allocation) carase the set of stable arrival rates is strictly smaller than
be unstable even if the average load on each link is lets& capacity region of the network. This is illustrated
than the capacity. In a symmetric parking-lot topologin Figure 5, which shows the number of flows for this
such as Figure 1, O-fairness must give strict priorittopology under 80% load, but with scheduling that gives
to the single-hop flows when they are present in botriority to single-hop packets. In this case, the number
links. When only one link has single-hop flows, the of single-hop flows remains small, but the number of
fair solution is indeterminate, but one possible choice t8vo-hop flows grows without bound.



VIl. CONCLUSION [3]

We have considered the conjecture that the naturgl
condition (all mean link loads strictly below capacity)
suffices for the stability of a network with randomly
arriving files of general size distributions, when jobs
are served with-fairness. Building on recent fluid limit
studies [9], we formulated a partial differential equation[ﬁ]
model for the problem, where the stalig, (¢, o) repre-
sents the residual workload distributions per route. Wé7]
constructed as Lyapunov function a suitably weighted
spatiala+ 1-norm of F},,, that is shown to have negative
drift under the natural stability condition. With these [8]
tools, we provided three main stability results:

o For general file-size distributions, only assumed to

have finite mean, we prove the asymptotic conver-
: [9]
gence to zero of the fluid model.

« For file-size distributions of finitp-moment,p > 1,
we prove convergence to zero of the fluid model iR
finite time, and bound this time as a function of
the initial state. Note that the above restriction igL1]
very mild, in particular it includes “heavy-tailed”
distributions such as Pareto, commonly invoked fqj,
Internet traffic models.

« For file-size distributions satisfying a “light-tailed”
condition introduced in [13], we are able to sharpeH3]
our finite time convergence bound. In this way,
we can directly invoke the theory in [13] to claim!14]
convergence of the associated stochastic model for
this problem. The light-tailed condition is somewhati5s]
restrictive, but it still includes the class of phase-
type distributions, which can approximate any othem;]
distribution.

From the above results, we regard the conjecture a3
fundamentally answered in an affirmative way. In terms
of fluid models, the answer is always affirmative, and
with a very mild restriction stability can be strengthene
to finite time convergence. For stochastic models, theo
conjecture now has an affirmative answer in all cases
where there is a proof mapping fluid stability to stochad?”!
tic stability; this includes phase-type distributions.eTh
only potential room for improvement in this latter case
would be to map fluid to stochastic stability for
larger class. In this regard, a candidate class would be
distributions with finitep > 1 finite moment. [22]
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