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Abstract— The interaction between links in wireless multihop
networks introduces extra constraints on the combinations of
achievable flow rates. Algorithms have been proposed to achieve
max-min fairness under these additional constraints. This letter
provides a simple price-based max-min fair rate allocation
scheme, building on a utility maximization scheme recently
proposed for such networks.

Index Terms— Rate allocation, max-min fairness, flow control,
wireless networks.

I. INTRODUCTION

IN RECENT years, allocating flow rates fairly either in
wire-line networks or in mobile/wireless networks has

received much attention [1]–[9]. In both wireless and wireline
networks, links have a limited capacity. In wireless networks,
interference from one transmitter to a nearby receiver means
that some combinations of links cannot be used simultane-
ously. Most of these additional constraints have the form of
“clique constraints” first introduced in the context of cellular
telephony [10], and studied for ad-hoc networks in [5]. A
simpler set of constraints arises if each link has a dedicated
resource (frequency or spreading code); in that case, the
additional constraints reduce to the “MAC constraint”, which
requires that no node simultaneously transmit and receive
packets [8].

Max-min fairness can be achieved under the MAC con-
straint using scheduling [8], [9], in the special case of networks
with bipartite connectivity graphs [8]. We present a more
general approach, which achieves max-min fairness subject to
the MAC constraint in networks with arbitrary topologies, or
subject to the more general clique constraints, and also allows
more flexible “weighted max-min fairness”.

The approach is to use pricing as a means for allocating
bandwidth as explained in Section II. This was initially pro-
posed in [1]–[11] for wired networks, where it was shown that
distributed algorithms can maximize the sum of the utilities of
the users, resulting in a “proportionally fair” rate allocation.
This pricing mechanism has been generalized by [5] and [7]
to ad-hoc networks, as explained in Section III.
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As shown by Mo and Walrand [12], rate allocations that
approach max-min fairness can be achieved by defining a
sequence of utility functions such that the limit of the max-
imum utility rate allocations is max-min fair. This approach
is applied to wireless in [5]. A more direct, and realisable,
approach is simply to charge users the highest price of any
of the resources they use [13]–[15]. If all users have equal
utility functions, this achieves max-min fairness. If they have
different utility functions, the rates are the weighted max-min
fair rates [16], defined as the rates such that no flow can
increase its rate without reducing the rate of a flow being
charged more. (For a suitable choice of demand functions,
this is reduced to the simpler concept called weighted max-
min fairness in [7].) Section III shows how to achieve max-
min fair rate allocation in wireless networks by applying this
principle to the clique and/or MAC constraints.

II. PRICING FRAMEWORK

The concept of using pricing to optimize rate allocations
was originally described in a very general framework [1],
[11], for the optimization of the aggregate “social welfare”
in a network subject to general linear capacity constraints. It
has subsequently been modified to allow max-min fairness
to be achieved [13]–[15]. Both of these use the following
framework.

Consider a network with a set of fixed resources R which
are to be shared among a set of users S. When a user s ∈ S
transmits at a rate xs, it places a demand arsxs on resource
r ∈ R. The total demand on resource r cannot exceed a bound
br, giving the vector constraint

Ax ≤ b. (1)

If each user, s, has a “utility” function, Us, indicating how
much benefit is derived from achieving a given bandwidth,
then pricing can be used to optimize the sum of the users’
utilities, as follows. Each resource, r, is dynamically allocated
a price, pr, to indicate its level of congestion. User s is
“charged” a price, qs, per unit bandwidth, which aggregates
the prices of the resources it uses. The greedy response from
user s is to send at a rate which maximizes its net utility,
defined as the utility it gets from that rate minus the cost
of transmitting at that rate, Us(xs) − qsxs. Optimizing with
respect to xs for a given qs causes the user to transmit at a
rate xs = Ds(qs), where Ds = (U ′

s)
−1 is called the demand

function, and ()′ denotes the derivative.
The difference between the original framework and the

max-min framework is in how the price qs is calculated from
the individual link prices, pl. These will be described in turn.
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A. Social Welfare Maximization

The original motivation for the pricing framework was to
maximize the sum of users’ utilities, subject to the capacity
constraints. By applying the technique of Lagrange multipli-
ers, it was shown [1]–[11] that the optimization is achieved if
the price pr is set to be the Lagrange multiplier arising from
the constraint r, and user s is “charged” the sum of the prices
of the resources it uses,

∑
r∈R arsxspr. This gives a price per

unit bandwidth of qs =
∑

r∈R arspr.
Assuming the resource r knows both its bound, br, and its

aggregate arrival rate,
∑

s∈S(r) xs, a distributed way for the
equilibrium prices to be evaluated is by an iterative gradient
projection method,

pr(t + 1) =

⎡
⎣pr(t) + γ

⎛
⎝ ∑

s∈S(r)

xs(t) − br

⎞
⎠

⎤
⎦

+

, (2)

where γ is a step size parameter and [z]+ = max(z, 0).
This is straightforward when the resources are wired links.
However, as will be discussed later, this may not be trivial for
the resources used in wireless networks.

B. Max-Min Fairness

It was shown in [13]–[15] that max-min fairness can be
obtained from the pricing framework simply by charging
users the maximum price of any resource they use, qs =
maxr∈R arspr, rather than the sum of the prices. User s will
again send at rate Ds(qs), with this new form for qs. This
result holds quite generally and in particular applies to wireless
networks.

In this context, the prices are no longer the Lagrange
multipliers in an optimization problem. However the role of
the prices is simply to enforce the capacity constraints. If the
utility functions are concave and increasing, then the correct
equilibrium prices will result from any price update rule which
increases the price of any resource which is overloaded and
decreases the price of any resource which is under-utilized (if
the price is positive).

The primary contribution of this paper is to apply this price
aggregation approach (called “MaxNet” in [13]–[15]) to the set
of constraints imposed by wireless networks. These constraints
are described in the next section.

III. WIRELESS NETWORKS: CONSTRAINTS AND PRICES

Resources R have usually been taken to be the bandwidths
of links. In wireless networks, there are other constraints to
include [5]–[9] which give rise to the “clique constraints” [5],
[6], less restrictive “MAC constraints” [8], [9] or simply con-
straints on the total transmission capacity of a node [7]. These
constraints will now be described, followed by a description
of the price update rules each of them implies.

A. Clique and MAC Constraints

Consider a static multi-hop wireless network, with links
l ∈ L whose capacities cl are fixed on the timescale of the
congestion control scheme, and in which no node can transmit
to or receive from multiple nodes simultaneously and no node
can simultaneously transmit and receive. Note that wireless
links are directed links, as the capacity may not be equal on

both directions, and that cl excludes capacity wasted by any
inefficiencies of the specific MAC protocol.

Define a graph, G = (V,E) whose vertices, V , are the
links in the network. Some pairs of links will not be able to
be used simultaneously, because the transmitter of one link
causes excessive interference to the receiver of the other, or
because the two links share a node. Define the edges of G, E,
to be all such pairs of links.

A clique of a graph is a fully meshed subgraph. A maximal
clique is a clique which is not a subgraph of any other clique.
Let Ci be the set of vertices (i.e., wireless links) in the ith
maximal clique of G. Clearly no two links in any clique of
G can be active simultaneously. The fraction of time that a
clique is in use becomes an additional limited resource, with
bound br = 1. If user s transmits over link l in clique r, it
monopolizes the clique for a proportion of time xs/cl. Adding
up the fraction of time each clique is busy gives∑

l∈Cr

∑
s∈S(l)

xs

cl
≤ 1, (3)

where S(l) denotes the set of sources using link l.
Note that the constraints for any maximal clique subsume

the constraints from all sub-cliques, since all terms are posi-
tive. In particular, they subsume the traditional link constraints∑

s∈S(l) xs/cl ≤ 1.
The clique constraints are not always sufficient conditions

for a set of flow rates to be feasible, a fact which is not
mentioned in [5]. Indeed, they are sufficient if and only if
the graph is “perfect”. If a graph is not perfect, the clique
constraints can be transformed into sufficient conditions for
feasibility if the capacity of each link, cl, is replaced by
2cl/3 [6].

The MAC constraints arise when links cannot cause excess
interference to each other, such as when all links operate on
different frequencies, or use orthogonal spreading codes. In
this degenerate case, cliques are simply those links which
have a node in common. This constraint is imposed by most
medium access control protocols, giving rise to the name
“MAC constraint”. Interchanging the order of the summations
in (3) then yields∑

s∈I(r)

xs

(
1

cli(r,s)
+

1
clo(r,s)

)
≤ 1. (4)

Here I(r) is the set of flows incident on node r, and li(r, s)
and lo(r, s) are the input and output links for flow s at node
r. Flows originating or terminating at a node are deemed to
enter or depart through a fictitious link of inifinite capacity,
causing the corresponding 1/cl terms to disappear.

B. Price Update Rules

For the clique constraints, the price update rule was derived
in [5] as

pr(t + 1) =

⎡
⎣pr(t) + γ

⎛
⎝∑

l∈Cr

∑
s∈S(l)

xs(t)
cl

− 1

⎞
⎠

⎤
⎦

+

, (5)

As pointed out in [5], care is required in implementing this,
since a clique in general has no centralised processor to
perform this update. One exception to this is when each link
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(a) before (b) after

Fig. 1. Network topology, before and after reconfiguration.

Fig. 2. Network rates.

in a clique shares a node (the MAC constraints). In that case,
(5) becomes

pr(t + 1) = (6)⎡
⎣pr(t) + γ

⎛
⎝ ∑

s∈I(r)

xs(t)

(
1

cli(r,s)

+
1

clo(r,s)

)
− 1

⎞
⎠

⎤
⎦

+

.

IV. SIMULATION RESULTS

Wireless ad hoc networks change their topologies fre-
quently, and it is important that any algorithms are able to
adapt accordingly. The proposed algorithm was simulated on
the network shown in Fig. 1(a) which underwent a sudden
change in topology to that of Fig. 1(b), with node 4 and its
corresponding connections disabled. Following [8], [9], it is
assumed that links have independent transmission channels,
and so only the MAC constraints apply. The capacity of each
link is 1 Mb/s. The max-min rate allocation for the flows in
both network topologies are listed in Table I.

The actual rates of the flows are shown in Fig. 2. Initially,
all flows have price 0, and so transmit at the full link capacity.
After about 50 price updates (6), the rates converged to the
max-min fair values. When the topology change occurs, nodes
8, 10 and 11 are overloaded; their prices increase, and all
rates decrease. The bottleneck for flows 2, 3 and 4 is always
node 11; its price increases monotonically and their rates drop
to 0.167 Mb/s. Until step 350, node 8’s price is higher than
node 10’s, and it controls flow 1. As flows 2 and 4 reduce their
rates, node 8 becomes underutilised near step 320, and its price
drops. Flow 1 thus increases its rate until it is bottlenecked
by node 10 and then it reduces its rate. Compared with the
rates in Table I, Fig. 2 demonstrates the algorithm does indeed
achieve max-min fairness for a range of topologies.

The actual convergence time depends on the update interval
as well as the number of updates. It takes one round trip time
for the incoming rate at a node to respond to the change of
its price. In this simulation, it was assumed that the update

TABLE I

MAX-MIN FAIR RATES.

flow 1 flow 2 flow 3 flow 4

before reconfiguration 0.375 0.25 0.5 0.25

after reconfiguration 0.167 0.167 0.167 0.167

interval was greater than one round trip time. If that were not
the case, then it would take more iterations (but possibly less
time) to reach equilibrium, and slight oscillations may occur.

V. CONCLUSIONS

In this paper, we developed a rate allocation algorithm
in multi-hop wireless networks. With the time constraint of
the MAC layer, max-min fairness can be achieved among
multi-hop flows. We demonstrated that our algorithm realizes
fair rate allocation efficiently in dynamically varying wireless
networks.
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