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Abstract—Efficient management of supercomputing facilities account the length of time since each heavy user last sidamitt
requires estimates of future workload based on past user g job.

behaviour. For supercomputers with large numbers of users, As a case study, we use a two-year workload trace taken

aggregate user behaviour is commonly assumed to be best in . . o . .
prediction of future workloads, however for systems with smaller from the Swinburne University’s supercomputing clustensT

numbers of users the question arises as to whether it is still COmputer serves a small number of heavy users and a much
suitable or if benefits can be derived from monitoring individual larger number of light users. In order to obtain statislycal
user behaviour to predict future workload. We compare using meaningful estimates for the behaviour of light users, we
individual user behaviour, aggregate user behaviour and a hybrid cluster them into a small number of classes and base our

approach where we track heavy users individually and cluster L . . .
aggregate light users into a small number of clusters. We predictions on the aggregate per-cluster information.sThi

find that the hybrid approach produces the best results in also reduces the computational requirements of the predict
both mean absolute error and mean squared error. However, process.

treating all users separately provides slightly worse predictions.

We also introduce a new approach to prediction based on the A. Related work

hazard function which is a significant improvement on previously -
used schemes based on autoregressive models. The schemes areThere are two bodies of work that are closely related to

investigated numerically using a two-year workload trace from thiS paper — one characterizing supercomputing job agival

a supercomputer with a population of 136 users. and one predicting future CPU utilization — which we will
Index Terms—supercomputing, workload prediction, hazard discuss in turn.
rate function, user behaviours An important application for characterizing supercompati
workloads is for generating the synthetic workload [4],.[5]
|. INTRODUCTION This requires both a description of the jobs themselves and

the arrival process in time. The former commonly [6], [7]} [8

Supercomputers are increasingly important for tasks rgngiconsists of statistical models of attributes such as thebeum
from weather forecasting and climate modelling to mappingf CPUs used by a job and job run times, and more subtle
the human genome and modelling the world economy. In soragributes such as cancellation rates [9].
cases a supercomputer is built for a single task, but in mostThe arrival process is usually characterized by the inter-
cases supercomputers are shared by maffigrdint users who arrivals times, which are either explicitly [6] or implibit
submit jobs as the need arises. assumed to be independent. In early work, the arrival psoces

Efficient management requires that the workload can lb&s assumed to be Poisson [6]. Later, Lublin et at. [5]
predicted at least a short time in advance. For exampp@pposed modelling inter-arrival times as Gamma distetut
some “elastic” jobs can dynamically increase the accuratleavy-tail distributions such as Log-normal or Pareto were
with which results are calculated if it is known that demansuggested in [9].
will be light until the job’s deadline. Other jobs can be run Squillante et al. [10] is one of the few groups to study
with different degrees of parallelism, but cannot change ttiee dependence between inter-arrival times. They noted tha
parallelism once they have started . Workload prediction #srivals tend to occur ithatches We also observed arrivals in
also important for managing “valley-filling”, in which dgla batches at the Swinburne supercomputer.
insensitive jobs are run at times of low load, and in dynamic This branch of work is primarily descriptive, and does not
provisioning [1], [2], [3] in which some servers in a clusteimmediately lead to techniques for workload estimation. In
are turned & during periods of low load to save energy. Mostontrast, the second branch considers predictive modets, b
previous work on predicting workload has focused on systerftxus on the accumulated load (total arriving work minuskvor
with very large numbers of users, which averages out mushrved, or CPU load) rather than specifically the arrivals.
of the burstiness of job arrivals. In contrast, we proposewe n  The second branch typically uses models based pth- (
approach suitable to systems with a small user populati@rder) autoregressive AR) processes. This model has found
Although the reduced multiplexing makes this problem hardesignificant success in predicting the workload for CPU
it also allows us to exploit information about individualdwy load [11] or in Grid computing [12]. Such models assume
users in the predictions. In particular, our predictor takdo that workload process is stationary. That is, charactesist



such as the mean and autocorrelation of the workload d@he administrator. Torque eventually dispatches jobs ® th
time invariant. This allows the AR model to be built usingcomputational nodes based on Moab’s decisions.

a historical workload. Several studies improve the préatict  The cluster is primarily used by astrophysicists for perfor
accuracy of such AR models by either adapting the modelg large scale physical simulations and for processingelar
based on recent observations [13], [14], or employing “datdservational data sets. This workload consists of somdyhig
refinement” [12], such as a Kalman filter or a Savitzky-Golagaralellizable jobs, such as inverting gravitational iegsand
filter, to reduce the noise so that the AR model can captwseme jobs that are either hard to parallelize or for which
the underlying workload more accurately. no parallel code exists. In addition, the cluster is avédab

AR models have typically been used to predict use &r other users at Swinburne, and other significant users
a single resource, such as CPU capacity. Liang et al. [18]n simulations for molecular dynamics and micro photonics
proposed a cross-correlation model to predict the use research. The cluster is also used for teaching relatecdbpesp
multiple kinds of resources such as CPU and memory. at the university.

Despite these two substantial bodies of work, little attent ~ Users are given accounts that allow them to submit jobs to
has been paid to the task of predicting the actual work drriilhe supercomputer via the resource manager (Torque) r@nnin
process. This paper seeks to address that lack. on the head node. When submitting a job, the user must specify
the resources that will be required. This includes, amohgrot
things, the required (a) total number of CPUs, (b) memory,

This paper makes the following contributions: In Sectian I{c) disk space, and (d) estimated run time (wall time). When
we characterise the workload of the Swinburne Supercompuéejob is scheduled, it will be allocated exclusive use of the
based on two year traces. Unlike most of the past wonlequested number of CPUs, memory and disk space until the
we focus on the impact of user behaviours on the worklogob completes.
characteristics. We then present the user clustering tsesul Users tend to submit jobs in batches, and so we seek to
from experiments using well-recognised data mining saféwa predict the batch arrival process instead of the indivigahl
WEKA [15]. arrival process. We define a batch as a sequence of jobs such

In Section Ill, we introduce a load estimation methothat (a) the inter arrival time between any consecutive jebs
that employs the hazard function of the inter arrival timkess thans = 10 seconds, and (b) they come from the same
distribution and we explain how per user information caoser.
be incorporated. The procedure of building such model fromA common motivation for estimating job arrivals is to
the historical traces will be described. We then address tbstimate the total amount of work likely to be in the system at
challenges of smoothing the hazard curves and how they wearéuture time. For that, it appears that having users supply a
met. estimate of the run time will be extremely useful. However,

In Section V, we evaluate our model by comparing it witlthis turns out not to be the case. Whenever the job run time
autoregressive based models and show significant improegeeeds the requested walltime, the execution is abortédd an
ment with respect to the mean squared errors of the prediais event is reported to the owner. Since there is minimal
tions. We also demonstrate that even with the comparativéhcentive for users to provide short estimates of run times,
small number of users on this system, aggregate behaviouthis results in users overestimating run times by an order
a better predictor than individual behaviour. of magnitude. This fect has been observed in other shared

computing systems [8], [18].

B. Contributions

Il. PROPERTIES OF THE WORKLOAD TRACES

In order to predict job arrivals, it is important to have artho B- Adgregate and individual user behaviour

ough understanding of the workload. We now investigate theA central contribution of this paper is an investigationoint
characteristics of the workload of Swinburne’s supercatingu whether aggregate workload is still a suitable predictar fo
cluster. The focus will be on identifying heterogeneitybetn supercomputers with few users or whether tracking indizidu
users, which we will attempt to exploit in the predictor oéth user behaviour gives better workload predictions. To thid, e
following section. we first investigate how the load is distributed among users.
Workload data for this paper was collected over a two-
year period, from January 2010 to December 2011. Over that
The Swinburne supercomputer comprises around 160 coperiod, 136 distinct users submitted jobs. Among them, 86
puting nodes, each with eight CPU cores except for a “headSers submitted jobs in 2010, and 104 in 2011, of whom 54
node, which has 4 CPU cores, 16 GBytes of RAM and 2users submitted jobs in both years. As is often the case, a
500GBytes of local disk storage. The cluster is controlleminority of the users generated the majority of the workload
by that head node, which uses Moab [16] and Torque [17measured as the sum over jobs of the product of job run time
for scheduling. Specifically, Torque keeps track of theayst and number of CPUs used. This is illustrated in Figure 1.
state (available CPUs, load on each computational nodg, e®@pecifically, around 15% of users generated 85% of the
Moab regularly queries Torque to find the system state amarkload, which is a slightly greater concentration of work
then schedules jobs according to the configuration set up than Pareto’s famous “80:20” rule. However, as shown in

A. Overview of the Swinburne Supercomputer



14% 16% This is called thenhazard rate(HR) of the distributionp [19].
Without further information, (1) is the best possible estien
of the job arrival probability.
[ Jtop %15 users(13) [ Jtop %15 users(15) Next, consider a system witN users, which records statis-
I the rest I the rest tics for each userj. In particular, letp;(-) be the p.m.f. of
the distribution of inter-arrival times between batchesusér
j, andh;() the hazard rate op;. Let uj be the mean number
86% 84% of required CPUs per request of usgrand sj(t) be the last
time beforet that j submitted a job. We propose to estimate
the number of CPUs requested at tity

Fig. 1. Workload contribution by users in 2010(left) and 20Most workload
was generated by a few users as 15% of users generated 85% tiftah
workload.
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Here h;j(t — s;(t)) is the probability of having an arrival from
userj at timet.

A. Potential for enhancement

The estimator (2) is the exact mean number of CPUs
requested if inter-arrival times are i.i.d.. However, thes
typically a rich structure in the inter-arrival times. Nume
ical results in Section V suggest that (2) is a substantial
improvement on alternatives, but it can be further improved
by considering non-i.i.d. models.

Inter-arrival times usually have a strong diurnal patterith
fewer jobs submitted at night, and a weekly pattern, withefiew
Fig. 2. The total number of submissions during 2011 of the getrusers jOPS submitted on weekends. These violate the assumption
in terms of total CPU hours. Note that the big users do not secig submit  that inter-arrival times are identically distributed. Hewver, if
many jobs. the inter-arrival times are short compared with the timdesca

on which these variations occur, then these variations ean b

incorporated into (2) by replacing(:) by a time-varying PMF.
Figure 2, the “big” users need not be those who submit theSimilarly, a user will have dierent modes of working. The
largest number of jobs. main users of Swinburne’s supercomputer are astrophisicis

The fact that a small number of users dominates thghey will often perform a spate of calculations when a new
workload suggests that it may be useful to track those uselsservational data set arrives, followed by longer periofis
in detail, as will be done in the following section. inactivity. Again, (2) can be applied to models in which a
hidden Markov model tracks the state of individual usersl, an
L . . .. p(") is a state-dependent PMF.

We_ now tim t(_) est|ma_t|ng the job arnvz_al Process. Predynr_] Each of these enhancements adds complexity to the model,
the time of arrival of jobs on a continuous timescale IFnaking it harder to estimate the required PMFs, and hence

prohibitively difficult, and so we focus on estimating th§, ;4 rate functions. We now consider how this estimation i
probability that there will be a job arrival in a given distge done

time slot.

We first assume a simple information structure, in which tH8. Estimating hazard function from the arrival records
estimator has knowledge only of the most recent job arrival The accuracy of (2) depends on having an accurate estimate
time, and the marginal distribution of inter-arrival timé3ue  of the inter-arrival time distribution, and hence its hakzeate.
to this lack of information, it is natural to assume that inte This is obtained from historical data. However, there is a
arrival times are independent and identically distributed.);  limited amount of data, and so empirical PMF is subject to
this assumption will be relaxed in the numerical evaluatiorsypstantial sampling error. To alleviate this, we fit a sinpl
in Section V. parametric model to the observed PMF. Rather than using a

Assume without loss of generality that at tirhethe most maximum likelihood estimate, we perform the fitting in two
recent job arrival was at time 0. L&t be the random time steps, as follows.

total submission

1 2 3 4 5 6 7 8 9 10
top 10 load contributors (descending order)

I1l. ESTIMATING ARRIVING LOAD

of the next arrival, with probability mass function (PMBY). 1) Empirical hazard rate: The empirical hazard rate for
At t, all that is known is thal > t. Thus, the probability of individual user is estimated as follows. Latnax be the
a job arriving att (i.e., T =t) is maximum interarrival time, and divide the interval, [ohad
p(t) into K bins, such that the width of thi¢h bin isw;. From the
PT=tT=t= PT >t} = h(t). @ past workload, calculate the inter-arrival times of all dbets



TABLE |

from userj a_nd gr_oup Fhem into the bins. Let be the number USER cLUSTERS WITH WEKA USING K-MEANS ALGORITHM
of samples in theth bin. The hazard rate at tintecan then
be estimated as: Normalised data Clus.1 Clus. 2 Cius. 3 Full data
ﬁ-(t) _ ] 3) 30%(21) 11%(8) 59%(42) 100%(71)
A w Y- nk' Mean inter-arrival 0.043 0.365 0.009 0.059
P Sk Std. dev. inter-arrival 0.146 0.609 0.020 0.124
If the number of samples is large and &kl are small, then Mean sq. inter-arrival 0.018 0.437 0.001 0.055
Std. dev. sq. inter-arrival 0.056 0.539 0.003 0.079

this is a good approximation of the true hazard rate [20].
2) Smoothing by parametric fittingtWWhen the amount of

historical data is small, the above fitting may not accuyate] he @ici f d the k
reflect the true underlying inter-arrival time distributiolt 'MProve the e O e ma”""lgeme”é o t e
is well known that fitting an appropriate model with fey/&SOUrCe Is the numbper o S, we clustered based on the

parameters can improve the generalization ability of a sta- o and standard deviation of the mean and mean-square

tistical model. To this end, we fit two-and three—parametcl,\r?ter'amval times.

curves to the empirical hazard rate. As well as improvinq Each of the top 15 users is allocated to its own cluster_. TO
the generalization ability, this allows the hazard rate & [fluster the remaining 71 users, we used the Weka Data Mining

calculated for non-integer times and reduces the StorageSoftware [15] with iterative k-means algorithm [22]. In ghi

required to model a large user population. The drawbackis t9°rithm, the number of the clustekss provided in advance,

the user's hazard rate may not actually be well approximatgl?nk random points are chosen as the initial centroids of the

by the chosen parametric family. clusters. Users are added to the cluster to which they have th
We considered two families of curve: the Weibull hazargMallest Euclidean distance among thelusters. At the end

function and a custom function inspired by the Gamma haza#€ach iteration, the new “mean” or centroid is calculated f
each cluster. The whole process is repeated until the ctuste

function: . S :
k /t\k1 are stable, meaning that each point is assigned to the same
hw(t) = - (;) 4 cluster as the last iteration.
and Table | shows the clustering results, completed after aiter
he(t) = atPe ) tions. The clusters are of comparable sizes, although €13st

is substantially larger than the other two. The clustersgn
The simple form of the hazard rate of the Weibull distribatiofour feature dimensions, and so it is not easy to visualise th
makes it a common choice, and it is often found to beusters directly.
suficiently accurate as in the field of reliability engineering Although these clusters are not clearly delineated, the nu-
[21]. However, hazard rates we observed typically increaseerical results in Section V will show that this clustering
to a mode and then decrease, a characteristic which cannotabtially results in improved load estimation. That is beeau
captured by a Weibull distribution. That weakness motdate the statistical behaviour of individual small users cannot
to develop the second form, which is reminiscent of a Gamnbe determined accurately from their own histories, but the
function. behaviour of the clusters can be estimated more accurately.
For each family, we obtained a least-squares fit. To ensuréwith this clustering, the workload estimate becomes
that each measured sample is given equal weight, the piebabi q .
ity density was estimated by binning the data into bins thaat h .
an approximately equal number of samples — two samples in %= Z“ihi(t -S5O+ Z“‘:hC(t ~ &(0) ©)
our case — subject to the requirement that bin boundaries be =t et
multiples of the discrete time step. whereN is the number of users who contributed the majority
The two fitted curves are shown in Figure 3, along with tl’@f the workload (\| =15 in our Case) an€ is number of

empirical data. Both families show comparable fitting dyali clusters of less significant usei€ & 3 in our case).
for user 1,3 and 4. However, for user 2 and 5, the Weibull

curves show some limitations. As for user 6, both fitted csirve V. NUMERICAL EVALUATION

appear undesirable as none candidate can fit well with both =~

head and tail of the fitting curve. But in overall (considgrin/: OPJectives

all six users), the “Gamma” fitting appears to be the better The derivation of (2) assumed that inter-arrival times were

choice. Note that these top six users contributed roughtg 70Q.i.d., which we know not to be the case. In this section, we

of total workload in 2010. will evaluate the #ectiveness of the resulting estimator on

a real workload to investigate the impact of that assumption

Let time be divided intoM timeslots, and letx; denote the
When a users submits very few jobs, it becomes impossilsiamber of CPUs requested in tktl timeslot. The objective

to estimate the hazard rate with useful statistical sigmifo@. is to be able to forecast,; at timet, based only on knowledge

Instead, we cluster small users together and treat eacteccluavailable at timet. Such forecasts play an important role in

as a single user. Since the purpose of the prediction is dfficient allocation of resources [1], [2], [3].

IV. CLUSTERING SMALL USERS
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Fig. 3. Curve fittings for six top users
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Fig. 4. Curve fittings for 3 clusters

The experiment used a two year trace of work from thebs, and it is well known that flierentiating a noisy quantity
Swinburne supercomputer. To be consistent through our dgads to high errors.
periment, for all models (including our hazard functiondmhs As a benchmark, we will compare the performance of (2)
model), we will use the first year traces as the sample wodkloagainst two variants of autoregressive (AR) models, whieh a
to build the models and the second year traces are used deneralizations of the familiar exponentially weightedving

evaluation. average (EWMA) filter. These models have found substantial
success in predicting ongoing workload [11], [13], [12]. We
B. Benchmark models shall compare our model with the classical AR(odel and

In order to calibrate the fiectiveness of our proposedan enhancement version with adaptive mean that is described
scheme, we would like to compare it against an existirig [13].
estimator. However, there has been little prior work on-esti 1) AR(p): Autoregressive filters are the simplest in a family
matingarrivals to supercomputing clusters (although see [23pf filters that include, in increasing order of complexity,
[24]). Instead we will use a technique that has been devdlopgRMA (autoregressive moving average), ARIMA (autoregres-
for estimating a dterent notion of “workload”, namely the sive integrated moving average) and ARFIMA (autoregressiv
number of ongoing jobs. Note that our task is substantialfyactional integrated moving average). Their structuteves
harder than estimating the number of ongoing jobs; thearrithem to incorporate substantial memory with only a small
process is related to thaerivativeof the number of ongoing number of parameters. Having fewer parameters allows those
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First, the expected value of is estimated as

—o;AR(s)
0.15F —©— AR(15) |4 1

—— AR(25) = Uk-1 t+ — @) Xg-1.
ol L AR | Mk = oty + ( ) Xk-1

—&— AR(45)

Next, the perturbation from the mean is found. Given obser-
vations x_p t0 X1, @ zero-mean sequence

K 13
Xeei = Xei = = Z Xe-p
p j=1

is constructed, and then passed through the AR filter toarobta

offset @)

10 20 30 40 50 p
coefficient(i) ’ VS
X = § X i-
Fig. 5. AR codficients for diferent values op, calculated using Yule-Walker i=1

method and the workload traces of Swinburne Supercomputedlif as the FinaIIy the load at timek is estimated by
sample workload. '

R = i+ X 9)

. C. Estimating rates rather than arrivals
parameters to be estimated more accurately, and they were

found in [11] to be superior to ARMA and its generalizations A consequence of having a small user population is that

for the task of predicting CPU workload. arrivals are very bursty. The majority of time slots will leavo
The pth-order AR model, ARg), predicts the next requestarrivals, whereas a few will have arrivals requesting heddr
for CPU resourcesy by the recurrence of CPUs. This can be seen in Figure 6, which shows the

data for an 5 hour interval of the Swinburne supercomputer
workload. As a result, it is not feasible to estimate the &xac
amount of work that will arrive in a given time slot. Insteack

) estimate thexpected ratef arrivals. Many resource allocation
WHEre X1, X2, -, Xk-p @reé the previous measurements angqqrithms take as input a time-varying Poisson processsan

{¢i) are the AR cofficients. _ _ . estimating the time-varying rate of that process is of firatt
The AR codficients{¢;} can be determined from a h|stor|calbeneﬁt.

sample of the workload. To do this, we assume that the true\ye can think of the observed number of arrivads in

arrival counts satisfy each slott as a realization of a random process. We wish
p to compare our estimated number of arrivajsagainst the
X = Z PiXe-i + €k (8) expected number of arrivals under that random processirath
i=1 than against the actual number of arrivals. To do this, we
whereg, is a residual error signal. [} are zero mean white follow the “refinement” approach of [12], and compare agains
Gaussian noise, then the AR d¢ieients can be determineda moving average of the arrivals. Specifically, select anm-ave
using the Yule-Walker method [25], which finds tl} in aging windowW and construct

P
X = Z i Xe—i (7)
=1

terms of the autocorrelation functions pf}. W
Figure 5 presents the AR cidieient sets{¢;} for several Vi = 1 Z Xisk. (10)
values ofp for our sample workload. It shows a strong positive 2K+1.44

correlation with the Ia_st |mmed|at.e obs_erva'uon in the pmz;_ Note that this cannot be constructed online, but can be
and a weaker negative correlation with recent observation

which then decays into noise. The figure shows that estimatcﬁacmated after all the data is known, and used for evalnati
: ys INtO hoise. 9! : M our experiments, the time step was= 5 minutes, and
with p > 15 are all quite similar, and in particular that= 35

) . . W = 6 was selected so that represents the average over a
is suficient to capture all of the autoregressive structure in : gt rep 9
one-hour period.

this data set. For that reason, we will use AR(35) as our . , . : .
The primary figure of merit we will use is then the mean

benchmark. o
. . squared error. The mean squared error of the estiffigtevith
2) AR(p) with adaptive meanThe AR(p) model assumes rgspect to the smoothed data is defined as

that the workload process is stationary. However, workloal
data typically has a strong diurnal variation. To accoumt fo 1M -
this, we adopt the technique used in [13], which separates ou ™M Z Iyt = Xl (11)
a slowly-varying mean from a faster-varying AR process. t=1

The AR codficients are obtained the same way as for thehere M is the number of timeslots used for evaluation. The
simple AR({p) model. In addition, there is a parametersuch two years of data was divided into one year for training the
that 1-— o << 1, which governs the drift in the overall mearpredictor, and one year for evaluation. Thus the horizon was
denoted by{ux}. The steps to estimatg are as follows. one year, givingM = 365x 24 x 60/5.



40 : workload. The mean absolute error (MAE) is led$eated
e _;ii‘(')g&ie;"da:t‘;" by the very large bursts, and is consequently more optienisti
30 Among the HR-based schemes, clustering small users tagethe
and separating out large users (HR, clusterd) appears to
provide the minimum in both MSE and MAE, while grouping
all users into one cluster is the second best (HR, aggregate)
The “HR, per user” scheme, where all users are modelled
10 . iR separately, provides the worst performance; this is praslyn

4 . \ ¥ \ due to the diiculty of estimating the hazard rate of light users
A _ accurately.
0 1 2 3 4 5 As expected, the mean squared error and mean absolute

time (hour) error are substantially improved after the smoothing psece

Fig. 6. Arrival workload of Swinburne Supercomputer for afiveur interval. for a!l_cases. Note that these quantitative ConC|us_|on$a’pp
The arrivals appear to be very bursty but the overall charitics are typical Sensitive to the workload; for example, changes in the sam-

20

number of CPUs

for such supercomputer systems= 5 minutes,W = 6) pling interval A can even change the order of HR per-user and
HR-aggregate. However, since HR-clustered performed, best
TABLE |I even without optimizing the clustering parameters, we ekpe
MEAN SQUARED ERROR AND MEAN ABSOLUTE ERROR FOR DIFFERENT PREDICTION that If the Clusterlng |S 0pt|m|zed then the C0nC|USIOn taat
SCHEMES. . . .
hybrid HR-clustered approach will continue to be the best fo
Schemes no smoothing smoothing most workloads.
MSE MAE MSE MAE
AR(p=35) 4300 1167 2310 9.29
AR(p=35)-adapt. mean 4,325 11.81 2,290 9.86 V1. CONCLUDING REMARKS
HR, per user 2,749 10.68 381 7.46 At ; ; _
HR. clustered 2733 844 371  5.86 Accurate workload prediction is useful foffieient man

HR, aggregate 2738 860 377  6.10 agement of supercomputer resources. In this paper, we have
described an approach for exploiting per user information
for workload estimation. The approach takes as input the

D. Performance evaluation most recent submission time from each user, and produces an

With these preliminaries completed, we can now compa??t'mat? of the e-xp.ecte.d armving .Worklogd m_thg next time
£P- Since predicting individual job arrivals is intraueg

the performance of our hazard rate estimator (2) againstfrm1 : luated b . ith th val rat
two benchmarks: AR(35) and AR(35) with adaptive mean. T gis 1S evaluated by comparison wi € average arriva ra

latter usedv = 0.99, which corresponds to a time-constant fo ver short time periods. Testing on the wprkload of the
4 of 500 minutes (6 hours): this allows it to track diurna winburne Supercomputer for a two year period showed that
variation but smooths out fas,t fluctuations the proposed scheme vyields lower mean squared error than

The data from 2010 and 2011 was divided into slofof two autoregressive schemes of order 35: AR(35) and AR(35)

5 minutes. The data from 2010 was used to train both tf‘%lth adaptive mean.

benchmark estimators and our HR estimator, and the 2011 daté{ve al;so mvesU%ated pte .rt;ufe(; Fl)';'ﬁdlinot?\ aa:;me;ns c;llus—
was used for testing. At each time slot, the three estimat&%mg ot users who confributed Tittle to the Joad, and were
were given the most up-to-date information (recent arriatgs consequently hard to predict. In our example, clusteringlkm

for AR, and the time of the last submission for HR), but theii’hSerS .tt(;gether rr]esult?g Itn better ;nemﬁn prediction T\(gr:rath
parameterg andh(.) were not updated. an either a scheme that aggregates all users or a sc e tha

Those loads predicted by the three schemes were thaethempts to estimate the future arrivals of all users imttigily.
compared with the refined version of the real load obtained'\lef'ther the_ proposed sc_heme_ nor the benchmark consider
from the traces using (11). predictable diurnal fluctuations in load. The approach rake

Table Il summarizes the results. In this table, “HR, perFUsehere is in principle easy to extend to incorporate such fauctu
refers to the scheme (2) in which each user is its own clust

gpns, but doing so would require an estimate of the nod-i.i.
“HR, clustered” refers to (6) in which users other than the td

nter-arrival time distributions. This is an important etition
15 were partitioned into three clusters, and “HR, aggrégat]:eor future study. Even without this extension, the proposed
refers to (6) in which all users are placed in a single cluste?

cheme demonstrates the usefulness of per-user informatio
The three HR-based schemes have a significantly IovJQrworkload prediction.

MSE than the AR-based estimators: in the worst case it is

83% lower with data smoothing and 36% lower without data

smoothing. Since those large MSEs may raise the concerrmhe authors thank Dr. Yoni Nazarathy for extensive and

about the potential impact of the schemes, it is importafruitful discussions and anonymous reviewers for theirghts

to emphasize that such large MSEs are a result of severdlcomments and suggestions to help improve our paper. This

large prediction errors due to the highly bursty nature ef ttwork was funded by ARC grant FT0991594.
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