
1

Efficient Generalized Engset Blocking Calculation
— Extended version

Jianan Zhang and Lachlan L. H. Andrew

Abstract—Engset’s model of resource blocking with a finite
population has recently been generalized to allow blocked users
to have a recovery time before they re-enter contention for the
resources. This can model a bufferless optical packet switch, in
which the recovery time equals the duration of packet reception.
We propose an algorithm to find the stationary distribution
of the resulting level-dependent quasi-birth-and-death (LDQBD)
process, and hence the blocking probability. Its running time
is linear in the number of resources (wavelengths) and the
population size (number of input ports).

I. INTRODUCTION

Engset [1] modelled a telephone system as having a finite
population of users compete for a finite pool of resources.
Upon becoming idle, a user waits an exponentially distributed
amount of time; if at the end of that time a resource is free, the
user places a call (i.e., occupies a resource) of exponentially
distributed duration. At the end of the call, or upon finding all
resources occupied, the user becomes idle again. The model
is used to calculate the probability of blocking, i.e., no free
resources being available at the end of a users idle time.

This model has recently been generalized [2], [3] to model a
bufferless optical cross connect (OXC) used for optical packet
switching (OPS) [4] and optical burst switching (OBS) [5], [6].
In this context, a user represents an input port and a resource
represents an output wavelength channel that the packet (or
burst) can be placed on to reach its next hop destination.
When the first bit of a packet arrives, if it finds no free
output wavelength channel, then it is discarded. However, the
input port does not become idle again immediately. Instead,
the remaining bits of the packet must still be received and
simply “dumped”. Hence, the Generalized Engset model [2]
assumes that a blocked user remains in a “dumping” state for
an exponentially distributed time before becoming idle again.

This model is related to a model that has nonidentical off-
time for sources considered by Cohen [7] and Syski [8].

The system constitutes a level-dependent quasi-birth-and-
death (LDQBD) process, in which the phase is the number
of busy servers and the level is the number of dumping
servers. Matrix geometric methods can be applied to solve the
blocking probability in the LDQBD [9], [10]. As in [11], this
LDQBD has a very sparse upward transition matrix. It allows
the standard technique for rank one upward transitions to be
optimized further, yielding an algorithm whose computation is
linear in the number of phases. This requires significantly less
computation than previously proposed exact solutions, such as
directly solving the balance equations of the Markov chain [2]
and block LU decomposition [12].

0,M−K
Kλ/d0,M−K--

(M−K)µ
d0,M−K

��

1,M−K
(K−1)λ/d1,M−K

))

µ/d1,M−K

mm

(M−K)µ
d1,M−K

��

. . .

λ/dK−1,M−K..

2µ/dK−2,M−K

mm K,M−K
Kµ/dK,M−K

jj

(M−K)µ
dK,M−K

��
...

2µ
d0,2

��

...

2µ
d1,2

��

...

2µ
dK,2

��

λ

dK−1,M−K

TT

0,1
(M−1)λ/d0,1

++

µ
d0,1

��

1,1
(M−2)λ/d1,1

))

µ/d1,1

kk

µ
d1,1

��

. . .

(M−K)λ/dK−1,1
++

2µ/d2,1

kk K,1
Kµ/dK,1

jj

µ
dK,1

��

(M−K−1)λ
dK,1

TT

0,0
Mλ/d0,0

++ 1,0
(M−1)λ/d1,0

))

µ/d1,0

kk . . .

(M−K+1)λ/dK−1,0
++

2µ/d2,0

kk K,0
Kµ/dK,0

jj

(M−K)λ
dK,0

TT

Fig. 1. State transition probabilities of the embedded Markov chain, where
di, j = (M− i− j)λ+(i+ j)µ.

II. MODEL AND NOTATION

Unlike Engset’s model, the Generalized Engset model is
not insensitive to the shape of the inter-event distributions.
However, numerical results [13] suggest that a Markov ap-
proximation gives a good estimate of the blocking probability,
and so will be adopted.

Suppose there are M input wavelength channels, and K
output wavelength channels available to packets on those
inputs. Let (i, j) represent the state where data from i input
channels are being transmitted through output channels, and
data from j input channels are being dumped. Consider an
embedded Markov chain by observing the system at the epochs
when state transitions occur. The state space of the Markov
chain is X = {(i, j) ∈ N2| i≤ K∧ j ≤M−K}.

From states (i, j) (0 < i < K, 0 < j ≤M−K), the possible
transitions to other states include completion of a successful
transmission (to state (i−1, j)), cessation of dumping (to state
(i, j−1)), new arrival that will be successfully transmitted (to
state (i+1, j)). The transition probabilities to enter these states
are iµ/di, j, jµ/di, j, and (M− i− j)λ/di, j, respectively, where
di, j = (M− i− j)λ+(i+ j)µ. From states (K, j) (0 < j < M−
K), when a new packet/burst comes, the system goes to state
(K, j+1) because the new packet/burst is being dumped. The
transition probability to state (K, j+ 1) is (M− i− j)λ/dK, j.
The states and transition probabilities are depicted in Fig. 1.

Blocking probability can be derived from the steady state

2

probabilities of the Markov chain. A successful transmission
occurs when the Markov chain is in states (i, j) where 0 < i <
K, 0≤ j≤M−K and the next state is (i+1, j). A packet/burst
is blocked whenever the Markov chain is in states (K, j) where
0≤ j < M−K and the next state is (K, j+1).

III. BLOCKING PROBABILITY

It will be useful to view the transition process as an LDQBD
[14]. In an LDQBD, states can be grouped into levels, indexed
by i = 0,1, . . . , such that all transitions occur either within a
single level or between consecutive levels. Any transition from
level i to level i+1 is called a birth and any transition from
level i to level i−1 is a death.

To obtain the steady state probabilities of the LDQBD,
we use an algorithm inspired by theorems 8.5.2 and
10.1.3 of [9]. Let πn,i denote the steady state probability
that there are n dumping inputs and i active servers. Let
πn = {πn,0, πn,1, · · · , πn,K}, and π = {π0, π1, · · · , πM−K}.
Let the block tridiagonal P denote the transition matrix, i.e.,
π = πP. Level n consists of those states that have n dumping
inputs. This results in an upward transition matrix that has
a single non-zero element, which substantially reduces the
complexity of computing the stationary probabilities. The
matrix P is given by

P =

A(0)
1 A(0)

0 0
A(1)

2 A(1)
1 A(1)

0 0
0 A(2)

2 A(2)
1 A(2)

0 0

0
. . .

. . .
. . .

0 A(M−K+1)
2 A(M−K+1)

1 A(M−K+1)
0

0 A(M−K)
2 A(M−K)

1

Blocks of A0, A1 and A2 are (K +1)× (K +1) matrices.

A(n)
0 (i, j) =

(M−n−K)λ

(M−n−K)λ+nµ+Kµ
i = j = K +1

0 otherwise

A(n)
1 (i, j) =

(i−1)µ

(M−n)λ+nµ+(i−1)(µ−λ)
i = j+1 ∈ [2, . . . ,K +1]

(M−n− (i−1))λ
(M−n)λ+nµ+(i−1)(µ−λ)

i = j−1 ∈ [1, . . . ,K]

0 otherwise

A(n)
2 (i, j) =

nµ

(M−n)λ+nµ+(i−1)(µ−λ)
i = j ∈ [1, . . . ,K +1]

0 otherwise

Introduce rate matrix R [9]:

R(n) = A(n−1)
0 (I−A(n)

1 −R(n+1)A(n+1)
2)−1, 1≤ n≤M−K;

(2)

R(M−K+1) = 0.

We now introduce an algorithm for computing R(n) recur-

sively, from n = M−K. Let

S(n) = I−A(n)
1 −R(n+1)A(n+1)

2 (3)

=

a1,1 a1,2
a2,1 a2,2 a2,3

a3,2 a3,3 a3,4
.

aK,K aK,K+1
aK+1,1 aK+1,2 · · · · · · aK+1,K aK+1,K+1

We introduce the following auxiliary variables. Let q0 = 0,
a∗1 = 1, b∗1 = aK+1,1, and sK+1 = 1, and for i = 1, . . . ,K let

qi =
−ai,i+1

ai,i +ai,i−1qi−1
(4a)

b∗i+1 = b∗i qi +aK+1,i+1 (4b)
si =−b∗i /b∗K+1 (4c)

In addition

a∗i =

{
ai,i−1qi−1 +ai,i for i = 2, . . . ,K
b∗K+1 for i = K +1

(4d)

ti =

{
si for i = K,K +1
si− ti+1ai+1,i/a∗i+1 for i = 1, . . . ,K−1

(4e)

Before we state the algorithm, we state the key property of
R(n) that allows efficient computation.

Theorem 1. The matrix R(n) of (2) is all zeros except for the
last row which is A(n−1)

0 (K +1,K +1) times the row vector r
where ri = ti/a∗i for i = 1, . . . ,K +1 given by (4).

Proof: The proof is constructive, finding the inverse of
S(n) by the Gauss-Jordan algorithm using column operations.
The auxiliary variables are intermediates in this process.

We will construct matrices Q, Q∗, Q′ and Q′′ such that
postmultiplying S(n) by Q eliminates the upper diagonal and
replaces the diagonal by (a∗i)

K+1
i=1 and the off-diagonal elements

of the bottom row by (b∗i)
K
i=1; postmultiplying S(n)Q by Q∗ and

then Q′ sets the off-diagonal elements of the bottom row to 0
and then the subdiagonal elements to 0, without changing any
other elements; and finally postmultiplying by Q′′ yields the
identity.

Specifically, Q is the upper triangular matrix Q1Q2 . . .QK ,
where each Qi differs from the identity IK+1 only in that
Qi(i, i+1) = qi given by (4a).

Next, Q∗ is IK+1 with the off-diagonal elements of the last
row replaced by (−b∗i /b∗K+1)

K
i=1.

To cancel the lower diagonal, we proceed from the right, and
so Q′ is the lower triangular matrix Q′ = Q′K−1Q′K−2 . . .Q

′
2Q′1

where each Q′i differs from the identity IK+1 only in that Q′i(i+
1, i) =−ai+1,i/a∗i+1. Multiplying Q′i is a column operation of
multiplying the i+1th column by Q′i(i+1, i) and adding it to
the ith column. (Note that the matrices are multiplied in order
of decreasing i, and that there are only K− 1 factors, since
the subdiagonal element of the K+1th row was eliminated by
Q∗.)

Finally, Q′′ = diag(1/a∗i) since S(n)QQ∗Q′ = diag(a∗i).
Hence the inverse of S(n) is QQ∗Q′Q′′, and R(n) =

A(n−1)
0 QQ∗Q′Q′′. Since A(n−1)

0 is zero except for element

3

A(n−1)
0 (K + 1,K + 1), the only non-zero elements of R(n) are

the last row, which are An−1
0 (K +1,K +1) times the last row

of QQ∗Q′Q′′. It remains to show that this last row equals r.
Since the last row of Q is (0,0, . . . ,0,1), the last row of

QQ∗Q′Q′′ is (
−b∗1
b∗K+1

,
−b∗2
b∗K+1

, . . .
−b∗K
b∗K+1

,1
)

Q′Q′′.

Postmultiplying Q′ corresponds to K−1 column operations on(
−b∗1
b∗K+1

,
−b∗2
b∗K+1

, . . .
−b∗K
b∗K+1

,1
)

in order of decreasing i. The result is
(t1, t2, . . . , tK+1). Finally, after postmultiplying Q′′, the result is
(t1/a∗1, t2/a∗2, . . . , tK+1/a∗K+1).

Note that this requires O(K) operations for each R(n)

(roughly 4K multiplications, 4K divisions and 3K additions)1,
giving a total complexity of O(MK).

We are now ready to calculate the steady state probabilities,
which can be done in O(MK) time as follows.

1) Find a solution to

π̂0 = π̂0(A
(0)
1 +R(1)A(1)

2) =: π̂0A. (5)

Specifically, choose π̂0,K+1 arbitrarily and then

π̂0,K = π̂0,K+1(1−A(K +1,K +1))/A(K,K +1)
π̂0,K−1 = (π̂0,K− π̂0,K+1A(K +1,K))/A(K−1,K)

π̂0,i =
π̂0,i+1− π̂0,i+2A(i+2, i+1)− π̂0,K+1A(K +1, i+1)

A(i, i+1)

for i = K−1, . . . ,1.
2) Apply Theorem 1 to calculate

π̂n = π̂n−1R(n), n = 1, 2, · · · , M−K, (6)

3) Scale the vectors π̂ uniformly to achieve∥∥∥∑M−K
n=0 πn

∥∥∥
1
= 1.

4) Calculate the blocking probability as

p=
∑

M−K
n=0 πn,KA(n)

0 (K +1,K +1)

∑
M−K
n=0 (∑K−1

i=0 πn,iA
(n)
1 (i+1, i+2)+πn,KA(n)

0 (K +1,K +1))
.

The computational complexity of the algorithm is O(MK),
which is a significant improvement over the O(MK3) of the
state-of-the-art block LU decomposition algorithm, which has
been shown to be faster than the brute force way of solving
the balance equations of the Markov chain [12].

IV. NUMERICAL TRACTABILITY OF THE ALGORITHM

Since the algorithm aims to solve large scale problems,
numerical tractability of the algorithm should be considered.
We only consider overflow, and not rounding errors.

The last row of R(n) is An−1
0 (K + 1,K + 1) times the row

vector r where ri = ti/a∗i . By (4e),

ti =
K

∑
j=i

(s j

j

∏
k=i+1

(−ak,k−1/a∗k)) (7)

1 Note also that an alternative O(K) algorithm to calculate R(n) would be to
express S(n) =ET where E is the transpose of an elementary matrix [15] and T
is tridiagonal. The last row of E can be found by the Thomas Algorithm [16],
and the last row of T−1 using [17]. However this approach seems to take
roughly 10K multiplications, 2K divisions and 7K additions.

for i≤ K−1. If β > 0 is a lower bound on −ak+1,k/a∗k+1 for
k = K−1, . . . ,1, then the coefficient of sK in ti is at least βK−i.
If β > 1, this can lead to overflow for large K.

The following result shows that the calculations of R(n) is
tractable for n≥ 1+λ/µ.

Theorem 2. In the calculation of R(n) for 1≤ n≤M−K we
have qi ∈ (0,1) for all 1≤ i≤ K, and if n≥ 1+λ/µ then for
all 1≤ i≤ K:

b∗i ∈

(
−

i

∑
k=1
|aK+1,k|, aK+1,i

)
; ti ∈

(
0,

K

∑
j=i

s j

)
.

Proof: First, note the signs of the variables. For i =
1, . . . ,K,
• R(n+1) is non-negative by Theorem 12.1.1 of [9].
• ai,i+1 ∈ (−1,0), since the only contribution is from A(n)

1 .
• ai+1,i < 0. For i ≤ K− 1, ai+1,i ∈ (−1,0) since the only

contribution is from A(n)
1 . For aK+1,K , there is also a non-

positive contribution from R(n+1)A(n+1)
2 .

• ai,i = 1 for i≤ K, since the only contribution is from I.
• aK+1,i ≤ 0, since the only contribution is from

R(n+1)A(n+1)
2 .

• qi ∈ (0,1). This is shown inductively in Lemma 1 below,
using only the signs of the a j, j±1 not including aK+1,K .

• a∗i ∈ (0,1) by (4d), because qi ∈ (0,1), ai+1,i ∈ (−1,0)
and ai,i = 1.

• b∗i ∈ (−i,0) by induction on (4b) since qi ∈ (0,1) and
aK+1,i ∈ (−1,0). Note that b∗K+1 need not be, since
aK+1,K+1 need not be negative.

• ti ≥ 0 since R(n+1) and a∗i are non-negative and ri = ti/a∗i .
• si ≥ 0 since sK = tK ≥ 0 by (4e) and all si have the same

sign by (4c).
• a∗K+1 = b∗K+1 ∈ (0,1). Positivity follows by (4c), since

b∗i < 0. The upper bound comes from (4b) since the first
term is negative and the second is 1 minus a term from
R(n+1)A(n+1)

2 .
• aK+1,K+1 ∈ (0,1); the lower bound is because b∗K+1 > 0.

Using the fact that ai,i = 1 and ai,i±1 < 0 for i = 1, . . . ,K,
it is shown inductively in Lemma 1 below that 0 ≤ qk ≤

(M−n−k+1)λ
(M−n−k+1)λ+nµ < 1 for all 1 ≤ k ≤ K. By (4b), this gives the
bound on b∗i+1. Next, it is shown in Lemma 2 below that
pi :=−ai,i−1/a∗ satisfies the recursion

pi+1 =
−ai+1,i

piai+1,iai,i+1/ai,i−1 +ai+1,i+1
. (8)

whence it is inductively shown that pi ∈ (0,(i−1)/i] for 1+
λ/µ≤ n≤M−K. The bound on ti follows by substituting this
into (7) and noting that ai+1,i < 0.

The following are the two lemmas used in the proof of
Theorem 2.

Lemma 1. Variables 0 ≤ qk ≤ (M−n−k+1)λ
(M−n−k+1)λ+nµ for 1 ≤ k ≤ K

in the calculations of R(n) for 1≤ n≤M−K.

Proof: The proof is by induction. By (4a),

q1 =
(M−n)λ

(M−n)λ+nµ
.

4

If 0 ≤ qi−1 ≤ (M−n−i+2)λ
(M−n−i+2)λ+nµ for some i ∈ [2,K], then from

(4a),

0≤
−ai,i+1

ai,i
≤ qi =

−ai,i+1

ai,i +ai,i−1qi−1
≤
−ai,i+1

ai,i +ai,i−1

=
(M−n− i+1)λ

(M−n− i+1)λ+nµ
.

Therefore, 0≤ qk ≤ (M−n−k+1)λ
(M−n−k+1)λ+nµ for all 1≤ k ≤ K.

Lemma 2. In the calculation of tk for n ∈ [1+λ/µ,M−K]
and 2≤ k ≤ K, we have 0 <−ak,k−1/a∗k ≤ (k−1)/k ≤ 1.

Proof: Let pi =−ai,i−1/a∗i . This gives the recursion:

pi =
−ai,i−1

a∗i
=

−ai,i−1

ai,i−1qi−1 +ai,i
;

pi+1 =
−ai+1,i

a∗i+1
=

−ai+1,i

ai+1,iqi +ai+1,i+1

=
−ai+1,i

ai+1,i(
−ai,i+1

ai,i+ai,i−1qi−1
)+ai+1,i+1

=
−ai+1,i

piai+1,iai,i+1/ai,i−1 +ai+1,i+1
. (9)

We next inductively prove pk ≤ (k−1)/k in the calculations
of R(n) for n ∈ [1+λ/µ,M−K]. Since q1 =−a1,2,

p2 =
−a2,1

a∗2
=

−a2,1

−a2,1a1,2 +a2,2

=

µ
(M−n−1)λ+nµ+µ

1− µ
(M−n−1)λ+nµ+µ

(M−n)λ
(M−n)λ+nµ

=
µ

nµ+(M−n−1)λ+µ nµ
(M−n)λ+nµ

≤ 1
n
≤ 1

2
.

Make the inductive assumption pi ≤ (i−1)/i for some i≥ 2.
Substituting into (9) gives

pi+1 =

iµ
[M−n− i]λ+nµ+ iµ

1− iµ
[M−n− i]λ+nµ+ iµ

(M−n− (i−1))λ
(i−1)µ

pi

=
iµ

(M−n− i)λ+ iµ+nµ− (M−n− (i−1))λpii/(i−1)

≤ iµ
iµ+nµ−λ

≤ i
i+1

where the first inequality uses the inductive hypothesis, and
the last uses n≥ 1+λ/µ. This establishes the upper bound.

To see that pk > 0, substitute ak,k−1 ∈ (−1,0), qk−1 ∈ (0,1),
and ak,k = 1 (since k ≤ K) into (4d).

Theorem 2 does not guarantee that si will remain small,
since b∗K+1 may become small. However, if si nearly overflows
then ti and ri will be large, since a∗i < 1. Hence π̂n−1 will be
negligible compared with π̂n by (6), and its exact value is
unimportant since πn−1 will be rounded to 0 by the following
procedure.

Overflow can also arise when for some n and i the ratio
of π0,K+1 to πn,i is less than the ratio of the smallest to
largest positive values the machine can represent. In this case,

TABLE I
COMPUTATION TIME (SECONDS) FOR THE PROPOSED ALGORITHM

(LDQBD) AND A BENCHMARK (LU [12]). λ = µ = 1.

(M, K) LDQBD LU
(200,50) 0.0048 0.0468
(200,150) 0.0033 0.2340
(600,150) 0.0238 1.321
(600,450) 0.0200 13.011

no initial choice of π̂0,K+1 can prevent overflow. To avoid
overflow, the partially computed vector π̂ can be rescaled at
any stage. Even if this results in some values such as π̂0,K+1
being rounded down to 0, this will not affect p substantially
unless p is itself close to the smallest positive value that can
be represented

V. NUMERICAL RESULTS

Table I compares the running time of this method and block
LU decomposition algorithm. All the results are obtained using
MATLAB software executed on a desktop PC with Intel R©

Xeon R©, 2.67 GHz CPU, 4 GB RAM and 64-bit operating
system.

We observe considerable improvement in the computation
time of the LDQBD algorithm compared with that of the block
LU decomposition algorithm. Moreover, the computation time
is much less variable, differing by less than a factor of 10,
compared with a factor of over 100 for LU decomposition. As
expected, the blocking probabilities obtained by the LDQBD
algorithm match the results obtained by block LU decompo-
sition algorithm for the cases in Table I.

For larger values of M and K, it is computationally pro-
hibitive to calculate the blocking probability using block LU
decomposition. Instead, we validate the algorithm by com-
paring the blocking probability results with simulation results.
Table II demonstrates the accuracy of our algorithm for a wide
range of parameters. The cases include underload, critical load,
and overload conditions, and evaluate the blocking probability
in the range 10−6 ∼ 10−1.

To further illustrate the computational efficiency of the
algorithm, Fig. 2 shows the computation time for different
K when M = 200, 20000.

0 50 100 150 200
1

2

3

4

5

6
x 10

−3

 K

ti
m

e
 (

s
)

 M = 200

0 0.5 1 1.5 2

x 10
4

5

10

15

20

25

30

 K

ti
m

e
 (

s
)

 M = 20000

Fig. 2. Computation time of the blocking probabilities when M = 200, 20000.

5

TABLE II
BLOCKING PROBABILITIES OF THE PROPOSED ALGORITHM (LDQBD)

AND 95% CONFIDENCE INTERVALS OF SIMULATIONS. µ = 1.

(M, K, λ) LDQBD simulation
(1000,100,0.07) 8.18×10−6 (8.20±0.85)×10−6

(1000,100,0.11) 6.889×10−2 (6.886±0.009)×10−2

(1000,100,0.12) 1.173×10−1 (1.174±0.001)×10−1

(1000,500,0.75) 9.85×10−6 (9.94±1.15)×10−6

(1000,500,1) 3.045×10−2 (3.049±0.005)×10−2

(1000,500,1.3) 1.2564×10−1 (1.2562±0.0007)×10−1

(1000,900,6) 7.25×10−6 (7.78±0.85)×10−6

(1000,900,9) 1.590×10−2 (1.589±0.002)×10−2

(1000,900,100) 9.430×10−2 (9.428±0.004)×10−2

(10000,1000,0.097) 4.35×10−6 (4.68±0.74)×10−6

(10000,1000,0.11) 1.895×10−2 (1.897±0.007)×10−2

(10000,1000,0.14) 1.891×10−1 (1.891±0.001)×10−1

(10000,5000,0.92) 1.25×10−6 (1.05±0.37)×10−6

(10000,5000,1) 9.83×10−3 (9.77±0.07)×10−3

(10000,5000,1.3) 1.167×10−1 (1.167±0.001)×10−1

(10000,9000,7.9) 4.03×10−6 (3.78±0.74)×10−6

(10000,9000,9) 5.19×10−3 (5.19±0.01)×10−3

(10000,9000,100) 9.167×10−2 (9.169±0.003)×10−2

VI. DISCUSSION AND CONCLUSION

We have proposed an O(MK) algorithm to calculate the
steady state distribution, and hence blocking probability, of
a generalized Engset model that arises in optical packet
switching and optical burst switching. The proposed algorithm
depends only on the sparsity structure of the transition matrix.
This structure arises in many other applications, such as two-
class priority queues and overflow queues. Those applications
have a more regular structure, and we hope that the techniques
introduced here may yield analytic insights into the perfor-
mance of those applications. QBDs without level dependence
were successfully applied to the analysis of priority queues
with baulking in [18], and finding tail asymptotics of priority
queues in [19].

For the specific case motivated by OPS/OBS networks,
we have also investigated the numerical tractability of the
algorithm, and shown that most of the intermediate values
in the computation can be guaranteed not to cause numeric
overflow. This allows the proposed technique to be applied to
very large switches, including all those that will be developed
for the foreseeable future.

ACKNOWLEDGEMENTS

This work was supported by ARC grants FT0991594 and
DP130100156 and NSF grant CNS-1017800.

REFERENCES

[1] T. O. Engset, “The probability calculation to determine the number of
switches in automatic telephone exchanges,” Telektronikk, pp. 1–5, Jun.
1991, english translation by Mr. Eliot Jensen.

[2] M. Zukerman, E. Wong, Z. Rosberg, G. M. Lee, and H. L. Vu, “On
teletraffic applications to OBS,” IEEE Communications Letters, vol. 8,
no. 2, pp. 116–118, Feb. 2004.

[3] H. Øverby, “Performance modelling of optical packet switched networks
with the Engset traffic model,” Optics Express, vol. 13, pp. 1685–1695,
2005.

[4] M. J. O’Mahony, D. Simeonidou, D. Hunter, and A. Tzanakaki, “The
application of optical packet switching in future communication net-
works,” IEEE Communications Magazine, vol. 39, no. 3, pp. 128–135,
2002.

[5] C. Qiao and M. Yoo, “Optical burst switching (OBS) - a new paradigm
for an optical Internet,” Journal of High Speed Networks, vol. 8, no. 1,
pp. 69–84, Mar. 1999.

[6] J. S. Turner, “Terabit burst switching,” J. High Speed Netw., vol. 8, no. 1,
pp. 3–16, Mar. 1999.

[7] J. W. Cohen, “The generalized Engset formulae,” Philips Telecommuni-
cation Review, vol. 18, pp. 158–170, 1957.

[8] R. Syski, Introduction to Congestion Theory in Telephone Systems.
North Holland, 1959.

[9] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Meth-
ods in Stochastic Modeling, ser. ASA-SIAM Series on Statistics and
Applied Probability. SIAM, 1999.

[10] J. P. Kharoufeh, “Level-dependent quasi-birth-and-death processes,”
Wiley Encyclopedia of Operations Research and Management Science,
Feb. 2011.

[11] J. F. Pérez and B. Van Houdt, “Quasi-birth-and-death processes with
restricted transitions and its applications,” Performance Evaluation,
vol. 68, no. 2, pp. 126–141, 2011.

[12] N. Akar and Y. Gunalay, “Stochastic analysis of finite population
bufferless multiplexing in optical packet/burst switching systems,” IEICE
Transactions on Communications, vol. E90-B, no. 2, pp. 342–345, 2007.

[13] J. Zhang, Y. Peng, E. W. M. Wong, and M. Zukerman, “Sensitivity of
blocking probability in the generalized engset model for OBS,” IEEE
Communications Letters, vol. 15, no. 11, pp. 1243–1245, Nov. 2011.

[14] L. Bright and P. G. Taylor, “Calculating the equilibrium distribution
in level dependent quasi-birth-and-death processes,” Stochastic Models,
vol. 11, no. 3, pp. 497–525, 1995.

[15] R. Brayton, F. Gustavson, and R. Willoughby, “Some results on sparse
matrices,” Mathematics of Computation, vol. 24, no. 112, pp. 937–954,
1970.

[16] E. Süli and D. Mayers, An introduction to numerical analysis. Cam-
bridge University Press, 2003.

[17] R. Usmani, “Inversion of a tridiagonal Jacobi matrix,” Linear Algebra
and Its Applications, vol. 212, pp. 413–414, 1994.

[18] S. Drekic and D. G. Woolford, “A preemptive priority queue with
balking,” European Journal of Operational Research, vol. 164, no. 2,
pp. 387–401, 2005.

[19] H. Li and Y. Q. Zhao, “Exact tail asymptotics in a priority queuechar-
acterizations of the preemptive model,” Queueing Systems, vol. 63, no.
1-4, pp. 355–381, 2009.

	Introduction
	Model and notation
	Blocking probability
	Numerical tractability of the algorithm
	Numerical results
	Discussion and Conclusion
	References

