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Abstract—Data centre power consumption can be reduced by
switching off servers during low load. However, excess switching
is wasteful. This paper reviews online algorithms for optimizing
this tradeoff, including the benefits of shifting load between
geographically distant data centres. These algorithms can also
adjust a link’s number of parallel lightpaths.

I. INTRODUCTION

The world is facing a need to curb its consumption of
fossil fuels. The internet is an important tool for reducing
this consumption by “dematerialization”, which substitutes
physical transport and goods by online equivalents. However,
the data centres behind the internet are themselves major
consumers of energy. This paper reviews recent results on
algorithms for reducing this total energy consumption, or for
reducing the amount of non-renewable energy consumed.

The techniques considered here all save energy by turning
servers off during periods of low load. This is made feasible
by the ability to migrate a virtual machine from one physical
machine to another, but still incurs a substantial cost. The
algorithms seek to balance this switching cost against the
cost of operating excess servers. A central challenge is that
the future load is unknown or only partially known. The
algorithms provably guarantee that the cost is “close” to the
minimum cost that could have been achieved had the future
load been known.

II. MODEL

Consider a system of S data centres, each containing M
servers. Work is sent to these data centres from different
locations, indexed by j. At time t, source j requires that
work λt,j be performed, which may be split between the data
centres. The costs incurred by data centre s at time t depend
on the number of servers that are powered on, xt,s, and the
vector λt,s of amounts of work it performs for the sources.
The running cost Rt,s(xt,s, λt,s) accounts for server energy,
queueing delays and network latency, and is jointly convex in
all variables. There is also a switching cost βs modelling the
total cost of turning a server on and off, including the energy,
delay, wear-and-tear and risk. We seek to solve

min
xt,s

λt,j,s

T∑
t=1

S∑
s=1

Rt,s(xt,s, λt,s) + βs(xt−1,s, xt,s)
+ (1)

s.t.
∑S

s=1
λt,j,s = λt,j , ∀t, ∀j

λt,j,s ≥ 0, ∀t,∀j,∀s
0 = x0,s ≤ xt,s ≤M, ∀t,∀s

where (x)+ = max(0, x). The challenge is that xt,s and λt,j,s
must be chosen by time t, without full knowledge of future
loads or energy prices at times τ > t.
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Fig. 1. Lazy capacity provisioning [1]. (a) Optimal solution, lazy backward
in time. (b) LCP, lazy forward in time.

III. ALGORITHMS

Efficient algorithms are known for several important special
cases of (1). These algorithms do not use future knowledge,
except for a small window of size w ≥ 0. They are provably
good in the sense that their performance is close to that of the
optimal algorithm that has complete future knowledge.

Lazy Capacity Provisioning (LCP): If all servers are
homogeneous, say within one data centre, then S = 1 and
(1) becomes a one-dimensional optimization over xt. In this
case, the optimal solution has a very elegant structure, in terms
of natural lower and upper bounds on the optimal value of xt
corresponding to the future load being either zero or very high.
Starting from time t = T and working backwards to t = 1, x
remains between these bounds, and changes “lazily”: only as
much as is necessary not to violate the bounds, as shown in
Figure 1(a).

LCP [1] is an implementable approximation to this structure,
in which x remains within the same bounds, but is lazy
forward in time, rather than backward, as in Figure 1(b). The
bounds used by LCP can be calculated with no knowledge of
future workloads, giving the scheme LCP(0). Tighter bounds
can be obtained if information is available about a window w
into the future, giving a family of schemes LCP(w).

LCP is also suitable for dynamically adapting the number
of lightpaths to use on a particular optical path. It has often
been proposed that power can be saved in optical links
by turning off transcievers on some wavelengths sharing a
fibre [2]. However, such studies often neglect the cost of
turning wavelengths on and off. Turning a wavelength on
or off causes transients in amplifiers along the path, which
can cause high bit error rates in other lightpaths, jeopardizing
service level agreements. This cost can be modelled by β,
which allows LCP to trade off the switching cost against the
cost of energy.

Receding horizon control: Daily patterns in data centre
workloads can be predicted in advance. This allows the use
of the classical approach of receding horizon control, RHC,
(also called model predictive control, MPC). At time t, this
calculates the optimal control over time t to t + w, based
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on predicted load, and implements that control for only the
current timestep. In the next time step, it repeats the process
using an updated prediction for the interval t+1 to t+w+1. If
all servers are equivalent, such as within a single data centre,
then this performs well for large windows; its maximum
suboptimality decays as β/w [3]. Unfortunately, it can perform
poorly when load is to be distributed over many types of
servers, as is the case with geographical load balancing.
However large w is, there exist bad cases where the cost can
be up to (1 + β) times the optimal cost, which is as bad as
the case with no load prediction [3].

Averaging fixed horizon control: When there are multiple
data centre case, the weakness of RHC can be overcome by
using a new technique proposed in [3]. This technique makes
use of old predictions as well as new ones. Specifically, at
time t it implements the average of the controllers designed
in each of the past w time steps, instead of simply the most
recent controller as used by RHC. This performs similarly
to RHC in typical cases, but the maximum suboptimality is
guaranteed to decay as β/w, regardless of how many types of
server there are.

The missing case: The three foregoing results can be
classified by whether or not there are multiple data centres,
and whether or not there is workload prediction. The remaining
case is when there are multiple data centres but no prediction.
There is no known competitive algorithm for this case in
general. The problem is a special case of a metrical task
system (MTS) but direct use of the standard MTS algorithms
results performance that degrades as the number of servers
increases. However, recent results suggest that a solution may
be available in the special case that Rt,s(x, λ) is linear in x
when x ≥ λ and infinite otherwise. In this case, applying an
MTS algorithm separately to carefully chosen subsets of the
workload results in an algorithm whose performance depends
only on the (small) number of data centres, rather than the
(much larger) number of servers.

IV. NUMERICAL RESULTS

Geographical load balancing has been proposed to reduce
energy costs [4]. Paradoxically, this increases the total energy
consumption; by reducing the average cost per kWh, it makes
high energy use more affordable. However, geographical load
balancing provides a powerful tool for exploiting renewable
energy [5], [6].

The biggest challenge to relying on renewable energy is that
sources such as solar and wind are intermittent. Since energy
storage is expensive and transmission is subject to capacity
constraints, supply must approximately match demand at all
times and in all regions. If supply cannot be controlled,
then demand must be controlled, using “demand response”
mechanisms [7]. The ability to shift load between data centres
allows energy demand to be shifted to places where renewable
energy is currently available. However, this only occurs if the
price of electricity is tied to the current availability.

This is illustrated in Figure 2, taken from [5], which
considers the number of active servers required in a model of
Google’s US data centres. Energy is a mix of solar, subject to
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Fig. 2. Number of active servers under static pricing and when solar energy
is abundant

daily fluctuations, and controllable non-renewable energy. In
the first example, the price of energy is fixed, and the number
of servers follows an expected diurnal pattern. In the second,
renewable energy is priced at one tenth non-renewable energy,
to reflect its lower incremental cost. This causes evening load
on the east cost to be routed to the west coast where solar
energy is still available, and morning load to be routed east.

V. CONCLUSION

Along with the engineering improvements to data centre
energy efficiency, there is a need for algorithms to manage
the infrastructure. The algorithms mentioned above provide a
set of tools for such management.

Geographical load balancing’s benefits bring drawbacks.
First, the peak number of servers required in the second
scenario is noticeably higher in the second scenario than the
first, suggesting an increase in both the embodied energy of
equipment and its financial cost. Second, the amount of data
being transported is much higher in the second scenario, which
increases the network energy consumption. Finally, it requires
agile routing, capable of transferring load on a relatively fast
time scale without interrupting current user sessions. These
are important ongoing research directions.
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