
Active Queue Management For Fair Resource

Allocation in Wireless Networks

Lachlan L. H. Andrew and Stephen V. Hanly

ARC Special Research Centre on Ultra-Broadband Information Networks

Department of Electrical and Electronic Engineering, University of Melbourne,

Australia

l.andrew@ieee.org, hanly@ee.unimelb.edu.au

Abstract

This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on

wireless links. We consider a wireless network with multiple users receiving information from a common

access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,

but subject to fairness and latency considerations. We show that the fairness property of the scheduler is

compromised by the transport layer flow control of TCP NewReno. We provide a receiver-side control

algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by

setting the TCP receiver’s advertised window limit. CLAMP provides control over wireless link utilisation

and queueing delay at the access point buffer, and it provides the scheduler control over the allocation of

bandwidth between the users. The paper shows that physical and link layer effects have a strong impact on

transport layer performance, and vice versa, both for TCP and for CLAMP-controlled TCP.

Index Terms

wireless communications, wireless networks, TCP, Transmission Control Protocol, active queue man-

agement, multiuser diversity, scheduling, flow control, access networks.

This work was supported by the Australian Research Council grant DP0557611.

1

I. I NTRODUCTION

T CP Reno (and its variants) is the dominant transport layer (layer 4) protocol for data transfers

in the internet. In the last few years, increasing attention has been drawn to the performance

of TCP across wireless networks, and in the present paper we focus on the interaction between

TCP, which attempts to fill and overflow network buffers, and a lower-layer wireless scheduler that

is trying to maximize throughput subject to fairness constraints. The model we use is applicable

to fading channels in which the scheduler can exploit multi-user diversity [1]. We undertake this

study by comparing TCP throughput with an alternative flow control algorithm that clamps TCP’s

bandwidth probing mechanism.

A. Motivation

In this study, we investigate the potential impact of TCP flow control on a lower-layer scheduler,

in terms of the fairness and throughput it can provide. Although it is already well known that

TCP is unfair toward flows with long propagation delays, the studies that have concluded this fact,

and provided analysis to support it, have focused on wireline networks. Wireless networks may be

different for a number of reasons:

Firstly, in wireless networks, fairness is typically handled at a lower layer than TCP. The recent

trend has been towards scheduled service at the wireless access points, where the traditional FCFS

queue is replaced by a set of queues (perhaps per-receiver queues) with a scheduler allocating

capacity between the different streams. A motivation for this approach is multi-user diversity: it is

well known that schedulers can take advantage of channel knowledge to schedule users that have

good channel conditions, and queue the packets of users who are in bad channel states until they

can be re-scheduled in more favourable channel states [1].

Secondly, channel rates cannot be treated as deterministic quantities, and there is interaction

between TCP and the link and MAC layers, where link rate adaptation and scheduling both respond

to fluctuating channel conditions. TCP responds to buffer overflows which may be caused by these

fluctuations.

Thirdly, queueing dynamics become important; significant queueing is required to average out

the lower layer fluctuations, and the amount of buffering required impacts TCP’s performance. It is

necessary to take account of these issues in models of TCP performance.

2

In the present paper, we study the performance of TCP over a wireless network, using a model

rich enough to incorporate the above features. The terminals are mobile receivers, downloading

information from servers located anywhere in the Internet via a common access point (AP). The

access point must schedule the packets as they arrive, but take into consideration the current channel

conditions of each link, which are fading due to the mobility.

We assume in this paper that the primary cause of interaction between TCP and the lower layers

is TCP’s fluctuating window size. Since wireless channels are inherently random, we consider an

alternative mechanism for window control that leads to fairly static window sizes (in equilibrium),

with the window sizes determined byaverage quantitieswhich are measured at the AP. This

alternative control algorithm is itself a contribution of the present paper, and it is motivated by

the large body of theoretical work on flow control for the Internet based on the concept of an

explicit congestion price signal [2]. Another viewpoint of the results of the present paper is that it

provides a study of the potential impact of flow control based on prices explicitly computed by the

nodes, in the context of wireless networks with the above properties.

We were also motivated by some recent works that use the receiver-side advertised window

(AWND) as a control mechanism ([3], [4]), rather than attempting to change the way theCWND is

calculated at the sender. A benefit is that the modification can be implemented entirely within the

wireless access network, without the need for widespread changes to routers and servers throughout

the Internet.

B. Approach

In this paper, we propose a novel flow control mechanism that we use to study the benefit

of clamping the TCP window. This is an algorithm, CLAMP, that controls the receiverAWND

(advertised window) based on feedback from the access point (AP). We consider its operation at the

receiver side, in conjunction with TCP NewReno at the sender-side, and compare its performance

against that of TCP NewReno without CLAMP.

The first step is to describe the clamping algorithm. This algorithm runs at the mobile device

(the receiver), and acknowledgements are sent back to the sender containing the new values of

AWND, as calculated by CLAMP. Since all versions of TCP interpret theAWNDas an upper limit

on the allowable window size, a mechanism to avoid overflow of the receiver buffer, this provides

3

an effective method of control, provided that theAWND value is smaller than theCWND value

calculated by the sender.

To provide a simple context in which to introduce CLAMP, we begin in Section III-B with a

fluid model of a deterministic link. In this model, a fixed rate link is shared between a number of

flows, and CLAMP is the agent for flow control. This model is simple enough to admit an analytical

treatment, and provides insight into the design of CLAMP, the meaning of the various parameters,

and the effect they have on the equilibrium achieved by the algorithm.

In Section V, we describe the details of the wireless network scenario that is the main focus of

the present paper. A number of TCP flows are studied, which are assumed to be bottlenecked at the

AP. Packet loss can occur from buffer overflow at the AP, or from packet loss across the wireless

link. The AP implements multiuser diversity, using per-receiver queues, and the scheduler selects

which queue to service. We have built a comprehensive simulator that models the interactions among

the first four protocol layers (physical, link, network and transport). At layer 4, TCP NewReno is

used at the sender-side, and the receivers have the option of using CLAMP to suppress the window

oscillations of NewReno. We consider experiments in which either CLAMP is turned off in all

mobiles, or CLAMP is switched on in all mobiles.

The conclusions of this study are presented in Section VI. Our main conclusions are that clamping

the TCP window oscillations in the way described in this paper allows the lower-layer scheduler

to achieve its aims, in terms of fairness between users. It also provides fairness between flows that

share the same queue, irrespective of their round trip times. These are flows that the scheduler cannot

distinguish. Thus, the well known unfairness of TCP toward flows that have long propagation delays

is corrected by the clamping mechanism. CLAMPing the window in the way described in this paper

also provides the AP some control over the queueing delays in its buffers.

II. RELATED WORK

Most work on TCP over wireless channels has focused on the issue of packet loss, its detrimental

effect on TCP [5], [6], and mechanisms at layer 1 and 2 to reduce packet loss rates [7]–[12].

Retransmissions can also be handled at layer 4 [13]. The net effect of these mechanisms is to

provide a low packet loss rate at the expense of variable packet transmission times [9], [14]. Recent

papers have focused on the rate and delay variation that results from a reliable link layer. Packet

level burstiness can lead to packet losses at the access point buffers, and the mechanisms of delayed

4

ACKs [15], ACK regulation [16], [17], [18] attempt to overcome this problem. We also address this

problem with CLAMP in the context of a cellular, fading scenario.

Several recent papers have studied the interaction between TCP and the MAC layer of the wireless

LAN (IEEE 802.11) [19], [20]. Fairness is considered, and a recent paper [21] has highlighted

potential instabilities that may result from the interaction between layers. In an experiment-based

paper analyzing TCP over IEEE 802.11 ad-hoc networks, [22] shows the benefit of “clamping” the

congestion window to a value that depends on the number of hops in the network. Recent work to

reduce the contention at the MAC layer by generalizing the concept of delayed ACKs is reported

in [23].

The 802.11 family of standards do not include channel-based scheduling, as will occur in cellular

networks. The papers [16] and [17] consider channel-state based schedulers, as we do in the present

paper. Other papers have considered the interactions between TCP and the MAC layer of cellular

systems [24], [25], [26].

Another research thrust is to make TCP more resilient to wireless loss by distinguishing between

wireless and congestion loss [27], [28]. A new sender-side protocol called “TPC Veno” tries to

make this distinction and only halve the window on a congestion-related loss [29]. Recent proposals

that modify the TCP sender-side also include TCP-Westwood [30], [31], and TCP-Jersey [32],

which both involve bandwidth estimation at the sender to adjust the transmission rate after detected

congestion; [32] also uses packet marking at the wireless routers to signify incipient congestion, so

as to distinguish wireless packet loss from network congestion related loss. Other works include

TCP-Probing [33], which suspends data transfer and uses a probing technique to ride out a lossy

period, TCP Santa-Cruz [34], which adapts theCWND based on relative delays signalled in the

acks from the receiver, and “wave and wait” [35], which sacrifices throughput, to avoid unnecessary

losses and hence wasted energy.

It is also possible to consider tighter cross-layer coupling, in which the various layers try to

collectively solve a joint optimization problem. There have been many recent papers in this area,

see [36], and the references therein. In particular, we mention the rate based approaches in [37],

[38], which base the layer 4 congestion signal on the queue size, as we do in the present paper.

There have been many recent papers concerning TCP over multi-hop wireless mesh networks [39],

[40], [22], [18], [23]. This is an interesting direction for future work, but in the present paper, we

5

address the fairness and stability issues associated with TCP in the context of a single hop wide-area

wireless network, with reliable link layer and multi-user (variable rate) scheduling. In particular, we

investigate the feasibility of a receiver-side enhancement to TCP to improve throughput and fairness

in this scenario.

A precursor to the CLAMP protocol was proposed in [41], and it was later implemented in a

GPRS performance enhancing proxy, with promising results, as reported in [42]. The performance

of CLAMP over a single time-varying channel was studied in [43]. The present paper extends these

results to multi-user wireless scheduling, with a more realistic model of wireless fading, and link

rate adaptation. Other papers using theAWND to control the sender include Freeze-TCP [44] (for

wireless), and [3], [4].

III. SYSTEM TOPOLOGY AND THECLAMPING ALGORITHM

In this section, we describe the system topology that we study in this paper, and motivate and

introduce a window flow control algorithm for this scenario that, in contrast to TCP, does not react

to loss and does not lead to wide fluctuations in the window.

A. Topology and Notation

The access network topology of interest is illustrated in Fig. 1. In the example scenarios studied

in this paper, the access point maintains a separate queue for each user, to allow channel-state-aware

scheduling between users, but users may be involved in multiple TCP sessions which then share the

same queue, as is the case for user 1 in the figure. Alternatively, the access point may use only a

single queue for all users (not depicted, but relevant for wireline applications, and for many existing

wireless networks, such as 802.11a,b).

The service rate of a queue,µc bytes/sec, depends on the channel statistics of the users, and the

scheduling policy at the wireless access point. Referring to Fig. 1, each flow,i, has a source node,

Si, and an associated round trip transmission delay, which includes all propagation and queueing

delays, except for the queueing delay at the access router.

Each sending node implements sliding window flow control. Under the assumption that sources

are greedy, the total number of packets and acknowledgements for flowi, in flight at any time,t, is

equal to the window size,wi(t). The CLAMP algorithm selectswi(t) in a decentralized way, such

6

Core Network

µ
c

q
1

Access
Point

(Router)

S
1

S
2

S
k

R
1

R
2

R
u

µ
c

q
u

Fig. 1. System topology.

that each flow sharing the same queue obtains a proportional share of the service rate,µc, and the

equilibrium buffer occupancy of the queue,q(t), can be controlled as described below.

B. Controlling the window: a fluid model

Our aim is to introduce a model of the queueing at the AP, and a window control algorithm

that responds to the queue size at the AP rather than buffer overflow events. The algorithm we

propose has a similar objective to TCP Vegas: try and store a small number of bytes per flow at the

bottleneck,e.g. τ bytes per flow. The aim is to avoid interaction between layer4 flow control and

the layer2 wireless scheduler.

Let us focus for now on a single queue, and assume it receives a deterministic service rate of

µc bytes/sec. In a wireless scenario, there could be any number of queues (u queues depicted in

Figure 1; here, we are focusing on just one of them, and assuming that the scheduler offers it a rate

µc bytes/sec when it is backlogged). Assume that there is a single flow, and it has a propagation

delay of d seconds, so its bandwidth delay product isµcd bytes, excluding queueing delay at the

AP. An alternative to TCP congestion-avoidance would be the following control, which we express

in the form of a differential equation:

dw

dt
=

1

d
(τ − bq(t)) (1)

q(t) =

0 if w(t) < µcd

w(t)− µcd o.w.

whereb is a dimensionless constant, andq(t) is the amount of the flow (in bytes) stored at the AP

(a continuous-valued quantitied since this is a fluid model).

7

The algorithm (1) will increasew(t) until q(t) is nonzero (in Section IV we will introduce a

slow-start mechanism to speed up this initial increase); whenq(t) > 0 the link output rate is a

constantµc bytes/sec. Since we are assuming window flow control (which implies self clocking

occurs at the sender-side) the input rate to the queue must also beµc bytes/sec plus the rate of

change of the window (positive or negative) that occuredd seconds earlier. Whenq(t) > 0, the only

effect of the changing window size is to change the amount of fluid,q(t), buffered in the queue; it

will not affect the rate,µc, allocated by the scheduler. The point of the flow control is to keep the

“pipe” full, and maintain a targetτ bytes in the queue, to avoid interaction with the scheduler.

In this paper, we like to think of the control as occuring at the receiver, sow(t) is the amount of

flow outstanding (“in the pipe”) at timet from the receiver’s point of view. Thus the input rate to

the queue at timet is µc + dw
dt
|t−d, where the time-lagd reflects the time it takes for the change in

the window to be seen in the arrival rate at the queue. Finally, since the rate of change of the queue

is the difference between input and output rates, it follows that the queue size obeys the delayed

differential equation:
dq

dt
=

1

d
(τ − bq(t− d)) (2)

during periods when the queue is nonzero.

The above model is highly simplified, but it contains the basic form of the flow control we will

define later. The assumption of a determinsitic service rate,µc, is not realistic for wireless links,

but we ignore this issue for now. The assumption that the flow can be modeled by a fluid, and that

the window can vary in a continuous manner, is clearly highly idealized, and we will relax all these

assumptions in the precise definition of the CLAMP protocol in Section IV.

For now, let us motivate the above flow control algorithm with the following observations. Firstly,

if q(t) is to converge, it will converge to the unique equilibrium

q(t) =
τ

b
(3)

The question of stability is resolved in the following theorem:

Theorem 1:The necessary and sufficient condition for the total queue size,q(t), to converge

under (1) is:

b <
π

2
. (4)

8

Proof: Taking the unilateral Laplace transform of (2) gives

Q(s) =
q(0−)

s + (b/d)e−ds
. (5)

The (infinite number of) poles of (2) determine the limiting behaviour of (1). Ford = 0 the system

has a single real pole located ats = −∞, hence is stable for allb ≥ 0. For b ≥ 0 asd is increased,

an infinite number of poles will appear from infinity on the left half plane, and ultimately cross the

imaginary axis. Applying the method shown in [45, p 26], we search for potential points where the

poles cross the imaginary axis by solving:

W (ω2) = ω2 − (b/d)2 = 0,

for ω2. The solutionω2 = (b/d)2 indicates that the poles cross the imaginary ats = ±j(b/d).

Equating the characteristic equation of (5) to zero and substituting inω = b/d reveals that the first

time two poles cross into the positive half of the imaginary axis occurs whend = (πd)/(2b), i.e.,

the system will be stable forb < π/2. Note that if (2) is stable, then asymptotic stability of (1)

follows, sinceq(t) will not drop to zero if we start sufficiently close to equilibrium.

Note from (1) thatb is a “reactivity” parameter, that determines how quickly the control responds

to the measured queue size. If it is too large, then the system is unstable, but if it is too small, then

by (3), the queue size in equilibrium can be very large. We conclude thatb = 1 is a safe choice. In

this case, the system is stable, and the equilibrium queue size isτ bytes.

One oversimplification of this model is that it assumes per-flow queueing, when in fact several

flows may share the same queue, as is the case for queue1 in Figure 1. For example, in our simple

wireless scenario, several flows may be destined for the same mobile device, but the scheduler may

not be able to distinguish these flows. In more complex multi-hop network scenarios, per-receiver

queueing may be preferable to per flow queueing, so it is important to allow this possibility. In this

case, our flow control algorithm must provide fair allocation to the flows sharing a queue, as the

scheduler is unable to distinguish them.

Let us modify the basic flow control equation (1) to allow more than one flow to share the queue.

In the following, we write the window evolution equation for one flow,i, that shares the queue:

dwi

dt
=

1

di

(τ − p(q(t))µi(t)) (6)

9

where we have replacedbq/µc with the function

p(q) =
bq − a

µc

(7)

and µc with the rate,µi(t), achieved by flowi at time t. In (7) the parametera is a constant, in

units of bytes, that allows more flexibility in controlling the equilibrium queue size, as will be seen.

Note thatτ can be interpreted as an additive increase term, andp(q(t))µi(t) can be interpreted as

a multiplicative decrease term, given that the decrease is proportional to the rate achieved by the

flow.

This window update rule incorporates two important principles of fair, stable flow control. It is

well known [46] that a simple “additive increase, multiplicative decrease” (AIMD) window update

rule produces fair bandwidth allocation. This suggests the rate at which the window is updated

should be the sum of a positive constant and a negative term proportional to the flow’s rate. It has

also been recently shown [47] that the update rate should be inversely proportional to the flow’s

round trip time in order for the flow control system to be stable. The algorithm above incorporates

both of these principles, and fairness and stability are indeed achieved, as we show in this paper.

Using k to denote the number of flows sharing the queue, and applying the same reasoning as

for the single flow system, we obtain the delayed differential equation for the queue size:

dq

dt
=

k∑
i=1

dwi

dt
|t−di

(8)

=
k∑

i=1

1

di

(
τ − (bq(t− di)− a)

µi

µc

)
(9)

To get insight into the behaviour of this system of equations, note first that since we are assum-

ing the queue does not empty (this is a stability issue that we address later) the following flow

conservation law must hold:
k∑

i=1

µi(t) = µc. (10)

If the system is stablei.e. q(t) converges to a constant,q∗, and each window sizewi(t) converges

to a corresponding constant,w∗
i , then it follows from (6) that at equilibriumµi(t) = τ

p(q∗) . Since

this is a constant, independent ofi, it follows from (10) thatµi(t) must converge toµc

k
, and thus

the system is fair, in the sense that it allocates an equal fraction of the total service rate to each

10

flow. Assuming the system is at equilibrium, we obtain from (6) and (7) that

q∗ =
kτ + a

b
(11)

The question of stability is resolved in the case of equal delays (i.e. di = d for all i) by noticing

that in this case (9) reduces to the simpler form:

dq

dt
=

1

d
(kτ + a− bq(t− d)) (12)

(using (10) and this becomes identical to (2), if we replace the constantkτ + a with τ . Since the

value of this constant did not enter the stability analysis, Theorem 1 continues to apply, and we

obtain the stability condition thatb < π
2
.

We do not have a complete analysis of stability in the case of unequal delays, but the numerical

evidence we have obtained is that the system is stable whenb < π
2
. Preliminary analysis in the

case of unequal delays can be found in [48]. The results we present in this paper, for the CLAMP

protocol (as defined in Section IV), also support the hypothesis that the underlying equations are

stable.

Stability justifies our assumption that the output rate of the queue is fixed atµc bytes/sec. Provided

we start the system sufficiently close to equilibrium, the scheduler will always see a backlogged

queue, and be able to allocate it a constant rate ofµc bytes/sec. Although the output rate is constant,

its compositionin terms of the individual flow rates is time-varying, and converging to an equal

share of the output rate.

One can interpret the valuep(q) in equation (7) as acongestion price signalthat is used by the

flow control equations (6) to adjust the window size. Note that it will be the AP that signals this

price to the mobiles, and in this context the AP only needs to knowq(t) and the total rateµc (both

of which it can measure, after suitable averaging to smooth out fluctuations) and the constantsa

and b.

In the protocol implementation of CLAMP in Section IV,τ will be a parameter that is used in

the mobile receiver, to calculate the value ofAWND, whilst a is a parameter that is used in the AP

to compute a congestion price signal. We will use a fixed value ofτ = 500 bytes in all scenarios in

the present paper. The parametera provides a tunable parameter to the AP to help target a suitable

equilibrium queue size. We will illustrate the effectiveness of this control knob in Section V-E, and

11

why it is particularly useful at a wireless AP. The viewpoint here is thata is free to be chosen by

the AP but it is a fixed parameter for the system once that choice has been made (it is possible that

it can be varied on a slow timescale in response to changing network conditions, but we have not

yet investigated this approach). Finally, as noted earlier,b = 1 is a safe choice, and one that we

make for the remainder of this paper.

A disadvantage of the proposed method of control is that the equilibrium queue size,q∗, depends

on the number of flows, k; indeed there is linear growth with respect tok, as given in (11), and the

constantτ provides the rate of growth withk. It is an open research problem to devise a control

signal that allows the AP to have complete control over the equilibrium queue size, without suffering

this growth with the number of flows that share the same queue. In the context of the present paper,

i.e. a single-hope wireless network from AP to mobiles, this is not a major problem. There will not

usually be many flows in the same receiver-queue, and in any case, the AP can use the parameter

a to offset the effect ofkτ . For example, if a single flow requires significant queueing (to average

out the channel fluctuations) then the value ofa may dominate the value ofkτ , for small values of

k.

We propose to implement (6) in the mobile receivers, and this requires them to measure the rate

in bytes/sec (µi for flow i) that they are receiving, and also that they receive the congestion price

signalp(q(t)) from the AP. In a wireless scenario, it will be necessary to perform some averaging

on the measured received rate to remove statistical fluctuations not accounted for above. It also

appears that the mobile needs a precise measurement of each flow’s propagation delay, which might

not be known at the receiver. However, we remark that the normalization bydi in (6) is only a

gain parameter, needed to ensure stability, and its precise value does not affect the equilibrium

achieved. In practice, one can replacedi by the estimatewi(t)
µi(t)

(seconds), and this is what we use in

the definition of the CLAMP protocol in Section IV.

All bets are off in the more realistic case that the scheduler offers a random and time-varying rate

to each queue. In this case, one cannot assume that the output rates are constant, and nor that the

queues will not empty. It is then hard to avoid interaction between layer4 flow control and layer

2 scheduling. Unfortunately, realistic scenarios are hard to treat analytically, and for this reason we

resort to simulation experiments in Section V.

12

IV. T HE CLAMP PROTOCOL

In Section V, we will implement the window clamping algorithm as a receiver-side modification

to TCP, operating over a simulated wireless network. To do so, we need to recast the algorithm in

terms of discrete packets, which arrive at possibly random time instants, and which are controlled

at the sender by TCP NewReno. In order to implement CLAMP, the access network should be

modified by inserting a software agent in both the AP and the mobile client, as described below.

A. Access Router Agent

The software agent in the access router samples each user’s queue length, and computes an

exponential moving average,q (a separate value for each queue). Precisely, when thenth packet

arrives in the queue, the moving averageq(n) is computed via:

q(n) = exp(−2I)q(n− 1) + (1− exp(−2I))Q(n)

whereI is the interval of time between packet arrivals at the AP buffer, andQ(n) is the current

queue size at packet arrivaln.

The scheduler also needs to know (or measure) the average rate in bytes per second that it could

allocate to each user, if it had an unlimited supply of each users’ packetsi.e. if the AP were always

backlogged with packets from all users. In the following, we consider a particular queue, with

average (potential) rateµc bytes/sec for that user.

Given q, it evaluates the following price:

ps(q) = max((q − a) /µc , 0), (13)

which is the same as that described in equation (7), apart from an explicit non-negativity constraint,

now included. This non-negativity constraint has no effect on the equilibrium calculated previously;

the parametera (in bytes) still controls the equilibrium mean queue size,q∗, exactly as it did in

Section III-B. We have found that performance of the packet based protocol is improved if non-

negativity of the price is enforced. This is particularly so for the simulations of a wireless network

in Section V, where the queue sizes and channel rates do fluctuate, and the price could otherwise

go negative, resulting in “multiplicative increase”. This was not an issue for the stability analysis

of the fluid flow model, so for simplicity the non-negativity was not included there.

13

Each packet that is sent out containsp(q), whereq is the current value of the moving average

when the packet is sent.

B. Client Side Agent: window update algorithm

The client agent’s function is to receive the router’s congestion measure,p, and set the receiver’s

TCP AWND value according to the algorithm described below, hence clamping the sender’s TCP

transmission window.

For simplicity, the algorithm will be described for a single flow. Lettk denote the time instant

when thekth packet, of sizesk bytes, is received by the receiving client. CLAMP calculates the

change in window size (in bytes [49]) as

∆w(tk) =

[
τ − p(q(tk))µ̂(tk)

d̂(tk)

]
(tk − tk−1) (14)

whereµ̂ is an estimate of the average received rate of the flow in bytes per second,d̂(tk) is given

below, andτ > 0 (bytes) is a constant for all flows. Note that this is a discrete approximation to

the fluid equation (6).

The factor in brackets is the rate of update of the window. The factord̂(tk) is a coarse approx-

imation of the round trip time, which ensures the control loop has a gain with the appropriate

scaling behaviour. In Section III-B, we showed that the fluid equations were stable with this scaling

of the gain. In [48], we showed that without this scaling, the equations can be unstable in some

circumstances.

The current received rate,̂µ, is estimated using a sliding window averaging function,

µ̂(tk) =

∑k
i=k−α si

tk − tk−α

, (15)

and

d̂(tk) = (1− β)d̂(tk−1) + β
AWND(tk)

µ̂(tk)
, (16)

where the integerα andβ ∈ (0, 1) are smoothing factors, and AWND(tk) is the actual advertised

window (see below). These estimators were chosen for their simplicity; more sophisticated estimators

may further improve the effectiveness of the algorithm. In the experiments in this paper, we use the

valuesα = 1000 andβ = 0.001.

14

In equilibrium, d̂ will be the RTT of the flow in seconds, i.e., propagation plus queueing delay.

However, computinĝd(tk) clearly does not require an explicit measurement of such a delay, which is

an important consideration given that the algorithm must operate during the transient period. Before

updating the window size,w, ∆w is clipped to a maximum value of10 kbytes, to avoid sudden

increases after idle periods. It is also clipped below; the window cannot decrease by more than the

number of bytes in the received packet to ensure that the right edge of the window is monotonic

non-decreasing [49, p. 42]. Note that for notational ease we have omitted the index of the flow in

the above notation. However, each flow will maintain its ownw, µ̂, and d̂.

The AWNDvalue advertised to the sender is then

AWND(tk) ≡ min(w(tk), AWND), (17)

where theAWND on the right hand side of the assignment is the value received by the client side

agent from the receiver’s operating system. The assigned value on the left hand side is the one to

be used in (16).

C. Receiver-side Slow Start

It is important for CLAMP to allow TCP slow-start to take place at the start of a connection to

allow TCP to fill the network pipe. We propose that CLAMP mimic TCP slowstart at the beginning

of a connection, so as to find a reasonable estimate of the bandwidth delay product. TCP starts with

a window size of one, and during its “slow start” phase, it increases its window by one segment for

each acknowledgment received, doubling the window every RTT. Slow start terminates when buffer

overflow causes a packet loss, and the window size is then halved.

To track this, a new CLAMP connection starts withw(0) = MSS, whereMSS is the connection’s

maximum segment size, and for each packet received, it sets

w(tk) ← w(tk) + MSS,

instead of using (14). CLAMP stops tracking slow start when∆w(tk) < 0 in (14) or three duplicate

acknowledgments are received, indicating packet loss. The receiver then setsw(tk+1) ← w(tk)/2 ≈
w(tk−RTT). The reason for this is that the observations at timetk, which indicate congestion, reflect

the AWND size one round trip time earlier. This terminates CLAMP’s slow-start in a very similar

15

way to the sender’s TCP slowstart. The only difference is that it is slightly more conservative in

that the condition∆w(tk) < 0 can terminate slow-start, in addition to duplicate acknowledgements.

It is necessary to place an upper limit on the growth of the receiver window during slow-start,

to counter the possibility that the sender-side slow-start terminates prior to the pipe filling up (due

to a small value of the sender-sidessthresh). Therefore, in practice, a receiver-side threshold would

also need to be used. In the present paper, we assume that the sender and receiver thresholds are

larger than the bandwidth-delay product of our relatively low-rate flows, and hence do not consider

the issue in our simulation.

The CLAMP slowstart is only invoked at the start of a TCP connection to get an initial estimate

of the bandwidth delay product. If a timeout occurs, TCP will go back to slowstart, but CLAMP will

just continue with CLAMP “congestion avoidance”,i.e. (14), with the view that it has a reasonable

estimate of the bandwidth delay product. In other words, handling timeouts is left to TCP.

V. PERFORMANCE EVALUATION OFCLAMP THROUGH SIMULATION

In the following sections, we investigate the performance of TCP NewReno over the Internet, for

a scenario in which all flows terminate in devices in the same network, all receiving information

from a common access point (AP). In these experiments the last hop network is assumed to be

the bandwidth bottleneck; this assumption is reasonable for many cellular networks, where the base

station is connected to the high-speed network core. In some scenarios, a flow may be bottlenecked

elsewhere in the Internet; congestion control is then provided by TCP NewReno [50].

The CLAMP protocol, and TCP NewReno, are both too complex to treat analytically, so we

have developed an event driven simulator to model the physical, link and transport layers. Our

implementation of TCP follows TCP NewReno [51], [52], including the so-called “bugfix”. We

study various network scenarios, and compare the performance of TCP NewReno with and without

the CLAMP protocol at the receiver end of the connections.

With regard to CLAMP, it is no longer clear that it will be able to provide the fairness promised

in the fluid analysis of Section III-B. Now, the protocol has to cope with random and time varying

service rates, wireless packet loss, and the fact that it is limited to only receiver-side control; TCP

NewReno is also operating at the sender-side and can potentially take control. A major focus is to

see how much of the fluid analysis carries over to this more realistic scenario: can CLAMP reduce

the interactions between layer4 flow control, and layer2 scheduling?

16

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Time (s)

w
in

do
w

 (
kB

yt
es

)

CLAMP AWND
TCP CWND
BDP

(a) Window dynamics

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time (s)

Q
ue

ue
 (

B
yt

es
)

CLAMP
TCP
a+kτ

(b) Queue dynamics

Fig. 2. Deterministic link cross traffic from 50s to 200s and from 100s to 150s.

A. Window dynamics for a deterministic link

Section III-B provides a mathematical fluid model to describe the equilibrium behaviour of

CLAMP, but in this section we wish to illustrate the behaviour in a more dynamic environment in

which flows come and go, and the flow control algorithm must be able to adapt to the fluctuations

in system load.

In the first experiments, we consider a deterministic link shared by a number of receivers. A

deterministic link could model a wireline network, with a number of users connected to a central

hub. Alternatively, it could be a wireless network with sufficient diversity (frequency, time or space)

that it can be treated as essentially error free, and constant rate. By presenting results for a constant

bit rate link, we are able to see more clearly the dynamics of the CLAMP window control algorithm,

and contrast it with that of TCP NewReno (without CLAMP at the receiver).

In Figure 2(a), we plot the dynamics of flow 1, starting at time0 and terminating at time 250 s.

This flow initially gets all the bandwidth, which is10 Mb/s, but at time 50 s it is joined by flow

2, and at time 100 s by flow 3. Flow 2 leaves at time 150 s, and flow 3 leaves at time 200 s. All

flows have a a propagation delay of50 msec, and share the same queue.

There are two experiments for this scenario, both with TCP NewReno at the senders, one with

CLAMP switched on, and the other with CLAMP switched off. Since there is no wireless loss,

and CLAMP prevents congestion loss, theCWND will exceed CLAMP’sAWND, and need not be

17

plotted. The plotted TCP (CWND) is theCWNDfrom the experiment in which CLAMP is not used.

The buffer at the AP has size 18,000 bytes,a is 5500 bytes andτ is 500 bytes. With these values,

the average queueing delays in the two experiments are approximately equal.

The window evolution from both experiments are depicted in Figure 2(a). It is clear from the

figure that CLAMP tracks the dynamics of flow arrivals and departures in a similar way to TCP

NewReno, but with much less fast time-scale fluctuations.

To appreciate the actual rates achieved, it is necessary to consider the queue evolution, which is

depicted in Figure 2(b). Note that the queue for CLAMP tracks the queue size predicted by the fluid

model quite closely, in terms of the given parametersa, k and τ . Note also that the queue suffers

much less fluctuations than under TCP NewReno control. In both cases, however, the queueing delay

is very small compared to the round trip time of50 msec. For example, the average queueing delay

when the queue is6000 bytes, and the rate is10 Mb/s, is 4.8 msec, which is much less than50

msec. Thus, the window evolution depicted in Figure 2(a) can be interpreted as a rate versus time

plot as well. The figure shows how CLAMP reacts to the changes of load, decreasing the rate in

proportion to the number of flows, with the queue size increasing (slightly) with the number of flows,

as predicted in Section III-B. TCP’s queueing fluctuations are much greater, but it also achieves a

fair rate allocation between the flows, an example of the fairness of TCP when propagation delays

are the same.

Figure 2(a) contrasts the window dynamics of CLAMP with that of TCP. The TCP dynamics

are the well known additive increase and multiplicative decrease in the window size. The additive

increase occurs once per RTT, and the multiplicative decrease occurs on the first packet loss within

a RTT. With CLAMP, there is an additive increase term (τ) but the multiplicative decrease term is

multiplicative in the rate, not the window size, and both terms operate simultaneously and on every

packet, thus getting averaged over a RTT. The net effect is a window size that varies more smoothly,

as illustrated in this example, and the aim is to avoid buffers from emptying unnecessarily.

B. Wireless channel model and link layer

We now consider performance when the last hop network is time-varying. The main scenario we

have in mind is a cellular network, in which the receivers are highly mobile, and the base station

plays the role of the AP. Our event driven simulator requires a different layer 1 and 2 model for the

time-varying scenarios. The model used in these simulations aims to be as simple as possible, while

18

describing the variable rate transmission characteristic of optimal wireless links, and providing a

reasonable model for packet loss.

The multipath fading process between the base station and each receiver is a stationary, stochastic

process according to Jakes’ model, withG = 20 generators and Doppler frequencies of either 0.6 Hz

or 60 Hz (1.8 GHz carrier, and mobile speeds of either 0.1 m/s or 10 m/s, respectively). That gives

a channel of mean square magnitude

N(s) = SNRave

∣∣∣∣∣

√
2

G

G∑
n=1

cos(ωnt) exp

[
jπn

G

]∣∣∣∣∣

2

,

where we takeSNRave = 4(= 6 dB) as the mean signal to noise ratio,ωn = 2πfd cos
(

π
2G

(n + 0.5)
)

is the angular frequency of then’th path, andfd is the Doppler frequency.

Frame transmissions over the physical channel occur in slots ofτslot = 3 ms; a slot is the time

period of one transmission attempt. A single 3ms slot can contain data from multiple packets, and

packets can be split between slots. The coding rate for the slot is calculated at the start of each slot

as follows. LetN(s) be the SNR at the start of slots, thenB(s) information bits are transmitted,

where:

B(s) = τslot min (W0 log(1 + (1−m)N(s)), Cmax) , (18)

whereCmax = 10 Mbps is the maximum possible rate that can be transmitted over the channel,

N(s) is the SNR at the start of the frame,W0 = 4.3 MHz models the bandwidth, andm is a

“backoff margin” which is adaptively tuned such that the packet error rate after retransmissions is

approximately a target, nominal, packet error rate, specified in the simulation.

In order to capture the bursty nature of errors we use a simple error model: if the SNR,N(e), at

the end of the frame is such that

B(s) > τslotW0 log(1 + N(e)),

then an error is declared. This will occur if the channel deteriorates sufficiently during the slot

that it can no longer support the selected rate. If the SNR is sufficiently high at both the start and

end of a slot, then it is assumed to be sufficiently high throughout the slot. The backoff margin,

m, is included to allow some degradation to occur without causing an error. We use a stochastic

approximation method to find the correct backoff margin to get the targeted packet loss rate.

19

If n consecutive attempts to a given destination fail, then all packets which would have been

completed by that transmission are dropped. We use different values ofn for fast and slow fading

as discussed in the experiments. Packets which are started in the initial 3ms slot, but would not be

completed, are not dropped, but buffered to re-attempt in the next slot.

We will see later that this approach to link layer coding results in higher throughput over slowly

varying channels, as compared to fast fading channels. This is due to the fact we are exploiting

channel state information at the transmitter, and that information is less reliable in a fast fading

environment, requiring a larger backoff margin.

C. The scheduler

The AP maintains separate queues for each receiver (mobile device), and acts as an IP router,

routing packets destined for the mobiles into the appropriate queue based on the address of the

mobile. Thus, all TCP flows destined for the same mobile are put into the same output queue.

The scheduler is based on the principle of multi-user diversity. At each slot, a new scheduling

decision is made, and the general preference is for scheduling a mobile is that it is in a good channel

state. However, fairness must also be considered: some users may be in better locations than others,

and thus get much higher rates, if only channel quality is considered.

In this study, we implement a scheduler along the lines of the proportionally fair scheduler [53]

used in Qualcomm’s HDR. At each slot, the scheduler picks the queuei with the largest utility that

has data to send in this slot. The utility,Ui, is calculated as

Ui :=
µi

ri

(19)

whereµi is the current rate for the mobilei at the beginning of the slot, andri is the exponential

moving average of the rate obtained by mobilei, with averaging time constant100 msec. Precisely,

ri is obtained from

ri(n) = 0.97ri(n− 1) + 0.03µi(n)

wheren indexes time, in slots. Thus,0.03 is the exponential smoothing factor, giving a time-constant

of 100 msec. We use an exponential moving average in order to be able to track changing channel

statistics, and to allow the scheduler to react to the arrival and departure of flows. In the fast fading

scenario (below) the coherence time of an individual user’s channel is16.67 msec, and we want the

20

S
1

S
2

S
3

S
4

X

R
1

R
2

R
3

R
4Rayleigh Fading

ARQ retransmissions

Fig. 3. Simulation network topology

exponential smoothing time constant to be significantly larger than this, to allow the scheduler to

allocate slots to good channels, rather than in a round robin fashion. In the slow fading scenario, the

scheduler will act more like a weighted round robin, with better channels getting higher weights. We

chose a time-constant of100 msec, to give the scheduler the chance to schedule based on channel

quality in the fast fading scenario, yet be able to adapt to changing dynamics of flow arrivals and

departures.

D. Wireless network topology

Fig. 3 depicts the topology of the time-varying wireless simulation experiments of this section.

Due to space limitations, we have focused on a specific scenario, with a small number of long-lived

TCP flows, and a range of different propagation delays.

SourcesS1, S2, . . . , Sk represent servers which are TCP rate controlled, and the links fromSi to

X model entire paths through the internet. NodeX is the wireless access router which contains the

CLAMP router software agent. The wireless access router transmits to the TCP/CLAMP clients,

R1–R4, over a common broadcast radio channel. ClientsR3 andR4 are both running in the same

physical device and so have a common queue at routerX, and common radio propagation conditions,

as described below. ClientsR1 andR2 have separate queues, so in this experiment, there are three

channels to be scheduled. All links are bidirectional, with characteristics as shown in Table I, and

the wireless bandwidth isW0 = 4.3 MHz, with a maximum bit-rate of10 Mbits/sec. The packet

loss rate is10−3 which is achieved via the fade margin and link layer retransmissions. The number

of retransmission attempts at the link layer isn = 5 in the slow fading scenario, andn = 15 in the

fast fading scenario. Other simulation parameters are given in Table II.

In the following experiments, we will plot throughput (and other measures) against average

21

TABLE I

L INK CONFIGURATION

Node 1 Node 2 Capacity Delay Pk loss rate
Si X 100 Mb/s di/2 0
X Ri see text 1 msec 10−3

TABLE II

SIMULATION PARAMETERS

Parameter Value
TCP Packet Size 1500 Bytes

CLAMP τ 500 Bytes
CLAMP b 1
CLAMP a Variable

d1 30 ms
d2 130 ms
d3 10 ms
d4 180 ms

queueing delay, where the average is taken across all queues. For pure TCP Reno, the average

queueing delay is controlled by the choice of buffer size at the AP; the queueing delay is increasing

in the buffer size. For TCP Reno + CLAMP, the average queueing delay is controlled by the choice

of the parametera. It will be shown (see Figure 7) that queueing delay is an increasing function

of the parametera. By running simulations across a range of values of buffer size, for TCP, anda,

for CLAMP, we are able to generate the following graphs.

CLAMP does not use the AP buffer to control the flow rates, so the CLAMP buffer can be much

larger than with TCP NewReno. In fact, in the results in this paper, we use a large buffer size of6

Mbytes for CLAMP, to avoid any chance of buffer overflow for the CLAMP protocol. Instead, the

average queueing delay for CLAMP is limited by the choice of CLAMP parameters. In Section V-I,

we will discuss the problem of choosing the appropriate parameters, both for CLAMP and for TCP.

E. Fair resource allocation

We are particularly interested in the fairness of resource allocation to the long-lived TCP flows,

since the congestion-avoidance part of TCP tries to reach long-term equilibrium throughputs for

these flows. Figure 4 plots the throughput of each flow against the mean queueing delay (averaged

over all flows), both for CLAMP (figures 4(a) and 4(c)) and for pure TCP NewReno (figures 4(b)

and 4(d)).

22

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Mean delay (ms)

T
hr

ou
gh

pu
t p

er
 fl

ow
 (

M
bi

t/s
)

30ms
130ms
10ms(shared)
180ms(shared)

(a) CLAMP, 0.1 m/s

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Mean delay (ms)

T
hr

ou
gh

pu
t p

er
 fl

ow
 (

M
bi

t/s
)

30ms
130ms
10ms(shared)
180ms(shared)

(b) TCP NewReno, 0.1 m/s

0 50 100 150 200 250 300
0

0.5

1

1.5

Mean delay (ms)

T
hr

ou
gh

pu
t p

er
 fl

ow
 (

M
bi

t/s
)

30ms
130ms
10ms(shared)
180ms(shared)

(c) CLAMP, pe = 10−4, 10 m/s

0 50 100 150 200 250 300
0

0.5

1

1.5

Mean delay (ms)

T
hr

ou
gh

pu
t p

er
 fl

ow
 (

M
bi

t/s
)

30ms
130ms
10ms(shared)
180ms(shared)

(d) TCP NewReno, 10 m/s

Fig. 4. Throughput per flow for CLAMP and TCP NewReno. Dot-dashed lines are for flows 3, dashed lines are for flow 4, both
sharing a common queue at the AP.

In the following, we will denote flows by their propagation delays. For moderate average queueing

delay (50 ms or less), TCP NewReno is unfair to flows with large propagation delays. RTT unfairness

exists even for flows that do not share the same queue, such as the30 ms, and130 ms flows, where

the 30 ms flow has an unfair advantage. Ideally, the scheduler allocates equal rates to all queues.

However, in both scenarios (slow and fast fading) the30 ms flow receives more bandwidth than the

130 ms flow, and significantly more bandwidth at “desirable” queueing delays, such as50 msec (or

less).

It is well known that TCP (both Reno and NewReno) are unfair to flows with long propagation

23

delays [5]. This assumes that all flows share the same queue, are served in FCFS order, and get

the same channel rate when serviced. Certainly, the10 ms and180 ms flows share the same queue

and are served in FCFS order, so the fact that the180 ms flow is treated unfairly is well known,

but the magnitude of the unfairness, as depicted in Figures 4(b) and 4(d), is striking. Our results

here extend to flows that are in separate queues, in spite of a scheduler that is trying to allocate

bandwidth fairly to the users (queues). The problem is that the scheduler assumes the queues are

always backlogged, and TCP NewReno is unable to satisfy this assumption. Thus, the propagation

delays have an impact on rate allocation in the TCP NewReno experiments.

The fairness situation is quite different for CLAMP. Section III-B predicted that CLAMP will

keep the queues full, and share rates fairly between flows that share the same queue. In the high-

speed mobility scenario depicted in Figure 4(c) this is shown to be approximately true. All three

queues achieve approximately equal rates, and the10 ms and180 ms flows, sharing the same queue,

also get an approximately equal rates.

There is a discrepancy in that there isless fair sharing between the10 ms and180 ms flows as

the queueing delay increases, in Figure 4(c), which is not what the fluid model would predict. We

investigated this, and found that the10 ms flow is experiencing more timeouts than the other flows,

and significantly more between25 and 100 ms of queueing delay. The10 ms flow experiences

more variability in its RTT, hence the larger frequency of timeouts for this flow. As the queueing

delay increases beyond100 ms, the frequency of timeouts for the10 ms flow decreases, and its

rate improves. The “fairness” depicted at about30 ms is coincidental; the timeouts have brought

the rate for the10 ms flow down to that of the180 ms flow, but were it not for the timeouts, the

10 ms rate would be higher, and the180 ms rate would be lower.

CLAMP is less fair in the low-speed mobility scenario, Figure 4(a), but still much fairer than

TCP NewReno. At an average queueing delay of50 ms, the30 ms flow gets a higher rate than the

130 ms flow, and the shared flows get a combined rate between these two rates. Within the shared

queue, the10 ms flow has a small advantage over the180 ms flow. At queueing delays larger than

250 ms, the10 ms flow gets more rate than at lower delays. This is because CLAMP starts to lose

control at high queueing delay (see Section V-G for an explanation and illustration).

We might expect that the fast fading scenario is more like the “fluid model” in that there is more

averaging. The scheduler averages rates over a period of100 ms, and in the fast fading scenario,

24

the channel fluctuations are much faster than this: the channel coherence time is16.67 ms. So we

might expect fairness to be achieved when the average queueing delay is significantly larger than

the coherence timee.g. at, say,100 ms of queueing delay. In this case, the queues rarely empty,

and the rates achieved per flow are insensitive to the propagation delays.

In the slow fading scenario, the coherence time is significantly longer than the averaging period

of the scheduler. In this case, the channel fluctuations do not average out over the queueing delay,

and the queue can drain of packets. The larger the propagation delay of a flow, the more this affects

the rate allocated to the flow. This effect reduces as the queueing delay increases. Once the queueing

delay exceeds the maximum propagation delay of any flow sharing the queue, the queue will not

drain, due to self-clocking.

This analysis predicts that CLAMP will avoid interacting with the scheduler provided the channel

fluctuations are much faster than the average queueing delay. The scheduler can then allocate capacity

independently of propagation delays. This hypothesis is supported by the above simulation results.

Fast fluctuations happen automatically in high-speed mobility scenarios due to multipath fading,

as considered here. However, it is also possible to induce fast fluctuations (at a controlled rate) even

when the mobility is slow (or non-existent) using the technique of opportunistic beamforming [54].

CLAMP may be fruitfully combined with such techniques to provide fair allocation in a wireless

network.

F. Total throughput and mean time to download

Figure 4 reports on the individual rates per user to illustrate the fairness achieved by the two

protocols. In Figure 5(a), the sum rate across flows is depicted. Together, these figures indicate that

CLAMP’s benefit is to provide fairness, rather than to increase total throughput; there is not much

between the two protocols in terms of total throughput in the scenario investigated here.

To understand the throughput-delay characteristics of both TCP and CLAMP, recall that the

scheduler operates most efficiently if the queues are always backlogged. However, if the queue

feeding the optimal channel is empty, then the scheduler will have to serve a different queue,

perhaps a queue with a much lower rate channel, reducing the overall average rate. Hence both

CLAMP and TCP gain throughput when the delay increases, as the chance of the queues emptying

decreases as the average queueing delay increases.

25

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

Mean delay (ms)

T
ot

al
 th

ro
ug

hp
ut

 (
M

bi
t/s

)

CLAMP 0.1m/s
TCP 0.1m/s
CLAMP 10m/s
TCP 10m/s

(a) Total throughput versus delay

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Mean delay (ms)

M
ea

n
tim

e
to

 d
ow

nl
oa

d
(s

/M
B

yt
e)

CLAMP 0.1m/s
TCP 0.1m/s
CLAMP 10ms/
TCP 10m/s

(b) Time to download1 Mbyte versus delay

Fig. 5. Performance comparison: CLAMP versus TCP

Moreover, the chance of the queue emptying depends on the propagation delay of the flow (or

flows). The buffer of a flow with a small propagation delay, of the order of the time allocated by the

scheduler (or less), will be much less likely to drain than the buffer of a flow with a large propagation

delay. Thus, increasing the average queueing delay will benefit the throughput of flows with large

propagation delays more than flows with small propagation delays. These facts are illustrated in

Figures 4(a) - 4(d).

Throughput, in bits/sec, is only one measure of performance. Since CLAMP allows the scheduler

to allocate rates more fairly between flows, we might expect that the average time to download a file

of, say,1 Mbyte, is less under CLAMP than under pure TCP, where the average time to download is

dominated by the low rate flows. In Figure 5(b), the average time to download a file of size1 Mbyte

is plotted against mean queueing delay for both TCP NewReno, and CLAMP. As can be seen, at

small to moderate mean queueing delays, CLAMP provides a very significant gain with respect to

this measure of performance. For example, at50 msec of average queueing delay, and at the mobile

speed of10.1 m/s, TCP files take on average more than twice as long to download, as they do under

CLAMP. The average time to download is a better metric than throughput in capturing how users

perceive performance, since users experience latency, not bitrate.

26

2700 2750 2800 2850 2900 2950 3000
0

10

20

30

40

50

60

70

80

90

100

Time (s)

w
in

do
w

 (
kB

yt
es

)

CLAMP AWND
CLAMP CWND
TCP CWND

(a) 50 ms queueing delay

2700 2750 2800 2850 2900 2950 3000
0

10

20

30

40

50

60

70

80

90

100

Time (s)

w
in

do
w

 (
kB

yt
es

)

CLAMP AWND
CLAMP CWND
TCP CWND

(b) 180 ms queueing delay

Fig. 6. Windows versus time for30 ms flow

G. Window dynamics

In this section, we plot the evolution of the window sizes over time for one of the flows in the

above experiment. Figure V-G plots the window dynamics for the30 ms flow; space considerations

prohibit plotting the other flows, but qualitatively they are similar. We illustrate with300 seconds of

window evolution, starting after sufficient time has elapsed for the fade margin to have converged

to the correct value.

We have chosen two different parameter settings for TCP and CLAMP, corresponding to average

queueing delays of50 and 180 ms, respectively. We observe that the CLAMPAWND is slightly

greater than the mean of the TCPCWNDin the TCP experiment. Thus, CLAMP achieves short-term

fairness, as well as long-term fairness; the system is quite stable under CLAMP. Also plotted is the

TCP congestion window for the CLAMP experiment.

For a queueing delay of50ms, theAWNDis almost always smaller than theCWNDin the CLAMP

experiments, only losing control to TCP occasionally, and for very brief periods. The frequency and

duration that CLAMP loses control, at180 ms of queueing delay, is higher, due to the higher

bandwidth delay product: it becomes more likely that theCWNDcan drop below theAWNDvalue

at high queueing delay. However, for the sake of mice TCP flows (and other delay sensitive traffic)

it is desirable to operate at low-moderate queueing delay (50 ms or less).

27

0 50 100 150
0

1

2

3

4

5

6

7

8

Time (s)

R
at

e
(M

bp
s)

CLAMP
TCP

(a) Rate allocated to long-lived flow

0 50 100 150
0

2

4

6

8

10

12

14

16

18
x 10

4

Time (s)

Q
ue

ue
 (

B
yt

es
)

CLAMP
TCP

(b) Queue dynamics

H. Flow Dynamics

In Section V-A, we considered the window and queue dynamics as flows arrive and depart, but

there was no fading. In Section V-E, we have considered the equilibrium behavior of the protocols

under dynamic fading, but without the dynamics of flows arriving and departing. In this section,

we consider both flow dynamics and fading: we study a scenario in which a long-lived TCP flow

coexists with a number of short-lived TCP flows, which start and finish at random times.

In this experiment, the channel is the same as described previously, but there is only a single

mobile user with multiple flows sharing the same queue at the AP. One flow is long-lived, and

corresponds to a file transfer running in the background. In addition, the user also generates a series

of short TCP flows, one after the other, with random periods of idleness between short flows. Each

short flow is of size4000 bytes. This models a web browsing session in which the user makes a

series of small requests from, say, a web server.

In Figure V-H, we plot the dynamics of the rate allocated to the long-lived flow, and the total

queue size at the AP (a function of all the flows in the system).

We conclude that CLAMP and TCP both track the changing dynamics in a similar manner. The

fluctuations in rate are less under CLAMP, but the queue fluctuations are quite similar (apart from

a single spike in the queue size for CLAMP). Note that the spike could be avoided if we restricted

the buffer size for CLAMP. The spike offsets the otherwise smaller values for the CLAMP queue

28

size; parameters were chosen to get the same average queue size for CLAMP and TCP. The buffer

size for TCP is60 Kbytes.

We conclude that CLAMP’s aim of reducing queueing fluctuations is not really happening in this

example. Note that the4000 byte flows never have time to reach equilibrium (they are always in

slow-start) and so the cross traffic is quite bursty, and never CLAMP controlled. CLAMP cannot

control these fluctuations and this is reflected in the plot of the queue dynamics.

I. Choosing the parameters

To provide a basis for comparing TCP with TCP+CLAMP, we have plotted performance (above)

as a function of average queueing delay, but average queueing delay is a function of the underlying

parameters. A question arises as to how to set these parameters to obtain a particular desired point

on, say, the throughput-delay tradeoff curve. For TCP NewReno, we vary the buffer size at the AP.

For CLAMP, we hold the buffer size fixed and vary the parametera. Unfortunately, for the fading

scenarios considered above, we have no analytical formula to describe the throughput-delay curve.

The problem of buffer dimensioning for time-varying channels is an open area of research, and

beyond the scope of the present paper.

In Figure 7 we plot both the TCP buffer size, and the CLAMP parameter,a, against average

queueing delay. This figure suggests that the problems of setting the buffer size (for TCP) and the

parameter,a (for CLAMP) are quite similar problems. There is no reason to suppose that one is

more difficult than the other. The only significant difference is that the buffer size must always be a

fixed constant. With CLAMP, there is the option that the parametera can be an adaptive parameter,

adapting in real-time to changes in channel statistics, or traffic load (for example). Alternatively,

it can be left as a fixed parameter, analogous to the buffer size. Adaptively tuning the parameter

a is a topic for future work; in the present paper, the parameter is held fixed during a particular

experiment, although we plot the results of different experiments across a range of parameter values.

J. Lower data rate scenario

With regard to parameter settings, it is of interest to see if the CLAMP parameters need to be

re-tuned for every network scenario. We have already examined two fading rates (fast and slow) and

here we consider a much lower channel rate. An important issue is the setting of the parameterτ ,

29

0 100 200 300 400 500 600
0

50

100

150

Mean delay (ms)

C
LA

M
P

 "
a"

,
T

C
P

 b
uf

fe
r

 (
kB

yt
es

)

CLAMP 0.1m/s
TCP 0.1m/s
CLAMP 10m/s
TCP 10ms/

Fig. 7. TCP buffer size and CLAMPa versus queueing delay

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

Mean delay (ms)

T
hr

ou
gh

pu
t p

er
 fl

ow
 (

M
bi

t/s
)

30ms
130ms
10ms(shared)
180ms(shared)

(a) CLAMP, 10 m/s

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

Mean delay (ms)

T
hr

ou
gh

pu
t p

er
 fl

ow
 (

M
bi

t/s
)

30ms
130ms
10ms(shared)
180ms(shared)

(b) TCP, 10 m/s

Fig. 8. Throughput per flow in lower data-rate scenario. Dot-dashed lines are for flows 3, dashed lines are for flow 4, both sharing
a common queue at the AP.

which is set in the mobile receivers, and not likely to be tunable. In the high data rate experiments,

we usedτ = 500 bytes, and we use the same value for the lower data rate scenario.

Identical experiments were undertaken for the same topology as described in Tables I, and II,

except that the bandwidth was reduced toW0 = 620 kHz, and the maximum wireless link rate to

C0 = 1.44 Mbits/sec. Due to lack of space, we do not provide all the plots, but Figure 8 presents

the results for fairness at high fading rate.

None of the general conclusions change: CLAMP does not increase the total throughput of the

system, but it does allow the scheduler to provide fair service across users, and it provides fairness

automatically to flows destined for the same receiver.

30

Although τ is fixed, there is flexibility in the CLAMP protocol for thea parameter to be tuned

to the conditions of the network. We observe that in each scenario (combination of data rate, and

fading rate) total throughput versus delay has a fairly well defined “knee”, but the knee occurs at

a different average delay in each case. It might be desirable to operate the system near the ‘knee”

and this would require the AP to make a judicious choice of the parametera.

We observe that the knees occur at lower delays in the lower data-rate scenario. It is not surprising

that the delay depends on the statistics of the service process, and we can contrast this behavior

with what happens in a non-fading, wireline scenario, when the output rates are deterministic. In

that case, queueing delay shouldincreaseas the output rate of the queue decreases, because the

average queue size to meet a particular utilization does not depend on the service rate (this holds

for the M/M/1 queue, for example). The present wireless scenario is quite different: the amount of

queueing required for a particular utilization depends on the rate of fading, and more particularly,

on the whole distribution of the service process. In this case, the size of the average queue required

to keep all queues from emptying increases with the data rate.

VI. CONCLUSIONS

This paper has studied the interaction between congestion control and scheduling in fading,

wireless channels. The scheduler attempts to allocate bandwidth to the users in such a way that

a user will only be allocated rate when its channel is good, but subject to fairness constraints. We

do observe considerable interaction between TCP NewReno and the scheduler, to the extent that

rate allocations are determined, in part, by the propagation delays of the flows in the network.

Our approach was to provide a detailed packet level simulation of a wireless network with a single

access point, sending data to a number of mobile receivers. We model the physical layer fading

process, link layer rate adaptation, scheduling, and flow control. Each mobile is provided a separate

queue at the AP, and access to the radio channel is provided by the scheduler. TCP NewReno does

the flow control, subject to possible intervention by the proposed CLAMP receiver-side algorithm,

which allows us to measure the impact of Reno’s window fluctuations on the performance of the

scheduler.

CLAMP is based on a fluid model algorithm that is designed to avoid interaction between layers

2 and 4. The experiments are to test if this remains true in a more complicated model in which there

is fading, and in which CLAMP can only intervene at the receiver-side. Experiments are mainly

31

focused on a particular scenario with 3 mobile recievers, one of which is receiving two flows

simultaneously. Parameters are selected to provide insight into the effect of propagation delays, and

rates of fading, on performance.

For these experiments, we conclude that the fairness of the scheduler is compromised by TCP

NewReno. Flows with large propagation delays get much worse performance, even if the scheduler

is attempting to schedule them fairly. When we employ the receiver-side algorithm, CLAMP, to

remove the window fluctuations, we find that the scheduler is able to achieve much better fairness

than with pure TCP NewReno. As with TCP NewReno, the CLAMP throughput increases with AP

queueing delay; when the average queue size is larger, the queues empty less often. Nevertheless, for

moderate queueing delay, the scheduler is able to provide much more fair allocation under CLAMP

than under TCP NewReno.

In the scenarios tested, better fairness is achievable when the fading is faster, but throughput is

reduced at faster fading due to the increased fade margin required. Techniques such as incremental

redundancy coding should alleviate this problem, but we did not investigate this. Inducing channel

fluctuations in a controlled way [54] is a promising technique, and may allow CLAMP + scheduler

to operate fairly even in slow fading scenarios.

Our approach has been to focus on a single hop wireless downlink, and in particular on the issues

of time-varying channels, and channel-state-aware scheduling. Although we have made specific

assumptions about the channels for the simulation, the CLAMP algorithm can in principle be applied

to any wireless network with a single hop, and for that matter to the last hop of a wireline network.

A cleaner solution from a systems-level perspective would be a sender-side implementation,

in which the feedback signals are sent back to the sender in the ACK’s, who then can set an

appropriateCWNDvalue. In that case, the flow control is primarily achieved viaCWND. There is

no inherent reason why the CLAMP control cannot be effected at the sender side. However, this

requires extending CLAMP to the scenario in which all routers in the network provide congestion-

indication feedback to the source. There has been much work on price-based congestion control

for the core Internet [55], [56], [57], and CLAMP provides one such approach, but others are also

possible.

A long-term goal is to generalize CLAMP to handle multiple bottlenecks, and to incorporate the

principles learned from studies such as the present one into a robust sender-side control that can

32

handle the vagaries of time-varying, and lossy, wireless channels, as well as the scaling problems

associated with high-speed networks.

REFERENCES

[1] D. Tse and P. Viswanath,Fundamentals of Wireless Communication. Cambridge University Press, 2005.

[2] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”IEEE Control Systems Magazine, vol. 22, pp. 28–43,

Feb. 2002.

[3] N. T. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T. Anderson, and B. N. Bershad, “Receiver based management of

low bandwidth access links,” inProc. IEEE INFOCOM, pp. 245–254, 2000.

[4] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan, “Explicit window adaption: A method to enahance TCP performance,”

IEEE/ACM Trans. Networking, vol. 10, pp. 338–350, June 2002.

[5] T. Lakshman and U. Madhow, “The performance of TCP/IP for networks with high bandwidth-delay products and random

loss,” IEEE/ACM Trans. Networking, vol. 5, pp. 336–350, June 1997.

[6] T. V. Lakshman, U. Madhow, and B. Suter, “TCP/IP performance with random loss and bidirectional congestion,”IEEE/ACM

Trans. Networking, vol. 8, pp. 541–555, Oct. 2000.

[7] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A comparison of mechanisms for improving TCP performance

over wireless links,”IEEE/ACM Trans. Networking, pp. 756–769, 1997.

[8] H. M. Chaskar, T. Lakshman, and U. Madhow, “TCP over wireless with link level error control: Analysis and design

methodology,”IEEE/ACM Trans. Networking, vol. 7, pp. 605–615, Oct. 1999.

[9] D. A. Eckhardt and P. Steenkiste, “Improving wireless LAN performance via adaptive local error control,” inProc. IEEE Int.

Conf. Netw. Protocls (ICNP), pp. 327–338, Mar. 2003.

[10] R. Ludwig, A. Konrad, A. Joseph, and R. Katz, “Optimizing the end-to-end performance of reliable flows over wireless links,”

Kluwer/ACM Wireless Netw. J., vol. 8, pp. 289–299, Mar.-May 2002.

[11] M. Meyer, “TCP performance over GPRS,” inProc. IEEE Wireless Commun. Netw. Conf. (WCNC), pp. 1248–1252, Mar. 2003.

[12] H.-K. Shiu, Y.-H. Chang, T.-C. Hou, and C.-S. Wu, “Performance analysis of TCP over wireless link with dedicated buffers

and link level error control,” inIEEE International Conference on Communications, pp. 3211– 3216, IEEE, 2001.

[13] K. Ratnam and I. Matta, “WTCP: an Efficient Mechanism for Improving TCP Performance over Wireless Links,” inProc.

IEEE Symposium on Computers and Communications, pp. 74–78, June 1998.

[14] M. Sagfors, R. Ludwig, M. Meyer, and J. Peisa, “Queue management for TCP traffic over 3G links,” inProc. IEEE Wireless

Commun. Netw. Conf. (WCNC), pp. 1663–1668, Mar. 2003.

[15] J. Ma, J. Ruutu, and J. Wu, “An enhanced TCP mechanism - fast-TCP in IP networks with wireless links,”Wireless Networks

(Kluwer), vol. 6, pp. 375–379, Nov. 2000.

[16] M. Chan and R. Ramjee, “TCP/IP performance over 3G wireless links with rate and delay variation,” inProc. ACM Int.

Conference on Mobile Coputing and Networking, pp. 71–82, Sept. 2002.

[17] M. Chan and R. Ramjee, “Improving TCP/IP performance over third generation wireless networks,” inProceedings of IEEE

INFOCOM, vol. 3, pp. 1893–1904, 2004.

[18] S. ElRakabawy, A. Klemm, and C. Lindemann, “TCP with adaptive pacing for multihop wireless networks,” inACM

International Symposium on Adhoc Networking and Computing, pp. 288–299, May 2005.

33

[19] S. Pilosof, R. Ramjee, D. Raz, and P. Sinha, “Understanding TCP fairness over wireless LAN,” inProceeings of IEEE

INFOCOM, vol. 2, pp. 863–872, Mar. 2003.

[20] D. Leith, P. Clifford, D. Malone, and A. Ng, “TCP fairness in 802.11e WLANs,”IEEE Commun. Lett., vol. 9, pp. 964–966,

Nov. 2005.

[21] V. Rughunathan and P. Kumar, “A counterexample in congestion control of wireless networks,” inProc. International Symposium

on Modeling Analysis and Simulation of Wireless and Mobile Systems, pp. 290–297, Oct. 2005.

[22] V. Kawadia and P. Kumar, “Experimental investigations into TCP performance over wireless multihop networks,” inProc. ACM

Sigcomm Workshop on Experimental Approaches to Wireless Network Design, pp. 29–24, Aug. 2005.

[23] R. Oliveira and T. Braun, “A Dynamic Adaptive Acknowledgement Strategy for TCP over Multihop Wireless Networks,” in

Proc. of IEEE Infocom, vol. 3, pp. 1863–1874, Mar. 2005.

[24] Y. Bai, A. Ogielski, and G. Wu, “Interactions of TCP and radio link ARQ protocol,” inIEEE Vehic. Technol. Conf., vol. 3,

pp. 1710–1714, 1999.

[25] Z. Kostic, X. Qiu, and L. F. Chang, “Interactions between TCP and RLP protocols in a cellular system,”IEEE Vehic. Technol.

Conf., vol. 3, pp. 2244–2248, May 2001.

[26] M. Malkowski and S. Heier, “Interaction between UMTS MAC scheduling and TCP flow control mechanisms,” inProc.

International Conference on Communication Technology, pp. 1373–1376, 2003.

[27] N. Samaraweera, “Non-congestion packet loss detection for TCP error recovery using wireless link,”IEE Proceedings

Communications, vol. 146, no. 4, pp. 222–230, 1999.

[28] S. Biaz and N. Vaidya, ““de-randomizing” congestion losses to improve tcp performance over wired-wireless networks,”IEEE/

ACM Trans. Networking, vol. 13, pp. 596 – 608, June 2005.

[29] P. Cheng and S. Liew, “TCP Veno: Enhancement for transmission over wireless access networks,”IEEE J. Select. Areas

Commun., vol. 21, pp. 216–228, Feb. 2003.

[30] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP Westwood: Bandwidth estimation for enhanced transport

over wireless links,” inProc. ACM MOBICOM, pp. 287–297, 2001.

[31] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP Westwood: End-to-end congestion control for

wired/wireless networks,”Wireless Networks (Kluwer), vol. 8, pp. 467 –479, Sept. 2002.

[32] K. Xu, Y. Tian, and N. Ansari, “TCP-jersey for wireless ip communications,”IEEE J. Select. Areas Commun., vol. 22, pp. 747–

756, May 2004.

[33] V. Tsaoussidis and H. Badr, “TCP-Probing: Towards an Error Control Schema with Energy and Throughput Performance

Gains,” in Proc. International Conference on Network Protocols, pp. 12–21, Nov. 2000.

[34] C. Parsa and J. Garcia-Luna-Aceves, “Improving TCP Congestion Control over Internets with Heterogeneous Transmission

Media,” in Proc. International Conference on Network Protocols, pp. 213–221, Oct. 1999.

[35] V. Tsaoussidis, H. Badr, and R. Verma, “Wave & Wait Protocol (WWP): an Energy-saving Transport Protocol for Mobile

IP-devices,” inProc. International Conference on Network Protocols, pp. 301–308, Oct. 1999.

[36] X. Lin, N. Shroff, and R. Srikant, “A Tutorial on Cross-layer Optimization in Wireless Networks,”IEEE J. Select. Areas

Commun., vol. 24, pp. 1452–1463, Aug. 2006.

[37] A. Eryilmaz and R. Srikant, “Fair Resource Allocation in Wireless Networks Using Queue-length based Scheduling,” inProc.

IEEE Infocom, vol. 3, pp. 1794–1803, Mar. 2005.

[38] L. Ying, R. Srikant, E. Eryilmaz, and G. Dullerud, “Distributed Fair Resource Allocation in Cellular Networks,”IEEE Trans.

Automat. Contr., vol. 52, pp. 129–134, Jan. 2007.

34

[39] S. Bae, K. Xu, S. Lee, and M. Gerla, “Measured analysis of TCP behavior across multihop wireless and wired networks,” in

IEEE Globecom, vol. 1, pp. 153–157, Nov. 2002.

[40] Z. Fu, H. Luo, P. Zerfos, L. Zhang, and M. Gerla, “The impact of multihop wireless channel on TCP performance,”IEEE

Trans. on Mobile Computing, vol. 4, pp. 209–221, Mar. 2000.

[41] L. L. H. Andrew, S. V. Hanly, and R. G. Mukhtar, “Analysis of rate adjustment by managing inflows,” inProc. 4th Asian

Control Conference, (Singapore), pp. 47–52, 2002.

[42] R. Chakravorty, S. Katti, J. Crowcroft, and I. Pratt, “Flow aggregation for enhanced TCP over wide-area wireless,” inProc.

IEEE INFOCOM, pp. 1754–1764, 2003.

[43] L. L. Andrew, S. V. Hanly, and R. Mukhtar, “CLAMP: a system to enhance the performance of wireless access networks,” in

Proc. IEEE Globecom, vol. 7, pp. 4142–4147, Dec. 2003.

[44] T. Goff, J. Moronski, D. Phatak, and V. Gupta, “Freeze-TCP: a true end-to-end TCP enhancement mechanism for mobile

environments,” inIEEE INFOCOM, pp. 1537–1545, 2000.

[45] J. E. Marshall, H. Ǵorecki, K. Walton, and A. Korytowski,Time-Delay Systems: Stability and Performance Criteria with

Applications. New York, NY: Ellis Horwood, 1992.

[46] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for congestion avoidance in computer networks,”

Computer Networks and ISDN Systems, vol. 17, pp. 1–14, 1989.

[47] F. Paganini, J. C. Doyle, and S. H. Low, “Scalable laws for stable network congestion control,” inProc. IEEE Conf. Decision

Contr. (CDC), (Orlando, FL), pp. 185–90, 2001.

[48] L. L. H. Andrew, S. V. Hanly, and R. G. Mukhtar, “Clamp: Maximizing the performance of tcp over low bandwidth variable

rate access links,” technical report, University of Melbourne. http://www.ee.unimelb.edu.au/staff/lha/abstract/clamptr-2004-02-

01.pdf.

[49] Information Sciences Institute University of Southern California, “RFC 793: Transmission control protocol,” RFC 793, IETF,

1981.

[50] L. L. H. Andrew, S. V. Hanly, and R. G. Mukhtar, “CLAMP: Differentiated capacity allocation in access networks,” inProc.

IEEE Int. Performance Computing and Communications Conf., (Phoenix), pp. 451–458, Apr. 2003.

[51] S. Floyd and T. Henderson, “The NewReno modification to TCP’s fast recovery algorithm,” RFC 2582, IETF, 1999.

[52] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno modification to TCP’s fast recovery algorithm,” RFC 3782, IETF, 2004.

[53] E. Chaponniere, P. Black, J. Holtzman, and D. Tse, “Transmitter directed code division multiple access system using path

diversity to equitably maximize throughput,” 2002.

[54] P. Viswanath, D. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,”IEEE Transactions on Information

Theory, vol. 48, pp. 1277–1294, June 2002.

[55] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks: Shadow prices, proportional fairness and stability,”

J. Op. Res. Soc., vol. 49, pp. 237–378, 1998.

[56] S. H. Low and D. E. Lapsley, “Optimization flow control I: Basic algorithm and convergence,”IEEE/ACM Trans. Networking,

vol. 7, pp. 861–875, Dec. 1999.

[57] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,”IEEE/ACM Trans. Networking, vol. 8, pp. 556–567,

Oct. 2000.

