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Abstract—Efficient management of supercomputing facilities
requires estimates of future workload based on past user
behaviour. For supercomputers with large numbers of users,
aggregate user behaviour is commonly assumed to be best in
prediction of future workloads, however for systems with smaller
numbers of users the question arises as to whether it is still
suitable or if benefits can be derived from monitoring individual
user behaviour to predict future workload. We compare using
individual user behaviour, aggregate user behaviour and a hybrid
approach where we track heavy users individually and cluster
aggregate light users into a small number of clusters. We
find that the hybrid approach produces the best results in
both mean absolute error and mean squared error. However,
treating all users separately provides slightly worse predictions.
We also introduce a new approach to prediction based on the
hazard function which is a significant improvement on previously
used schemes based on autoregressive models. The schemes are
investigated numerically using a two-year workload trace from
a supercomputer with a population of 136 users.

Index Terms—supercomputing, workload prediction, hazard
rate function, user behaviours

I. Introduction

Supercomputers are increasingly important for tasks ranging
from weather forecasting and climate modelling to mapping
the human genome and modelling the world economy. In some
cases a supercomputer is built for a single task, but in most
cases supercomputers are shared by many different users who
submit jobs as the need arises.

Efficient management requires that the workload can be
predicted at least a short time in advance. For example,
some “elastic” jobs can dynamically increase the accuracy
with which results are calculated if it is known that demand
will be light until the job’s deadline. Other jobs can be run
with different degrees of parallelism, but cannot change the
parallelism once they have started . Workload prediction is
also important for managing “valley-filling”, in which delay-
insensitive jobs are run at times of low load, and in dynamic
provisioning [1], [2], [3] in which some servers in a cluster
are turned off during periods of low load to save energy. Most
previous work on predicting workload has focused on systems
with very large numbers of users, which averages out much
of the burstiness of job arrivals. In contrast, we propose a new
approach suitable to systems with a small user population.
Although the reduced multiplexing makes this problem harder,
it also allows us to exploit information about individual heavy
users in the predictions. In particular, our predictor takes into

account the length of time since each heavy user last submitted
a job.

As a case study, we use a two-year workload trace taken
from the Swinburne University’s supercomputing cluster. This
computer serves a small number of heavy users and a much
larger number of light users. In order to obtain statistically
meaningful estimates for the behaviour of light users, we
cluster them into a small number of classes and base our
predictions on the aggregate per-cluster information. This
also reduces the computational requirements of the prediction
process.

A. Related work

There are two bodies of work that are closely related to
this paper — one characterizing supercomputing job arrivals
and one predicting future CPU utilization — which we will
discuss in turn.

An important application for characterizing supercomputing
workloads is for generating the synthetic workload [4], [5].
This requires both a description of the jobs themselves and
the arrival process in time. The former commonly [6], [7], [8]
consists of statistical models of attributes such as the number
of CPUs used by a job and job run times, and more subtle
attributes such as cancellation rates [9].

The arrival process is usually characterized by the inter-
arrivals times, which are either explicitly [6] or implicitly
assumed to be independent. In early work, the arrival process
was assumed to be Poisson [6]. Later, Lublin et at. [5]
proposed modelling inter-arrival times as Gamma distributed.
Heavy-tail distributions such as Log-normal or Pareto were
suggested in [9].

Squillante et al. [10] is one of the few groups to study
the dependence between inter-arrival times. They noted that
arrivals tend to occur inbatches. We also observed arrivals in
batches at the Swinburne supercomputer.

This branch of work is primarily descriptive, and does not
immediately lead to techniques for workload estimation. In
contrast, the second branch considers predictive models, but
focus on the accumulated load (total arriving work minus work
served, or CPU load) rather than specifically the arrivals.

The second branch typically uses models based on (pth-
order) autoregressive AR(p) processes. This model has found
significant success in predicting the workload for CPU
load [11] or in Grid computing [12]. Such models assume
that workload process is stationary. That is, characteristics



such as the mean and autocorrelation of the workload are
time invariant. This allows the AR model to be built using
a historical workload. Several studies improve the prediction
accuracy of such AR models by either adapting the model
based on recent observations [13], [14], or employing “data
refinement” [12], such as a Kalman filter or a Savitzky-Golay
filter, to reduce the noise so that the AR model can capture
the underlying workload more accurately.

AR models have typically been used to predict use of
a single resource, such as CPU capacity. Liang et al. [13]
proposed a cross-correlation model to predict the use of
multiple kinds of resources such as CPU and memory.

Despite these two substantial bodies of work, little attention
has been paid to the task of predicting the actual work arrival
process. This paper seeks to address that lack.

B. Contributions

This paper makes the following contributions: In Section II,
we characterise the workload of the Swinburne Supercomputer
based on two year traces. Unlike most of the past work,
we focus on the impact of user behaviours on the workload
characteristics. We then present the user clustering results
from experiments using well-recognised data mining software,
WEKA [15].

In Section III, we introduce a load estimation method
that employs the hazard function of the inter arrival time
distribution and we explain how per user information can
be incorporated. The procedure of building such model from
the historical traces will be described. We then address the
challenges of smoothing the hazard curves and how they were
met.

In Section V, we evaluate our model by comparing it with
autoregressive based models and show significant improve-
ment with respect to the mean squared errors of the predic-
tions. We also demonstrate that even with the comparatively
small number of users on this system, aggregate behaviour is
a better predictor than individual behaviour.

II. Properties of the workload traces

In order to predict job arrivals, it is important to have a thor-
ough understanding of the workload. We now investigate the
characteristics of the workload of Swinburne’s supercomputing
cluster. The focus will be on identifying heterogeneity between
users, which we will attempt to exploit in the predictor of the
following section.

A. Overview of the Swinburne Supercomputer

The Swinburne supercomputer comprises around 160 com-
puting nodes, each with eight CPU cores except for a “head”
node, which has 4 CPU cores, 16 GBytes of RAM and 2×

500GBytes of local disk storage. The cluster is controlled
by that head node, which uses Moab [16] and Torque [17]
for scheduling. Specifically, Torque keeps track of the system
state (available CPUs, load on each computational node, etc).
Moab regularly queries Torque to find the system state and
then schedules jobs according to the configuration set up by

the administrator. Torque eventually dispatches jobs to the
computational nodes based on Moab’s decisions.

The cluster is primarily used by astrophysicists for perform-
ing large scale physical simulations and for processing large
observational data sets. This workload consists of some highly
paralellizable jobs, such as inverting gravitational lensing, and
some jobs that are either hard to parallelize or for which
no parallel code exists. In addition, the cluster is available
for other users at Swinburne, and other significant users
run simulations for molecular dynamics and micro photonics
research. The cluster is also used for teaching related purposes
at the university.

Users are given accounts that allow them to submit jobs to
the supercomputer via the resource manager (Torque) running
on the head node. When submitting a job, the user must specify
the resources that will be required. This includes, among other
things, the required (a) total number of CPUs, (b) memory,
(c) disk space, and (d) estimated run time (wall time). When
a job is scheduled, it will be allocated exclusive use of the
requested number of CPUs, memory and disk space until the
job completes.

Users tend to submit jobs in batches, and so we seek to
predict the batch arrival process instead of the individualjob
arrival process. We define a batch as a sequence of jobs such
that (a) the inter arrival time between any consecutive jobsis
less thanδ = 10 seconds, and (b) they come from the same
user.

A common motivation for estimating job arrivals is to
estimate the total amount of work likely to be in the system at
a future time. For that, it appears that having users supply an
estimate of the run time will be extremely useful. However,
this turns out not to be the case. Whenever the job run time
exceeds the requested walltime, the execution is aborted and
this event is reported to the owner. Since there is minimal
incentive for users to provide short estimates of run times,
this results in users overestimating run times by an order
of magnitude. This effect has been observed in other shared
computing systems [8], [18].

B. Aggregate and individual user behaviour

A central contribution of this paper is an investigation into
whether aggregate workload is still a suitable predictor for
supercomputers with few users or whether tracking individual
user behaviour gives better workload predictions. To this end,
we first investigate how the load is distributed among users.

Workload data for this paper was collected over a two-
year period, from January 2010 to December 2011. Over that
period, 136 distinct users submitted jobs. Among them, 86
users submitted jobs in 2010, and 104 in 2011, of whom 54
users submitted jobs in both years. As is often the case, a
minority of the users generated the majority of the workload,
measured as the sum over jobs of the product of job run time
and number of CPUs used. This is illustrated in Figure 1.
Specifically, around 15% of users generated 85% of the
workload, which is a slightly greater concentration of work
than Pareto’s famous “80:20” rule. However, as shown in
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Fig. 1. Workload contribution by users in 2010(left) and 2011. Most workload
was generated by a few users as 15% of users generated 85% of the total
workload.
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Fig. 2. The total number of submissions during 2011 of the 10 largest users
in terms of total CPU hours. Note that the big users do not necessarily submit
many jobs.

Figure 2, the “big” users need not be those who submit the
largest number of jobs.

The fact that a small number of users dominates the
workload suggests that it may be useful to track those users
in detail, as will be done in the following section.

III. Estimating arriving load

We now turn to estimating the job arrival process. Predicting
the time of arrival of jobs on a continuous timescale is
prohibitively difficult, and so we focus on estimating the
probability that there will be a job arrival in a given discrete
time slot.

We first assume a simple information structure, in which the
estimator has knowledge only of the most recent job arrival
time, and the marginal distribution of inter-arrival times. Due
to this lack of information, it is natural to assume that inter-
arrival times are independent and identically distributed(i.i.d.);
this assumption will be relaxed in the numerical evaluations
in Section V.

Assume without loss of generality that at timet, the most
recent job arrival was at time 0. LetT be the random time
of the next arrival, with probability mass function (PMF)p(·).
At t, all that is known is thatT ≥ t. Thus, the probability of
a job arriving att (i.e., T = t) is

P{T = t|T ≥ t} =
p(t)
P{T ≥ t}

≡ h(t). (1)

This is called thehazard rate(HR) of the distributionp [19].
Without further information, (1) is the best possible estimate
of the job arrival probability.

Next, consider a system withN users, which records statis-
tics for each user,j. In particular, letp j(·) be the p.m.f. of
the distribution of inter-arrival times between batches ofuser
j, andh j(·) the hazard rate ofp j . Let µ j be the mean number
of required CPUs per request of userj, and sj(t) be the last
time beforet that j submitted a job. We propose to estimate
the number of CPUs requested at timet by

x̂t =

N
∑

j=1

µ jh j(t − sj(t)). (2)

Here h j(t − sj(t)) is the probability of having an arrival from
user j at time t.

A. Potential for enhancement

The estimator (2) is the exact mean number of CPUs
requested if inter-arrival times are i.i.d.. However, there is
typically a rich structure in the inter-arrival times. Numer-
ical results in Section V suggest that (2) is a substantial
improvement on alternatives, but it can be further improved
by considering non-i.i.d. models.

Inter-arrival times usually have a strong diurnal pattern,with
fewer jobs submitted at night, and a weekly pattern, with fewer
jobs submitted on weekends. These violate the assumption
that inter-arrival times are identically distributed. However, if
the inter-arrival times are short compared with the time scale
on which these variations occur, then these variations can be
incorporated into (2) by replacingp(·) by a time-varying PMF.

Similarly, a user will have different modes of working. The
main users of Swinburne’s supercomputer are astrophysicists.
They will often perform a spate of calculations when a new
observational data set arrives, followed by longer periodsof
inactivity. Again, (2) can be applied to models in which a
hidden Markov model tracks the state of individual users, and
p(·) is a state-dependent PMF.

Each of these enhancements adds complexity to the model,
making it harder to estimate the required PMFs, and hence
hazard rate functions. We now consider how this estimation is
done.

B. Estimating hazard function from the arrival records

The accuracy of (2) depends on having an accurate estimate
of the inter-arrival time distribution, and hence its hazard rate.
This is obtained from historical data. However, there is a
limited amount of data, and so empirical PMF is subject to
substantial sampling error. To alleviate this, we fit a simple
parametric model to the observed PMF. Rather than using a
maximum likelihood estimate, we perform the fitting in two
steps, as follows.

1) Empirical hazard rate: The empirical hazard rate for
individual user is estimated as follows. LetTmax be the
maximum interarrival time, and divide the interval [0,Tmax]
into K bins, such that the width of theith bin is wi . From the
past workload, calculate the inter-arrival times of all batches



from user j and group them into the bins. Letni be the number
of samples in theith bin. The hazard rate at timet can then
be estimated as:

ĥ j(t) =
ni

wi
∑K−1

k=i nk

. (3)

If the number of samples is large and allwi are small, then
this is a good approximation of the true hazard rate [20].

2) Smoothing by parametric fitting:When the amount of
historical data is small, the above fitting may not accurately
reflect the true underlying inter-arrival time distribution. It
is well known that fitting an appropriate model with few
parameters can improve the generalization ability of a sta-
tistical model. To this end, we fit two-and three-parameter
curves to the empirical hazard rate. As well as improving
the generalization ability, this allows the hazard rate to be
calculated for non-integer timest, and reduces the storage
required to model a large user population. The drawback is that
the user’s hazard rate may not actually be well approximated
by the chosen parametric family.

We considered two families of curve: the Weibull hazard
function and a custom function inspired by the Gamma hazard
function:

hW(t) =
k
α

( t
α

)k−1
(4)

and
hC(t) = atbe−ct. (5)

The simple form of the hazard rate of the Weibull distribution
makes it a common choice, and it is often found to be
sufficiently accurate as in the field of reliability engineering
[21]. However, hazard rates we observed typically increase
to a mode and then decrease, a characteristic which cannot be
captured by a Weibull distribution. That weakness motivated us
to develop the second form, which is reminiscent of a Gamma
function.

For each family, we obtained a least-squares fit. To ensure
that each measured sample is given equal weight, the probabil-
ity density was estimated by binning the data into bins that had
an approximately equal number of samples — two samples in
our case — subject to the requirement that bin boundaries be
multiples of the discrete time step.

The two fitted curves are shown in Figure 3, along with the
empirical data. Both families show comparable fitting quality
for user 1,3 and 4. However, for user 2 and 5, the Weibull
curves show some limitations. As for user 6, both fitted curves
appear undesirable as none candidate can fit well with both
head and tail of the fitting curve. But in overall (considering
all six users), the “Gamma” fitting appears to be the better
choice. Note that these top six users contributed roughly 70%
of total workload in 2010.

IV. Clustering small users

When a users submits very few jobs, it becomes impossible
to estimate the hazard rate with useful statistical significance.
Instead, we cluster small users together and treat each cluster
as a single user. Since the purpose of the prediction is to

TABLE I
User clusters withWEKA using k-means algorithm

Normalised data Clus. 1 Clus. 2 Clus. 3 Full data
30%(21) 11%(8) 59%(42) 100%(71)

Mean inter-arrival 0.043 0.365 0.009 0.059
Std. dev. inter-arrival 0.146 0.609 0.020 0.124
Mean sq. inter-arrival 0.018 0.437 0.001 0.055
Std. dev. sq. inter-arrival 0.056 0.539 0.003 0.079

improve the efficiency of resource management and the key
resource is the number of CPUs, we clustered based on the
mean and standard deviation of the mean and mean-square
inter-arrival times.

Each of the top 15 users is allocated to its own cluster. To
cluster the remaining 71 users, we used the Weka Data Mining
Software [15] with iterative k-means algorithm [22]. In this
algorithm, the number of the clustersk is provided in advance,
thenk random points are chosen as the initial centroids of the
clusters. Users are added to the cluster to which they have the
smallest Euclidean distance among thek clusters. At the end
of each iteration, the new “mean” or centroid is calculated for
each cluster. The whole process is repeated until the clusters
are stable, meaning that each point is assigned to the same
cluster as the last iteration.

Table I shows the clustering results, completed after 5 itera-
tions. The clusters are of comparable sizes, although Cluster 3
is substantially larger than the other two. The clustering is on
four feature dimensions, and so it is not easy to visualise the
clusters directly.

Although these clusters are not clearly delineated, the nu-
merical results in Section V will show that this clustering
actually results in improved load estimation. That is because
the statistical behaviour of individual small users cannot
be determined accurately from their own histories, but the
behaviour of the clusters can be estimated more accurately.

With this clustering, the workload estimate becomes

x̂t =

N̂
∑

j=1

µ jh j(t − sj(t)) +
C
∑

c=1

µchc(t − sc(t)) (6)

whereN̂ is the number of users who contributed the majority
of the workload (N = 15 in our case) andC is number of
clusters of less significant users (C = 3 in our case).

V. Numerical evaluation

A. Objectives

The derivation of (2) assumed that inter-arrival times were
i.i.d., which we know not to be the case. In this section, we
will evaluate the effectiveness of the resulting estimator on
a real workload to investigate the impact of that assumption.
Let time be divided intoM timeslots, and letxt denote the
number of CPUs requested in thetth timeslot. The objective
is to be able to forecastxt+1 at timet, based only on knowledge
available at timet. Such forecasts play an important role in
efficient allocation of resources [1], [2], [3].
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Fig. 3. Curve fittings for six top users
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Fig. 4. Curve fittings for 3 clusters

The experiment used a two year trace of work from the
Swinburne supercomputer. To be consistent through our ex-
periment, for all models (including our hazard function based
model), we will use the first year traces as the sample workload
to build the models and the second year traces are used for
evaluation.

B. Benchmark models

In order to calibrate the effectiveness of our proposed
scheme, we would like to compare it against an existing
estimator. However, there has been little prior work on esti-
matingarrivals to supercomputing clusters (although see [23],
[24]). Instead we will use a technique that has been developed
for estimating a different notion of “workload”, namely the
number of ongoing jobs. Note that our task is substantially
harder than estimating the number of ongoing jobs; the arrival
process is related to thederivativeof the number of ongoing

jobs, and it is well known that differentiating a noisy quantity
leads to high errors.

As a benchmark, we will compare the performance of (2)
against two variants of autoregressive (AR) models, which are
generalizations of the familiar exponentially weighted moving
average (EWMA) filter. These models have found substantial
success in predicting ongoing workload [11], [13], [12]. We
shall compare our model with the classical AR(p) model and
an enhancement version with adaptive mean that is described
in [13].

1) AR(p): Autoregressive filters are the simplest in a family
of filters that include, in increasing order of complexity,
ARMA (autoregressive moving average), ARIMA (autoregres-
sive integrated moving average) and ARFIMA (autoregressive
fractional integrated moving average). Their structure allows
them to incorporate substantial memory with only a small
number of parameters. Having fewer parameters allows those
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Fig. 5. AR coefficients for different values ofp, calculated using Yule-Walker
method and the workload traces of Swinburne Supercomputer in 2010 as the
sample workload.

parameters to be estimated more accurately, and they were
found in [11] to be superior to ARMA and its generalizations
for the task of predicting CPU workload.

The pth-order AR model, AR(p), predicts the next request
for CPU resources, ˆxk, by the recurrence

x̂k =

p
∑

i=1

φi xk−i (7)

where xk−1, xk−2, ..., xk−p are the previous measurements and
{φi} are the AR coefficients.

The AR coefficients{φi} can be determined from a historical
sample of the workload. To do this, we assume that the true
arrival counts satisfy

xk =

p
∑

i=1

φi xk−i + ǫk (8)

whereǫk is a residual error signal. If{ǫk} are zero mean white
Gaussian noise, then the AR coefficients can be determined
using the Yule-Walker method [25], which finds the{φi} in
terms of the autocorrelation functions of{xk}.

Figure 5 presents the AR coefficient sets{φi} for several
values ofp for our sample workload. It shows a strong positive
correlation with the last immediate observation in the process,
and a weaker negative correlation with recent observations
which then decays into noise. The figure shows that estimators
with p ≥ 15 are all quite similar, and in particular thatp = 35
is sufficient to capture all of the autoregressive structure in
this data set. For that reason, we will use AR(35) as our
benchmark.

2) AR(p) with adaptive mean:The AR(p) model assumes
that the workload process is stationary. However, workload
data typically has a strong diurnal variation. To account for
this, we adopt the technique used in [13], which separates out
a slowly-varying mean from a faster-varying AR process.

The AR coefficients are obtained the same way as for the
simple AR(p) model. In addition, there is a parameterα, such
that 1− α << 1, which governs the drift in the overall mean
denoted by{µk}. The steps to estimate ˆxk are as follows.

First, the expected value ofxk is estimated as

µk = αµk−1 + (1− α)xk−1.

Next, the perturbation from the mean is found. Given obser-
vationsxk−p to xk−1, a zero-mean sequence

xk
k−i = xk−i −

1
p

p
∑

j=1

xk−p

is constructed, and then passed through the AR filter too obtain

x′k =
p
∑

i=1

φi x
k
k−i .

Finally, the load at timek is estimated by

x̂k = µk + x′k. (9)

C. Estimating rates rather than arrivals

A consequence of having a small user population is that
arrivals are very bursty. The majority of time slots will have no
arrivals, whereas a few will have arrivals requesting hundreds
of CPUs. This can be seen in Figure 6, which shows the
data for an 5 hour interval of the Swinburne supercomputer
workload. As a result, it is not feasible to estimate the exact
amount of work that will arrive in a given time slot. Instead,we
estimate theexpected rateof arrivals. Many resource allocation
algorithms take as input a time-varying Poisson process, and so
estimating the time-varying rate of that process is of practical
benefit.

We can think of the observed number of arrivalsxt in
each slott as a realization of a random process. We wish
to compare our estimated number of arrivals ˆxt against the
expected number of arrivals under that random process, rather
than against the actual number of arrivals. To do this, we
follow the “refinement” approach of [12], and compare against
a moving average of the arrivals. Specifically, select an aver-
aging windowW and construct

yk =
1

2K + 1

W
∑

i=−W

xi+k. (10)

Note that this cannot be constructed online, but can be
calculated after all the data is known, and used for evaluation.
In our experiments, the time step was∆ = 5 minutes, and
W = 6 was selected so thatyt represents the average over a
one-hour period.

The primary figure of merit we will use is then the mean
squared error. The mean squared error of the estimate{x̂t} with
respect to the smoothed data is defined as

1
M

M
∑

t=1

|yt − x̂t |
2, (11)

whereM is the number of timeslots used for evaluation. The
two years of data was divided into one year for training the
predictor, and one year for evaluation. Thus the horizon was
one year, givingM = 365× 24× 60/5.



0 1 2 3 4 5
0

10

20

30

40

time (hour)

nu
m

be
r 

of
 C

P
U

s

 

 
real observation
smoothed data

Fig. 6. Arrival workload of Swinburne Supercomputer for a five-hour interval.
The arrivals appear to be very bursty but the overall characteristics are typical
for such supercomputer systems (∆ = 5 minutes,W = 6)

TABLE II
Mean squared error and mean absolute error for different prediction

schemes.

Schemes no smoothing smoothing
MSE MAE MSE MAE

AR(p=35) 4,300 11.67 2,310 9.29
AR(p=35)-adapt. mean 4,325 11.81 2,290 9.86
HR, per user 2,749 10.68 381 7.46
HR, clustered 2,733 8.44 371 5.86
HR, aggregate 2,738 8.60 377 6.10

D. Performance evaluation

With these preliminaries completed, we can now compare
the performance of our hazard rate estimator (2) against the
two benchmarks: AR(35) and AR(35) with adaptive mean. The
latter usedα = 0.99, which corresponds to a time-constant for
µk of 500 minutes (6 hours); this allows it to track diurnal
variation but smooths out fast fluctuations.

The data from 2010 and 2011 was divided into slot of∆ =
5 minutes. The data from 2010 was used to train both the
benchmark estimators and our HR estimator, and the 2011 data
was used for testing. At each time slot, the three estimators
were given the most up-to-date information (recent arrivalrates
for AR, and the time of the last submission for HR), but their
parametersφ andh(·) were not updated.

Those loads predicted by the three schemes were then
compared with the refined version of the real load obtained
from the traces using (11).

Table II summarizes the results. In this table, “HR, per-user”
refers to the scheme (2) in which each user is its own cluster,
“HR, clustered” refers to (6) in which users other than the top
15 were partitioned into three clusters, and “HR, aggregate”
refers to (6) in which all users are placed in a single cluster.

The three HR-based schemes have a significantly lower
MSE than the AR-based estimators: in the worst case it is
83% lower with data smoothing and 36% lower without data
smoothing. Since those large MSEs may raise the concern
about the potential impact of the schemes, it is important
to emphasize that such large MSEs are a result of several
large prediction errors due to the highly bursty nature of the

workload. The mean absolute error (MAE) is less affected
by the very large bursts, and is consequently more optimistic.
Among the HR-based schemes, clustering small users together
and separating out large users (HR, clusterd) appears to
provide the minimum in both MSE and MAE, while grouping
all users into one cluster is the second best (HR, aggregate).
The “HR, per user” scheme, where all users are modelled
separately, provides the worst performance; this is presumably
due to the difficulty of estimating the hazard rate of light users
accurately.

As expected, the mean squared error and mean absolute
error are substantially improved after the smoothing process
for all cases. Note that these quantitative conclusions appear
sensitive to the workload; for example, changes in the sam-
pling interval∆ can even change the order of HR per-user and
HR-aggregate. However, since HR-clustered performed best,
even without optimizing the clustering parameters, we expect
that if the clustering is optimized then the conclusion thata
hybrid HR-clustered approach will continue to be the best for
most workloads.

VI. Concluding remarks

Accurate workload prediction is useful for efficient man-
agement of supercomputer resources. In this paper, we have
described an approach for exploiting per user information
for workload estimation. The approach takes as input the
most recent submission time from each user, and produces an
estimate of the expected arriving workload in the next time
step. Since predicting individual job arrivals is intractable,
this is evaluated by comparison with the average arrival rate
over short time periods. Testing on the workload of the
Swinburne Supercomputer for a two year period showed that
the proposed scheme yields lower mean squared error than
two autoregressive schemes of order 35: AR(35) and AR(35)
with adaptive mean.

We also investigated per-user prediction andk-means clus-
tering of users who contributed little to the load, and were
consequently hard to predict. In our example, clustering small
users together resulted in better median prediction accuracy
than either a scheme that aggregates all users or a scheme that
attempts to estimate the future arrivals of all users individually.

Neither the proposed scheme nor the benchmark consider
predictable diurnal fluctuations in load. The approach taken
here is in principle easy to extend to incorporate such fluctua-
tions, but doing so would require an estimate of the non-i.i.d.
inter-arrival time distributions. This is an important direction
for future study. Even without this extension, the proposed
scheme demonstrates the usefulness of per-user information
in workload prediction.
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