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Abstract—Network Utility Maximization (NUM) is an opti-
mization problem that models rate allocation in the Internet.
NUM is considered to produce fair bandwidth allocations, an
advantage for the implementation of TCP queue management
protocols. Prioritization of data packets can benefit from know-
ing transfer sizes a-priori. A state-of-the-art NUM formulation
considers a size-based approach where transmission flows are
scaled by some function of a transfer’s residual work (inspired
by schedulers like Shortest Remaining Processing Time, SRPT).
This new NUM-SRPT hybrid scheduler was proven to be stable
for a defined region on any arbitrary topology. We found that for
all tested topologies, stability limits are well beyond of what was
proven theoretically, showing that performance does benefit from
a SRPT-based prioritization at much higher loads. A method to
detect empirical stability based on the augmented Dickey-Fuller
test was used in order to assess the stability limits.

I. INTRODUCTION

Congestion control is responsible for both fairness and
efficiency of capacity allocation in the Internet. Fairness is
usually quantified by instantaneous fairness: how fair are the
rates given to different flows. This type of fair allocation can
be posed as an optimization: the network utility maximization
(NUM) problem [1].

NUM considers a utility (or benefit) given to any user
that transmits at a particular rate. The goal is to maximize
the sum of all utilities subject to the rates satisfying the
capacity constraints of all the links they use. This optimization
models many TCP/active queue management (AQM) algo-
rithms, where the global maximization can be solved in a
decentralized manner via the Lagrange dual problem [1], [2].

NUM is a good framework for analyzing TCP/AQM net-
work control performance such as stability, fairness and
throughput [3]. However, instantaneous fairness is not what
users need. If a user is downloading a file, the only thing that
matters is how long it takes to download that file, called the
file completion time. Minimizing the average file completion
time (AFCT) in TCP was popularized in [4], but for decades
it has been the primary objective in queueing theory, under
the name average “sojourn” time.

Typical TCP applications consider sources that rely on fair
allocations; however there has been an increase of specific
scenarios where job prioritization is a desired feature (e.g.
when streaming media). By taking advantage of a priori
knowledge of job sizes, the network could potentially modify
its allocation strategy in order to benefit some jobs with

minimal penalty to others. Prioritizing short jobs is known to
reduce mean sojourn time in a single server queueing system,
which is equivalent to a single link “network” [5], [6].

The Shortest Remaining Processing Time (SRPT) policy
prioritizes the job with the least amount of work to finish and it
is the optimal strategy for mean sojourn time in a single server
system [7]. Its single-server performance was the motivation
for other network applications such as web servers [8], [6].
And even though SRPT needs to know job sizes a priori, that
information is available at the source of file transfers.

One concern about SRPT is fairness: to what extent this
prioritization of small jobs hurts large ones, and if it can
even cause starvation. It was shown, also in [8] and [6], that
SRPT also tends to outperform Processor Sharing (PS), a fair
allocation strategy, in terms of slowdown when job sizes have
a heavy tailed distribution, which characterizes file sizes.

Despite the advantages of SRPT and other size-based poli-
cies for single hop scheduling, realistic networks have flows
that share bandwidth across multiple bottleneck links, equiv-
alent to a multi-server queue. In that case, the performance
improvements of SRPT decrease for long routes [9], [10],
to the point of reducing the range of workloads for which
the system is stable. Indeed, for any per-link load, there is a
topology for which that load is unstable under SRPT [10]. As
SRPT does not yield optimal mean delay performance, [10]
suggests using well tuned NUM policies instead. This paper
investigates if it is feasible to improve on a NUM formulation
for a network resource allocation problem by prioritizing flows
with short residual work, but not giving them strict priority.

Utility functions determine the rates given to each flow.
They can be scaled by a function of remaining file transfer in
such a way as to create a NUM-SRPT hybrid policy. A cen-
tralized scheduler was recently proposed [11], which allows a
continuous tradeoff between NUM and SRPT, parameterized
by a prioritization factor θ. Viewed as a queueing system,
NUM is stable for all loads in systems that use α-fair, concave
increasing utility functions and arbitrary light-tailed file size
distributions [12]. On the other hand, SRPT can be unstable
for arbitrarily low loads, for topologies with sufficiently long
paths [10]. Nonetheless, the scheduler of [11] was proven to
be stable for a non-vanishing stability region for all topologies,
but not for the maximum possible stability region. This paper
will use simulation to study the actual stability region of the
new scheduler.



The contributions of this paper are as follows. We propose a
technique for determining the stability of a queueing system’s
simulation. We use this to demonstrate that the stability region
of the algorithm of [11] is somewhat less than the maximum
stability region, but much larger than proved in [11]. Moreover,
the system is able to improve the average performance on all
paths, for a sufficiently small prioritization.

The rest of this paper is organized as follows. Section II
presents the size-based resource allocation problem first in-
troduced in [11], together with the theoretical condition for
stability. We will use this optimization problem to define a
job scheduler algorithm implemented in Julia.

The empirical method to determine if a queue has reached
equilibrium based on the augmented Dickey-Fuller test is
presented in Section III.

To test the empirical stability we present topologies that may
resemble practical workloads. Section IV shows numerical
results for different route loads, prioritization values and
network sizes. Section V concludes the paper.

II. FORMULATION

We begin by describing the NUM-SRPT hybrid model pre-
sented in [11]. It consists of a utility-based resource allocation
strategy applied to bandwidth-sharing networks. A network
consists of l ∈ L links and m ∈ M routes. A link-route
allocation matrix is defined as R where Rlm = 1 if link l is
part of route m. For any route, transmitting at rate xim gives
job i traversing m a benefit Um(xim).

NUM’s goal is to choose rates xim to maximize the sum
of all utilities subject to link capacity constraints. Note that
NUM is formulated for infinite length flows, whose utility
comes from the rate they receive, rather than the length of
time they remain in the system.

To introduce the notion of minimizing completion times,
we could reformulate the problem so that utility is a function
of file completion time. That gives very difficult non-convex
optimization to solve, which is also not amenable to a dis-
tributed implementation. Instead, we optimize each point in
time separately, but scale utilities to prioritize small flows.

Given file sizes are known in advance (although not all
flows are file transfers), a job’s utility can be time-varying
if we prioritize further based on remaining transfer size. If the
remaining size is denoted by si for job i, a function hm(s) pri-
oritizes it by scaling the corresponding utility Um(x). Such an
allocation strategy needs to be performed while meeting link
capacity constraints. The proposed size-based NUM problem
at time t is

maximize
∑
m

∑
i∈Im,t

hm(si(t)) · Um(xi(t)) (1a)

s.t.
∑
m

Rlm ·

 ∑
i∈Im,t

xim(t)

 ≤ cl,∀l (1b)

xim(t) ≥ 0,∀i,m, (1c)

where cl is the capacity of link l.

In the rest of this paper, we consider only an α-fair system,
in which all flows use the same utility of the form

U(x) = (1− α)−1x1−α, (2)

where α ∈ [0, 1) ∪ (1,∞).
Note that for any bandwidth-sharing queueing system, jobs

in route m arrive at a mean intensity λm, creating a route
load of ρm = λm/µm, where µm is the service rate in jobs
per second. Let Gm(σ) be the complementary cumulative
distribution function (CCDF) of job sizes σ on route m. The
main result known about (1) is [11]:

Theorem 1. Consider a queueing system where the file size
distribution has a pth moment for some p > 1. If the loads
ρm := λm/µm satisfy∑

m

Rlmρmθ
1

α+1
m (α, hm) < cl, (3)

for all l, where

θm(α, hm) = µm

∫ ∞
0

Gm(σ)h−α−1m (σ)dσ, (4)

then the fluid model of the network is stable when employing
the scheduling policy in (1), with hm(0) = 1, hm(s) > 0 for
all s ≥ 0 and hm(.) non-increasing, for all m.

For each route, we can choose an appropriate prioritization
function hm(σ), as long as Gm(σ)h−α−1m (σ) is integrable over
[0,∞),∀m. The function hm is then normalized so hm(0) =
1. If hm(σ) = 1 for all sizes σ then (1) reduces to NUM.
However, if hm decreases sufficiently fast with σ, then the
problem approaches SRPT.

We use the problem in (1) to develop a scheduling policy
based on giving priority to jobs that are close to finishing.
Given a certain topology that specifies route loads and link
capacities, the scheduler calculates the allocation vector x(t)
for every active job in the queue. The scheduler can be
distributed as a standard NUM scheduler, although evaluating
the performance of that is beyond the scope of this paper.

The implementation uses Julia’s JuMP and NLopt libraries,
which imperfectly optimize problem (1). They may not en-
tirely allocate all of the bottleneck link capacities to active
jobs. The capacity constraint in problem (1) is enforced but it
does not always find a solution with bottleneck link utilization
of 100%. The solution was tweaked to allocate capacity of
links that was missed by the optimizer in a max-min fair
manner [13] among the flows. This is suboptimal, but increases
the objective and does not violate the constraints and so is an
improvement over the rates found by the imperfect optimizer.

By analyzing the execution of the queue, we can determine
congestion and other metrics that will be useful for assessing
at what time the system reaches equilibrium.

III. DETECTING STABILITY

Relation (3) is a lower bound on the stability limit for any
scheduling policy based in (1). However, this bound applies to
arbitrary topologies, and it is known [10] that topologies with



(a) Unstable outcome, parking lot, |L| = 8, η = 10, ρm = 0.7, ∀m. ADF
reports J2 is stationary, confirming J is growing steadily.

(b) Stationary (or stable) outcome. The main outcome for J returned a
stationary result, sufficient condition that does not trigger a test on J2. This
experiment considered a parking lot topology with 8 hops, η = 0 (NUM)
and ρm = 0.8, ∀m.

Fig. 1. Number of jobs in the system versus time. Two series: J and J2.
Warm up period ends at T0 (vertical line). Test is done over [T0, 2T0].

long paths have much smaller stability regions than those with
short paths. To determine how loose this bound is in practice,
we simulate several networks. This raises the age-old question
of how to determine stability from a simulation.

We propose a procedure to classify a model as stable or
unstable, based on the analysis of a time series that describes
the congestion of the system: number of active jobs over time,

J(t) =
∑
m∈M

|Im,t|. (5)

For some warm-up time T0, we perform a pair of tests on
the interval [T0, 2T0]. We declare the model “stable” if the
time series passes a statistical test for stationarity. Otherwise,
we declare “unstable” if the detrended version

J2(t, T0) = J(t)− tJ(2T0)− J(T0)
T0

, (6)

passes the test for stationarity. If it is not declared stable,
then T0 is doubled and the test is repeated until reaching an
arbitrary maximum time. At that stage, we perform one final
test by analyzing the second half of the entire simulation.

If the initial interval is too short, starting far from equilib-
rium, then the procedure may falsely conclude “unstable”. This
never causes the test to overstate the stability region. Still, to
reduce it, we use as the initial simulation duration the length
of the next smaller load (scaled by (1−ρ2)/(1−ρ1)), or next
smaller prioritization (scaled by η2/η1).

The stability tests are based on the Augmented Dickey-
Fuller (ADF) test, with unit lag parameter [14]. The test exam-
ines the null hypothesis that considers the time series as non-
stationary (first order autoregressive with unit root), against the
alternative hypothesis that the sequence is stationary. The ADF
statistic does not follow a well-known distribution. Instead,
threshold values are tabulated for various confidence levels
(p-values). For our experiments, we used p = 0.05.

To improve accuracy, the time series we evaluate is actually
the average of J(t) for three time series with different random
seeds.

Fig 1 shows an example for the ADF test, where the
final outcome is determined by the functions J and J2. The
stationary condition is mainly decided by the series J , as
shown in Fig. 1b. Only when the outcome for J is not
definitive, J2 is evaluated. If the trend is stationary, then the
system is flagged as unstable (Fig. 1a).

IV. SIMULATIONS

A. Workload

To test the policy (1), we use arrivals that follow a homoge-
neous Poisson process and job sizes that are i.i.d. Pareto with
complementary cumulative distribution function (CCDF)

G(σ) =

{
σ−a ifσ ≥ 1

1 ifσ < 1,
(7)

where a is a distribution shape parameter, related to the mean
job size by E[S] = a/(a − 1) = 1/µ. A shape parameter of
a = 1.9 was used in order to get job sizes with finite mean
but infinite variance.

Experiments use a prioritization function

h(σ, η) = [log(e+ σ)]−η,

where e is the base of the natural logarithm. As a result, the
stability condition in (3) becomes

θ(η) = µ

∫ ∞
1

σ−a[log(e+ σ)]η(α+1)/α dσ

+µ

∫ 1

0

[log(e+ σ)]η(α+1)/α dσ,

(8)

where α = 0.95, which is close to proportional fairness. The
above integral is bounded since for any ε > 0 there is a K
such that the integrand is bounded above by Kσ−a+ε.

The prioritization function h is chosen so the scheduler
approaches SRPT as θ → ∞. Prioritization of small jobs is
beneficial up to some point but for higher levels it increases
average delay, eventually leading to instability (i.e., the back-
log grows unboundedly). Therefore, we want to know how
large θ can be made while maintaining stability. This, along
with network size and load, determine congestion and stability.



NSFNET

b

Parking lot (linear)

Ring

Fig. 2. Topologies considered in our simulations. Blue lines represent routes
at variable path lengths. For NSFNET we consider the additional sub-graph b.
A linear topology consists of one multi hop route while the rest has dedicated
links. All routes in the ring topology consist of half begin single hop and the
other 2-hop.

B. Scenarios

Figure 2 shows the three topologies used for our simula-
tions. We are interested in characterizing networks that offer
good variability in terms of path length, as well as depicting
practical communication scenarios.

The first network depicted in Fig. 2 is NSFNET, a T1
backbone network of supercomputers established in the United
States, circa 1988 [15]. It has the advantage to simulate real
world traffic conditions when using node population figures
in order to determine “accurate” link loads [16]. To compare
against possible stability improvements we consider a sub-
graph of NSFNET, left of line b.

The second topology is a linear (parking lot) topology,
consisting of |L| links and |L|+1 routes. The only multi path
route is the one that traverses all links in the network, while
the remaining routes have dedicated links. This determines that
jobs assigned to the multi hop route will become more starved
(due to shared links) as the SRPT prioritization and path length
increases. This topology maximizes the network diameter
given the number of hops, allowing long paths with reasonable
simulation times. That is useful, since the disadvantage due to
prioritization increases with the path length.

The third case is a ring topology of five nodes. The distri-
bution of path lengths considers half being single hop while
the other is multi hop with two links. It was chosen so we
could assess a potential case of overall stability, considering
the homogeneous allocation of routes and links.

Parameters that apply to all networks are route loads ρ
that vary from 0.1 to 0.95 and SRPT prioritization factor
η ∈ [0, 20]. Network characterization will depend on path
length, with the linear topology considering hop counts of 2, 4,
8 and 16. NSFNET will vary its average path length depending
on which graph is simulated. As for the ring topology, path
length can be 1 or 2 depending on the route, and the overall
node count is 5.

(a) Load thresholds for linear networks of various lengths.

(b) Load threshold for Theorem 1.

Fig. 3. Plot of load ρ stability threshold versus prioritization θ(η). Stable
below solid line, unstable above dashed line, indeterminate in between.

C. Results

1) Load stability threshold analysis: We first study the
stability threshold load ρ versus θ(η) of equation (8) for the
parking lot topology based on the method of Section III. We
calculated the maximum load for which all runs were deemed
stable, and the minimum load for which all were deemed
unstable. The stability of the region in between these series
could not be determined from simulations of up to three flows.
The results are shown in Fig. 3(a).

Load thresholds decrease with higher prioritization values,
θ, which makes the scheme closer to SRPT, as well as hop
count, following what happens under SRPT [10]. The “stable”
threshold matches the maximum simulated load of ρ = 0.95,
since ρ = 1 was not included in the experiments. This is
consistent with the fact that pure NUM is stable for any load
below the maximum simulated load, (i.e. the stability threshold
tends to 1 as θ → 0).

When path length increases, there is a significant drop in
the stability threshold, especially for small θ. Nonetheless,
our results indicate that a 2-hop network is stable under all
prioritizations. Beyond that, the threshold decreases to a non-
zero asymptote. This is because SRPT always has a non-empty



Fig. 4. Plot of mean delay divided by mean delay for pure NUM (θ = 0)
versus prioritization factor, load and path length. Network is ring topology.

stable region, which is approached as prioritization θ →∞.
The lower bound decreases to under 10−35 in the range

of this graph, showing that the algorithm is more stable in
practical networks than the theorem guarantees. Moreover,
Fig. 3(b) shows the load threshold limit for Theorem 1,
indicating that stability drops sharply for priorities where
linear networks are still stable.

The stability of the ring network was also tested, indicating
stability for a 5 node network, at any congestion level. This
topology is interesting, because it does not result in instability,
even though it consists of multi hop flows. The reason is that
the network is homogeneous in terms of single and multi hop
routes ratio. To some extent, it resembles the stability of a
2-hop linear network.

Another practical case is NSFNET. It was shown that the
stability threshold for the two graphs reaches a minimum
of ρ = 0.7. Naturally, we expect the lower node count
network (b) to be more stable at higher prioritization values.
Nonetheless, they both remain stable for a large subset of
the prioritization domain, considering the the node count
difference between the two is only 3. It is worth mentioning for
future delay performance metrics, that NSFNET-b generates a
small amount of 5-hop paths, while the maximum for full
NSFNET is only 3.

Despite these practical topologies compared against Theo-
rem 1, the theorem may not be loose, as it applies to all topolo-
gies, including the limit of paths with an unbounded number
of hops. Further study is required to determine whether or not
the theorem is tight.

2) Performance analysis: The motivation for modifying
NUM was to reduce the average file completion time. To see
if this has been achieved, we studied the mean delay ratio
versus prioritization factor for link loads (0.3, 0.6) and 2, 4,
8 and 16 link networks. This is shown in Fig. 5 for multi hop
routes. Vertical doted lines indicate theoretical stability limits
(Theorem 1) for the corresponding route loads.

The proposed algorithm affects delay in two ways. A. Prior-
itizing short jobs within a route acts directly to reduce delay.

Fig. 5. Plot of mean delay divided by mean delay for pure NUM (θ = 0)
versus prioritization factor and load. Network is parking lot and routes are
multi hop.

B. As found in [10], prioritizing short jobs indirectly prioritizes
short routes, to a greater extent as the length of the competing
routes increases. Since single hop routes benefit from both of
these, it is expected that their performance will improve as θ
and |L| increase, which is shown to happen in Fig. 4 (ring, 1
hop) and Fig. 6, 7 (NSFNET/b, 1 hop).

Notice that only points for which the system is stable are
plotted, even if the short routes have an equilibrium delay
in systems for which long routes are unstable. Performance
may continue to increase beyond that point, at the expense of
stability.

For multi hop routes, A above still reduces delay, but
B increases delay, as shown more noticeably in Figs. 5
and 6, 7. There is still a visible benefit of slightly prioritizing
short jobs for multi hop routes, as A dominates, but for larger
prioritization, B dominates as the stability limit is approached.
Fig. 6 shows an expected multi hop behavior for NSFNET,
with higher hop counts decreasing performance at higher
prioritizations. The same applies to the ring topology in Fig. 4,
where the 2-hop routes perform worse than single hop at low
loads. However, to the extent of path lengths, we can see that
both single-hop and multi-hop routes have better performance
at higher loads when prioritizations are more than 0 (NUM).
The delay ratio drops because mean delay for SRPT increases
with load much slower than PS [17], and even FCFS, when
considering the M/G/1 queue. Nonetheless, there seems to be
a limit imposed by path length, where in Fig. 5 such advantage
no longer applies for 8 and 16-hop linear topologies.

In terms of routes with different path lengths competing
for service, NSFNET provides an interesting view on multi-
hop route performance. Fig. 6 and 7 show a breakdown of
route performance by path length. We can see that multi-hop
routes perform batter than single hope ones due to having more
shared resources that can be allocated to jobs. Nonetheless,
the main trade-off is stability at higher prioritizations, causing
the advantage to quickly disappear as θ reaches its maximum.
For example, NSFNET-b having some routes with 3 and 5-hop



Fig. 6. Plot of mean ratio of delay to delay with θ = 0 versus prioritization
factor for routes with different hop counts. Network is NSFNET-b.

Fig. 7. Plot of mean ratio of delay to delay with θ = 0 versus prioritization
factor for routes with different hop counts. Network is NSFNET.

length that exceed in performance to every other one, until it
get worse than pure NUM (θ = 0) when prioritization is close
to the maximum considered.

V. CONCLUSION AND FUTURE WORK

We proposed a method to detect empirical stability based
on the Dickey-Fuller statistical test. It was used to compare
against theoretical stability limits introduced in [11]. It is
shown that maximum stability limits are well beyond the ones
demonstrated theoretically, allowing for residual-size-based
prioritization in NUM to show benefits well above the route
loads predicted theoretically. Other schedulers that are size-
based can always be stable, for example, when based on the
Fair Sojourn Protocol. Nonetheless, that is less implementable
than the present scheduler, but finding an implementable
approximation may be useful in the future.

It will be useful to define a formal hypothesis test for
stability based on the method proposed here. This will need
to take into account the sequential decisions, as in [18].

This study also provides guidance for a deeper study into
the relationship between the different types of cross-traffic on
a path, the prioritization, the load on the path and stability. For

example, it will be useful to quantify the effective bandwidth
consumed by cross traffic on a long path, which is greater
than the actual bandwidth because of the prioritization effect.
Once these effects are understood, the full potential of partial
prioritization of short flows will be revealed.
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