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Abstract— This paper investigates the connectivity probability
of 1-dimensional ad hoc networks in which nodes have random,
non-identically distributed locations, this leads to optimization of
the number of nodes required. An empirical approach is used. We
fit a parametric distribution to the CDF of the maximum distance
between adjacent nodes. Special and extreme cases which are not
covered by the empirical approach are treated separately.

Index Terms— Ad hoc network, sensor network, connectivity
probability, empirical analysis, log-logistic distribution.

I. INTRODUCTION

D HOC and sensor networks are increasingly drawing

attention due to the variety of potential applications and
advances in wireless technologies. Sensor networks aim to
achieve high reliability, flexible utilization, cost-effectiveness
and ease of deployment [1]. Although it is very important
to optimize the placement of sensors, it is often difficult to
do that; e.g., it is difficult to find a suitable mounting point
exactly at the target location, causing it to be displaced by
a random distance, or our sensor may move after placement
due to winds, floods, etc. Accordingly, randomness in ad hoc
networks is unavoidable in many cases.

It is important to ensure that such random networks are
connected; that is, there is a path from each node to each other
node, using hops no larger than the radio transmission range.
Gupta and Kumar [2] used connectivity requirements to bound
the capacity of wireless networks. Bettstetter investigated the
number of nodes needed to maintain k-connectivity in a
certain area [3] and the effects of shadowing upon connectivity
[4]. Foh et al. derived formulas to calculate the network con-
nectivity for uniformly and non-uniform distributed sensors in
[5] and [6], respectively.

These studies have assumed that the locations of nodes
are identically distributed. We consider the case of a one
dimensional point process, with N points randomly distributed
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around uniformly spaced mean locations. For example, this
may arise if nodes are dropped at equal intervals from a
vehicle (either airborne or terrestrial) traveling at a constant
speed. In particular, we aim to establish an ad hoc network
between a source and destination at known locations.

The question whether the network is connected is mathe-
matically equivalent to testing the hypothesis that all phys-
ically adjacent sensors are within a certain distance from
each other. This gives an obvious sufficient statistic, the
maximum distance between two physically adjacent nodes.
Its probability distribution is crucial to the application of that
hypothesis test or equivalently to the network connectivity
probability. That distribution is easily described in terms of
the underlying events in the experiment sample space, but
the analytic expression involves a complicated N-fold integral
which defies explicit evaluation.

The estimation of this probability distribution is readily
performed by simulating a large number of N-tuples of
locations of the sending nodes. We empirically investigate
the probability of connectivity of this network in Section III
by fitting a curve to the Cumulative Distribution Function
(CDF) of the maximum distance between adjacent nodes. The
parameters of this curve are expressed as empirical functions
of the problem parameters. Curve fitting using experimental or
simulation results is a very common technique in many fields
of science and engineering. It is, however, not very common in
networking research. One example of curve fitting application
in network research is the OSPF performance analysis by Cui
et al. [7]. In Section IV, we consider some special cases in
which our fitting procedure is not applicable.

II. MODEL DESCRIPTION

The network seeks to connect a source node to a destination,
using N intermediate nodes. Two nodes can communicate
directly if and only if the distance between them is less than
or equal to the radio range d. We consider a one dimensional
coordinate system with the source at the origin and the
destination at point D = 1. The setting of D = 1 is without
loss of generality as it represents a scaling of all spatial
variables. The location of the ¢th intermediate node is assumed
to follow a Gaussian distribution with mean u; = /(N + 1)
and variance o2 independent of all other nodes, as shown in
Fig. 1. Let z;, « = 1,2,..., N denote the location of the ith
sensor. Note that the locations of the sensors may not be in
the same order as they are dropped. That is, we may have
x; > w41 for some i. Let Ty < weo) < . < TNy be
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Fig. 1. Sensor placement model

a relabeling of the node locations in increasing order based
on their physical locations. To investigate the probability of
connectivity of a given network, we studied the CDF of
the maximum distance between physically adjacent sensors
max; (2 (j41)—(;)) by simulation. For a given sensor network,
let C be the event that the network is connected, denote the
probability of connectivity as P(C|d, N,o), and let d,, =
max; (T(;+1) — (;)). Note that the probability of connectivity
is a function of d, N, and o. The network is connected if and
only if d,, < d. Therefore:

P(C|d, N, ) = P(dy, < d). (1)

Let N* be the minimal value of N, which satisfies the
constraint: P(C|N,0,d) > P(target); i.e., N* is the smallest
number of sensors required for our one dimensional network
to be connected with a pre-specified probability P(target).
We aim to find a good approximation for N*.

III. AN APPROXIMATION FOR N*

We empirically obtain the CDF of d,,, parameterized by N
and o in two steps: 1) for many pairs (N, o) the CDF of
d., is modeled by a parametric distribution; 2) the parameters
of these distributions are expressed as functions of NV and o
which leads to an approximate CDF of d,,.

A. Step 1:

We considered 38 x 26 = 988 pairs (V, o) with N = 10, 20,
.., 190, 200, 300, ... 2000; o = 0.005, 0.010,..., 0.045, 0.05,
0.10,..., 0.85. For each of these (N, o) pairs we obtained 10°
values of d,, by Monte Carlo simulation yielding an empirical
CDF. As the example illustrated in Fig. 2, these CDFs are well
approximated by a Log-Logistic distribution [8]:

1
Plm <0 = o tge—ays @
This also holds for N as low as 10. For example, when N =
10 and o = 0.15, the maximum deviation of the fitted Log-
logistic CDF from the true CDF is only 2.1%.
The method we selected to fit the Log-Logistic function
is Maximum Likelihood Estimation [8], [9]. For each pair
(N, o), we can get a pair of parameters « and (.

B. Step 2:

We fit « and ( as functions of the parameters (N, o), such
that we can estimate /N from (2) with given P, ¢ and d.

No simple curves were found which fit these surfaces well
for all N and o. In particular, there are difficulties in cases of
small values for N and ¢ which will be treated separately in
the next section. When N > 10 and o > 0.005, the surface can
be well approximated by piecewise functions, with boundaries
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Fig. 2. Curve fitting for CDF of d,,

at N = 200 and ¢ = 0.1. The four pieces will be denoted zy,
where x = 0 if N < 200 and = = 1 otherwise, and y = 0 if
0 < 0.1 and y = 1 otherwise. Then, o and 3 are given by:

a1 + a2 IOgN + 0,13/\/;

a21 + asz log N + as3o in piece 01 3)
o =

az1 + azzlog N + azz(logo)?  in piece 10

a41 + agq2 IOg N + ay430

in piece 00

in piece 11

b11 + b1z log N/N + by3\/olog o
1/(b21 + baz(log N)? + baglog o)
1/(bs1 + b3aV/N log N + b3z /\/7)
by + byz log N + byzo?log o

in pieces 00
B in pieces 01
b= in pieces 10
in pieces 11

“)
where a;; and b;; are elements of matrix A and B, respec-
tively:

[ —0.00732 —0.12021 —0.17869 ]
4 | 019443 —0.69949  0.81407
0.70759 —0.78886 —0.01237
| 0.87847  —0.82842  0.76975 |
[ —0.00732 —0.12021 —0.17869 ]
p_ | 511980 008831 —0.71657
7.95398  0.00239  0.38936
| 0.18681  —0.01173  0.02877 |

From (3) and (4), we can calculate o and (3, and substitute
them into (2), giving
1

(log d—a(N,a))]
B(N,0)

P(dy, < d|N,o) = f(d,N,o).

)
Let Ny denote the solution of f(d, N1,0) = P(target). For
given d, o, and pre-specified P(target), we approximate N*
by Ni, which is obtained by (5).

To illustrate our approach, we consider o = 0.004, 0.008,...,
0.04; d = 0.002, 0.008,..., 0.038. The intervals representing
the range between the 5th percentile and the 95th percentile
for P(target) = 0.91,0.94,0.96,0.98,0.992,0.995,0.999 are
plotted in Fig 3. It is based on log scale. We set P(C) =
1 — 1075 if there is no disconnection in 10° samples.

1+ exp[—
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Fig. 3. Simulation values for P (C|Ny).
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Fig. 4. Analytical and simulation results for N.

Fig. 4 compares N; calculated from (5) with N* found
from simulations. It shows good agreement. It also shows that
even for small ¢ (small randomness in sensor locations), the
value of N* is much larger than for ¢ = 0 (sensors exactly
in their optimal locations).

IV. COMPLEMENTARY CASES

Our fitting procedure does not apply if N or o is small.
If N is small, direct simulation is simple. We now consider
regimes when o may be small.

a) Small o, constant d: The smaller o is, the more
precise are the locations of the sensors. If 0 = 0, N =
D/d—1.1f o > 0, but close to zero, adding a few sensors to
the D/d — 1 value will provide a good approximation for N.

b) Small d, constant o/d and D = 1: This case is
equivalent to the case where d and o are fixed and D increases
to infinity. Fig. 5 shows simulation results for Nd versus d for
o/d = 1. The value Nd is approximately constant (except for
very small d, which correspond to unrealistically many nodes)
as indicated by the roughly horizontal line. The intuition is
that, given constant d and o, the number of hops needed, N,
is roughly proportional to the distance covered, D. When N
is very large, there is an increased probability that one hop is
much longer than the mean. This requires an increased margin
d— D/N, causing Nd to increase if d is very small.

c) Small d and fixed o: Small d values indicate cheap
sensors. It is of interest to study the tradeoff of number of
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Fig. 5. Behavior of Nd versus d.
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Fig. 6. Nd versus d under fixed O.

sensors required versus their cost. The simulation results in
Fig. 6 demonstrate that Nd increases as d decreases which
indicates that the required number of sensors increases faster
than d decreases. If the sensor cost as a function of d is known,
results such as those of Fig. 6 could be used to optimize N.
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