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Abstract

In this paper we study the performance of delay-based congestion control
in the presence of queueing in the reverse path. Specifically, we consider
FAST TCP in a single-bottleneck network by considering two scenarios, each
corresponding to an equilibrium where a different direction of the bottleneck
link is saturated. We argue that the local stability properties of FAST are
unchanged by reverse traffic, and present expressions for the throughput of
each flow and link. Finally, we consider the effect of bidirectional traffic on
the dynamics of the number of flows in the network. We find conditions
on the traffic loads under which the bottleneck shifts between the forward
and reverse links, and conditions under which a given direction is always the
bottleneck.
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1. Introduction

As the Internet has grown to its present size, network congestion has
been avoided by applying congestion control algorithms such as TCP Reno.
This is especially significant given the expected exponential increase in In-
ternet traffic and transmission capacity. To meet the challenges associated
with the growing Internet, new congestion control algorithms are often pro-
posed. Many of these [1, 2, 3] consider increased delay as an indicator of
congestion. A common concern with this approach is that delay experienced
by acknowledgement packets (ACKs) cannot be distinguished from that ex-
perienced by data packets; because ACKs cause much less congestion than
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data packets, it is not necessarily appropriate to reduce the sending rate
simply because ACKs are traversing a congested link.

In this paper, we investigate the performance of delay-based congestion
control in the presence of reverse-path congestion. As an example protocol,
we take the “Fast AQM Scalable TCP” (FAST) protocol, which has been
extensively studied [4, 2, 5, 6, 7, 8]. These studies indicate that FAST is
scalable to meet the challenges of the future Internet.

FAST estimates the amount of queueing its packets experience, by tak-
ing the difference between the current round trip delay and the minimum
delay experienced. It adjusts its sending rate to try to maintain a constant
number of packets in queues throughout the network. If ACKs never expe-
rience congestion, then this approach allocates rates to flows according to
proportional fairness [2].

When TCP flows traverse a link in both directions, each direction carries
not only data packets but also for ACK packets. It is well-known that
queueing of ACKs in the reverse path has adverse effect on TCP Reno
throughout [9, 10], and this also applies to FAST [11]. However, most of the
performance analysis on FAST assumed one-way transmission and ignored
effects of the reverse direction. This paper fills a gap by providing an analysis
of FAST with bi-directional flows.

In this paper we study the performance and stability of two-way FAST
considering a network consisting of a single bidirectional link. Either di-
rection of this link may be the bottleneck, giving rise to two distinct but
symmetric scenarios.

1.1. Related work
There exists a significant body of work on the performance of two-way

TCP. Zhang et al. [10] studied the dynamics that result from two-way Tahoe
TCP traffic. They observed two phenomena, ACK-compression and an out-
of-phase queue-synchronization mode which adversely affect link utilization.
Kalampoukas et al. [9] provided an understanding of ACK compression by
quantitatively analyzing the periodic burst behavior of the source IP queue
and suggested that the degradation in throughput due to two-way traffic
can be significant. Balakrishnan and Padmanabhan [12] explained that the
two-way traffic degraded performance due to bandwidth asymmetry because
of adverse interaction between data packets in the forward direction and
ACKs in the reverse direction. Truong et al. [13] derived an upper bound
and an approximation for the two-way transmission capacity in wireless ad
hoc networks. Lopez-Aguilera et al. [14] analyzed two-way transmission
capacity of Asymmetric Access Point in wireless LANs. Lakshman et al.
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[15] determined the throughput as a function of buffering round-trip times
and normalized asymmetry, and showed how performance degradation can
be alleviated by per-connection buffer and bandwidth allocation in the re-
verse path. Sun et al. [16] verified instability effects of two-way traffic in
a TCP/AQM system by experiments. Fu et al. [17] improved TCP Vegas
throughput over the forward path.

The works on two-way TCP cannot be directly applicable to the FAST
flows in the two scenarios considered in this paper before they are carefully
extended and revised, but give some useful enlightenment. As preliminary
works of the topic, we have analyzed FAST throughput in the asymmetric
single-bottleneck network where one FAST flow transmits in one direction
and its ACK packets are transmitted in the reverse direction [18, 19].

In the following of the paper, we first build a model of FAST in both
scenarios in Section 2. It is argued in Section 3 that reverse queueing does
not fundamentally change the stability issues associated with FAST. The
throughput of FAST flows in the two scenarios is obtained in Section 4.1,
and the utilization of each link by data packets (excluding ACKs) is derived
in Section 4.2. Then we discuss two additional examples with balanced
parameters to have higher network efficiency in Section 5.1. In Section 5.2,
we study the impact of VBR cross traffic on FAST. In Section 6, we consider
the probability of being in each of the scenarios, by constructing a Markov
chain representing the number of flows in each direction.

2. Modeling a Network with Two-way FAST Traffic

In this section, we will consider a network with two-way FAST flows. A
duality model [20], [21] of end-to-end congestion control has been applied to
study the performance of one-way FAST in various publications [4, 2, 6, 7].
In a network with two-way FAST flows, the data packets of FAST flows
in one direction share the same router queue and capacity with the ACK
packets of flows in the opposite direction. This sharing not only has capacity
implications but also affects delay of both data packets and ACK packets.
Therefore, there is a need to extend the model of [21] to be fit for two-way
FAST flows.

2.1. Network model with two-way traffic
A network consists of a set L of unidirection links; bidirectional links

are represented by two separate unidirectional links. Each link l ∈ L has a
capacity of cl [bit/s].
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There is a set S of FAST flows. Each flow s ∈ S consists of two sub-
flows, denoted s+ and s−, which represent the forward traffic consisting
of data packets and the reverse traffic consisting of ACKs. Throughout, a
superscript + denotes a quantity pertaining to a forward flow s+, and a su-
perscript − denotes a quantity pertaining to a reverse flow s−. Each subflow
has the same window size, ws, measured in packets.

At time t, flow s sends at rate xs(t) = ws(t)/(ds + qs(t)) packet/s, in-
ducing rates where qs(t) is the queueing delay experienced by flow s. Let
x+

s = xsP
+
s and x−s = xsP

−
s [bit/s] on the subflows s+ and s−, where P+

s

and P−
s [bit/packet] are the sizes of packets on the forward flow s+ and

the reverse flow s−. Note that the units of x+
s and xs differ by a factor of

bit/packet, the unit of P+
s .

The use of links by flows is characterized by the routing matrix R =
(R+ R−), where R+ = (r+

ls) with r+
ls = 1 if flow s+ uses link l and 0

otherwise, and R− defined analogously.
Let yl(t) be the aggregate source rate at link l, then yl(t) =

∑
s r+

lsx
+
s (t)+∑

s r−lsx
−
s (t). In vector notation,

y(t) =
(

R+ R− ) (
x+(t)
x−(t)

)
, (1)

where x+(t) = (x+
1 (t), x+

2 (t), . . . , x+
S (t))T and x−(t) = (x−1 (t), x−2 (t), . . . , x−S (t))T

are S dimensional vectors, y(t) = (y1(t), y2(t), . . . , yL(t))T is a L dimensional
vector, and ()T denotes matrix transposition.

Each link l is associated with a price pl(t) as its congestion measure at
time t, representing queueing delay. Let q+

s (t) be the end-to-end conges-
tion measure for flow s+, q+

s (t) =
∑

l r
+
lspl(t). Let q−s (t) be the end-to-end

congestion measure for flow s−, q−s (t) =
∑

l r
−
lspl(t). The total congestion

measure for source s is qs(t) = q+
s (t) + q−s (t). In vector notation, we have

q(t) = (R+ + R−)T p(t),

where p(t) = (p1(t), p2(t), . . . , pL(t))T , is a L dimensional vector, q(t) =
(q1(t), q2(t), . . . , qS(t))T is a S dimensional vector.

2.2. Dynamic model of FAST
FAST adjusts its congestion window [2] by

ẇs(t) = γs(
−qs(t)

ds + qs(t)
ws(t) + αs) (2)

4



where αs is the number of the data packets FAST attempts to maintain
in buffers throughout the network, γs = 1/2 is a step-size parameter, and
ds = d+

s + d−s is the total propagation delay, where d+
s and d−s are the

propagation delays of s+ and s−, respectively. The throughput of source s
can be modeled by

xs(t) =
ws(t)

d+
s + q+

s (t) + d−s + q−s (t)
.

The aggregated throughput on links can be obtain by (1). We model the
queueing delay of a link as a truncated integral of the difference between
incoming traffic and the capacity [5]:

ṗl(t) =


yl(t)
cl
− 1 if pl(t) > 0(

yl(t)
cl
− 1

)+
otherwise,

(3)

where (x)+ = max(x, 0).

3. Stability

This section shows that a single-link network with bidirectional FAST
flows can usually be mapped to one with unidirectional flows. This allows
the existing large body of stability results to be applied; see for example [6,
7, 22]. Note that we do not give specific conditions under which FAST is
stable with bidirectional flows; it was shown in [6] that such conditions are
extremely sensitive to assumptions of the models, and so such a result gives
limited insight. It is more useful to see whether or not bidirectional traffic
causes a fundamental change to the problem.

Consider a network with bidirectional FAST flows, in which all links
except for one duplex link between nodes 1 and 2 are non-bottlenecks. The
(possibly bottleneck) link from node 1 to node 2, arbitrarily considered the
“forward” link, is denoted lF and the link from node 2 to node 1 is denoted
as lB. (When used in subscripts, these will be denoted simply F and B.)
The capacities are cF and cB respectively. The non-bottleneck links with
very large capacity are ignored. Let F+, F−, B+ and B− be the subsets of
FAST flows such that r+

Fs = 1, r−Fs = 1, r+
Bs = 1 and r−Bs = 1, respectively.

Intuitively, a flow s ∈ F+ sends data packets through link lF , and the
other groups are analogous. If routing is symmetric, then F+ = B− and
F− = B+, but this need not be the case if routing is asymmetric.

One or both of lF and lB must be a bottleneck. If there is some cross-
traffic not bottlenecked at either of these links, then it is very unlikely that

5



both links will be bottlenecks. We will thus only consider the case that only
one is a bottleneck.

Consider without loss of generality the case that lF is the bottleneck. The
dynamics of this case are exactly those of a network consisting of |F+| +
|F−| unidirectional flows, where flows s ∈ |F+| have packets of size P+

s

and flows s ∈ |F−| have packets of size P−
s . The αs of each flow in the

unidirectional network is the same as that in the bidirectional network; since
lB is not a bottleneck, the size of the packets traversing lB does not affect
the dynamics (except for serialization delay). Existing stability results for
such unidirectional results apply directly to the stability of the bidirectional
FAST flows.

Stability analysis does not help us to obtain how much throughput FAST
flows can achieve in different scenarios. In the next section, we will focus
on performance including throughput and efficiency of FAST flows in two
scenarios.

4. Performance Analysis

4.1. Throughput
The throughput of FAST flows in equilibrium can be obtained by the

Theorem 1 of [2], which is applicable in any networks. In the symmetric
single-bottleneck network with one-way traffic, every FAST flow can achieve
a throughput of x+

s = (αs/
∑

i αi)cl because FAST flows achieve αs-weighted
proportional fairness. However, reverse queueing complicates the through-
put of FAST.

The throughput of FAST in a simple asymmetric link with one-way FAST
flows is considered in [19], but the conclusions are not applicable to two-way
traffic. It is necessary to reconsider two-way FAST throughput in such a
network.

Consider again the dumbell topology of Section 3, consisting of two po-
tential bottlenecks lF and lB. We begin with FAST throughput analysis
from Theorem 1 of [2], that is, throughput of FAST source in equilibrium is
given by xs = αs/q∗, where q∗ is the equilibrium sum of the queueing delays
on lF and lB.

Theorem 1. Link lF is a bottleneck if and only if both

|F+|+ |F−| > 0

and ∑
s∈F+ αsP

+
s +

∑
s∈F− αsP

−
s

cF
≥

∑
s∈F− αsP

+
s +

∑
s∈F+ αsP

−
s

cB
. (4)
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The conditions under which lB is a bottleneck are analogous.
If lF is a bottleneck, then the rate of each flow is

xs =
αs∑

σ∈F+ ασP+
σ +

∑
σ∈F− ασP−

σ
cF ; (5)

otherwise
xs =

αs∑
σ∈B+ ασP+

σ +
∑

σ∈B− ασP−
σ

cB. (6)

Proof. The total data rate on link lF is

yF =
∑

s∈F+

αs

q∗
P+

s +
∑

s∈F−

αs

q∗
P−

s ,

and lF is a bottleneck if and only if this equals the capacity, cF , making
the left hand side of (4) equal q∗. To satisfy the feasibility constraint that
yl ≤ cl for all l, the right hand side is at most q∗. At least one of lF and
lB must be a bottleneck, or else q∗ would be 0, making xs infinite for all s.
This implies that (4) is necessary and sufficient for lF to be a bottleneck.

If lF is a bottleneck, then q∗ is given by the left hand side of (4), whether
or not lB is also a bottleneck. Substituting this into xs = αs/q∗ gives (5),
and (6) is derived analogously.

Note that the weak inequality in (4) implies that it is possible for both
lF and lB to be bottlenecks simultaneously.

Theorem 1 clearly shows how the reverse traffic affects the throughput
of forward traffic under FAST. It also admits a range of simple special cases.

If all flows have equal αs and equal packet sizes P+ and P− = bP+, then
it reduces to lF being a bottleneck if

|F+|+ b|F−|
|F−|+ b|F+|

≥ cF

cB
.

or equivalently,

|F+|
(

1− b
cF

cB

)
+ |F−|

(
b− cF

cB

)
≥ 0. (7)

If moreover the number of flows in each direction is equal, then lF is a
bottleneck if cF < cB. Clearly (7) leads to degenerate cases if the asymmetry
between the capacities, cF /cB, exceeds that between the data packets and
acknowledgements, b; for example, if 1 > b > cB/cF then lF is never a
bottleneck, since flows using it are always bottlenecked by lF instead.
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Conversely, if the link is symmetric, with cF = cB, and if all flows have
equal sized packets and equal sized acknowledgements, with P+ > P−, then
(4) reduces to ∑

s∈F+

αs ≥
∑

s∈F−

αs.

4.2. Efficiency
The efficiency of the network can be measured by the utilization of the

bottleneck link. We define the utilization Ul of a link l as the ratio of the
aggregated throughput of all FAST data packets (excluding ACKs) to the
link capacity cl.

This can easily be calculated by summing the throughputs of the indi-
vidual flows. Specifically, if lF is the bottleneck then

UF =
∑

s∈F+ αsP
+
s∑

s∈F+ αsP
+
s +

∑
s∈F− αsP

−
s

(8)

and

UB =
∑

s∈F− αsP
+
s∑

s∈F+ αsP
+
s +

∑
s∈F− αsP

−
s

cF

cB
, (9)

and similarly if lB is the bottleneck.
Note that the throughput of the bottleneck link depends explicitly only

on the TCP parameters, while the throughput of the link in the other direc-
tion depends also on the ratio kc = cF /cB. The first half of that sentence
must be interpreted carefully: In a network in which lF is the bottleneck,
it cannot be concluded that the throughput of lF cannot be changed by al-
tering kc. Specifically, for a given set of TCP parameters, kc will determine
whether or not lF is indeed the bottleneck. This will be studied in greater
detail in the next section.

5. Numerical Results

To verify our analyses, we use ns2 [23, 24] to simulate several exam-
ple networks. We first study three examples with different configurations
of bidirectional FAST flows and network parameters, then investigate the
performance improvement of the network in balanced parameters by two ad-
ditional examples. Afterwards, we study the performance impact of Variable
Bit Rate traffic on FAST flows. Finally, we summarize the insight gained
by the numerical studies.
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Figure 1: Topology of Example 1

Figure 2: Throughput rates of flows 1 and 2 of Example 1

5.1. Model Validation
We present here five examples that demonstrate the accuracy of our

analyses. In the first three examples, FAST traffic is transmitted over the
three links between two nodes designated 3 and 4, in which (one direction
of) the middle link is the bottleneck. The packet size of FAST is set to 1000
bytes, the ACK size is set to 40 bytes, and the γ parameter of every FAST
flow is set to 0.5.

Example 1. Consider the topology shown in Fig. 1. The bottleneck capac-
ities are cF = 100Mb/s and cB = 1Mb/s. The round trip propagation time
is 20ms. Two FAST flows, s ∈ {1, 2}, transmit data packets over the links
from node 3 to node 4, ACK packets over the links from node 4 to node 3.
Flow s has αs = 100s packets.

The throughput of each flow is plotted in Fig. 2. Here, |F−| is empty
but (1 − bcF /cB) < 0, and so by (7) lF is not a bottleneck, which implies
link lB must be one. Therefore by (6) and the fact that x+

s = xsP
+
s , the
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Figure 3: Topology of Example 2

throughputs of flows 1 and 2 are

x1 =
α1

(α1 + α2)P− cB ≈ 1042 packet/s (x+
1 ≈ 8.3 Mb/s), (10)

x2 =
α2

(α1 + α2)P− cB ≈ 2083 packet/s (x+
2 ≈ 16.7 Mb/s). (11)

Although lB is saturated, UB = 0 because only ACK packet flows on
the link. The utilization of the link lF is UF = 0.25. This shows that the
network is not efficient because of link asymmetry.

Example 2. In this example, the bottleneck link is symmetric with capacity
of cF = cB = 100Mb/s and round trip propagation time of 20ms, as shown
in Fig. 3. Two FAST flows transmit data packets over the links from node
3 to node 4 and one from node 4 to node 3. They set α parameters at 300,
200, 100 packets, respectively.

Here
∑

s∈F+ αsP
+
s = 5× 105 bytes and

∑
s∈F− αsP

+
s = 105 bytes, while

the contributions to delay from the ACKs are negligible, whence lF is bot-
tleneck by (4). By (5),

x1 =
α1

(α1 + α2)P+ + α3P− cF ≈ 7440 packet/s (x+
1 = 59.5 Mb/s), (12)

x2 =
α2

(α1 + α2)P+ + α3P− cF ≈ 4960 packet/s (x+
2 = 39.7 Mb/s), (13)

x3 =
α3

(α1 + α2)P+ + α3P− cF ≈ 2480 packet/s (x+
3 = 19.84 Mb/s). (14)

By simulation, the equilibrium rates are x1 = 7125, x2 = 4750 and
x3 = 2500 packet/s (x+

1 = 57, x+
2 = 38, x+

3 = 20Mb/s).
The throughput of flow 3 is far below the link capacity of 100 Mb/s, since

its ACKs are limited by link lF which is saturated. Hence Link lB is not
saturated, with the utilization UB = 0.198, while link lF obtains UF = 0.992.

Example 3. In this example, two FAST flows transmit data packets in the
opposite directions. Flow 1 transmits data packets in the direction from
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node 3 to node 4, with α = 100 packets. Flow 2 transmits data packets in
the direction from node 4 to node 3, with α = 30 packets. The bottleneck
link is (one direction of) a full duplex link with capacity cF = 100Mb/s from
node 1 to node 2, and cB = 10Mb/s from node 2 to node 11. The round trip
propagation delay is 20ms.

By Theorem 1, link lB is the bottleneck. This gives

x1 =
α1

α2P+ + α1P− cB ≈ 3676 packet/s (x+
1 = 29.4 Mb/s). (15)

x2 =
α2

α2P+ + α1P− cB ≈ 1103 packet/s (x+
2 = 8.82 Mb/s). (16)

From simulation, the throughputs are x1 = 3533 and x2 = 1075 packet/s
(x+

1 = 28.3 and x+
2 = 8.6 Mb/s). The bottleneck is link lB, but UB = 0.88;

Compared to Example 2, the utilization of the saturated link in this example
is small because ACKs take much of the capacity of the link. The utilization
of link lF is UF = 0.294.

For two-way Tahoe flows, there is no condition in which both directions
of the bottleneck link are fully utilized [10]. It is also the case for two-way
FAST flows. However we can find the factors that can increase the utilization
for FAST. We now consider two additional examples in which the ratio of
the numbers of the numbers of flows is close to the threshold given by (17),
at which point both links are saturated.

Example 4. In this example, flow 3 is added to Example 3. Flow 3 trans-
mits data as the same direction as flow 1, and uses α3 = 200 packets.

In this example,
∑

s∈F+ αs/
∑

s∈F− αs = cF /cB. At a first glance, the
utilization of the bottleneck link may seem to be 1. However it is not the
case because of the ACK packet flows.

By Theorem 1, the bottleneck is lB. And the total throughput of lF is

x1+x3 =
α1 + α3

α2P+ + (α1 + α3)P− cB ≈ 8929 packet/s (x+
1 +x+

3 = 71.4 Mb/s).

Then x1 ≈ 23.8 Mb/s, x3 ≈ 47.6 Mb/s since rates are in proportion to α.
Similarly x+

2 = cB − (x+
1 + x+

3 )P−

P+ = 7.14 Mb/s.
The utilizations are UF = 0.714, and UB = 0.714. The additional flow 3

does not significantly reduce the utilization of link lB (from 0.88 to 0.714),

1Note that if the link is symmetric, and there is only one flow in each direction, we can
easily obtain the result that the flow with larger α will experience congestion.
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but increases the utilization of link lF (from 0.294 to 0.714), which makes
the network more efficient. This verifies that increasing

∑
s∈F+ αs results in

a higher UF and/or a lower UB, all else being equal.
The simulation results are that flows 1, 2 and 3 achieve equilibrium

throughput rates of 2663, 900 and 5300 packet/s (or 21.3, 7.2 and 42.4 Mb/s),
respectively. The simulation results are a bit smaller than deduced above.
The reason is that the parameters of the network are balanced, meaning
that each link is almost saturated. The bottleneck may switch due to the
discrete data packet number in simulation, which leads to the sending rate
not being exactly the capacity. And then FAST will adjust its congestion
window so that the bottleneck changes. When changing the scenario, the
link utilization is smaller and the network efficiency is lower.

The switching process is obviously related to the round trip propagation
time of the network. In the next example the round trip propagation time
of the path is set shorter.

Example 5. In this example, two FAST flows transmit data in opposite
directions called flows 1 and 2, whose α parameters are 30 packets. The
bottleneck link has the same capacities 10Mb/s in two directions. The round
trip propagation time is 2ms.

This is a balanced network. The bottleneck switches frequently between
lB and lF due to the discrete data packet number. However the throughput
of FAST flows in both scenarios are stable and approximately the same.
The theoretical throughput results are c/(1 + b) = 9.62 Mb/s according to
Theorem 1. However the simulation results are that both flow 1 and flow
2 achieve the throughput rate of 9.4Mb/s, which is less than theoretical
results. Some network efficiency is lost during the switching process of the
two scenarios.

Compared with Example 4, it is obvious that large round-trip propaga-
tion delay will increase the switching time, and then decrease the throughput
and link utilization. Therefore the small round-trip propagation delay will
achieve higher efficiency in a balanced network.

5.2. Variable bit rate traffic impact
Variable bit rate (VBR) cross traffic will interfere with the network by

competing for the same resources with FAST. Such interfering traffic may
not easily be modeled. We will investigate the impact of VBR on FAST
through simulation. As an example of typical VBR traffic, we use the Star
Wars IV trace, offered by Fittex [25].
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The Star Wars IV traffic are added to Example 3, transmitted on the
path from node 4 to node 3, from 10 s to 80 s. We arbitrarily select the
frames of the movie from 1431280ms. In the 70 s simulation, 908 frames
are played, the average frame size is 5032 bits. Then the average rate is
908 × 5032/70 = 65 kb/s. We consider an extreme situation that 20 users
are watching the movie at the same time without multi-cast technology.
To maximize variability, we consider the case that all streams are perfectly
synchronized. Therefore the whole VBR traffic, 1.3Mb/s, will have a greater
influence on FAST flows than independent VBR traffic does. We plot the
throughput of the two FAST flows and the frame size of Star Wars IV in
Fig. 4.

Obviously, the different and unexpected frame size of Star Wars IV re-
sults in the negative pulses of both FAST flows. The average throughput
rates of flows 1 and 2 are 3613.96 and 1058.39 packet/s, respectively. The
throughput rate of flow 2 with VBR is slightly lower than without VBR,
while the throughput rate of flow 1 is made larger.

We then let 200 Star Wars IV traffic be transmitted on the path from
node 3 to node 4, from 10 s to 80 s, in Example 3. The same negative pulses
of both flows as in Fig. 4 appear. The average throughput rates of flows 1
and 2 are 3523.73, 1064.99 packet/s, respectively.

Next, we let Star Wars IV traffic to be transmitted on the path from
two directions in Example 3. The negative pulses of both flows appear too.
The average throughput rates of flows 1 and 2 are 3602.57, 1053.76 packet/s,
respectively.

From the above results, we can conclude that a small amount of VBR
traffic will lead to minimal variability of the rate of FAST. And because the
bottleneck in Example 3 is lB (the path from node 4 to node 3 is congested),
VBR traffic through this path will influence FAST more seriously than VBR
traffic through the noncongested path from node 3 to node 4.

5.3. Summary
Here, we list the main parameters of FAST flows and the network of the

five examples in Table 1, their throughput and link utilization results in Ta-
ble 2, and the percentage difference defined as |(analysis− simulation)/simulation|
in Table 3.

In all examples, FAST flows are stable whether the bottleneck link is lF or
lB. The simulation throughput of FAST flows in the first three examples are
approximately consistent with the theoretical results. The simulation link
utilizations in the first three examples are also approximately consistent with
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Figure 4: Throughput rates of flows 1 and 2 with Star Wars IV

Table 1: Setting of examples

Example cF [Mb/s] cB[Mb/s] d [ms] α stable Bottleneck

1 100 1 20 (100,200) Yes lB
2 100 100 20 (300,200,100) Yes lF
3 100 10 20 (100,30) Yes lB
4 100 10 20 (100,30,200) Yes lF − lB
5 10 10 2 (30,30) Yes lF − lB

the theoretical results, while the sum of link utilization of the two directions
is smaller.

The sum of link utilization of the two directions in the fourth example
are larger due to their more balanced settings. More balanced setting makes
the network switch its bottleneck frequently, which leads to the simulation
throughput results of the fourth example being slightly smaller than the
theoretical results. If the switch time is small, as the propagation delay in the
fifth example is 2 ms (much smaller than 20 ms in the fourth example), the
throughput of FAST flows increase, and the simulation results of throughput
and links utilization are closer to those of theoretical results.
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Table 2: Comparisons of analytical and simulation results

Example Throughput [Mb/s] Throughput [Mb/s] Utilization Utilization
(Simulation) (Analysis) (Simulation) (Analysis)

1 (8.2, 16.8) (8.3, 16.7) (25%, 0) (25%, 0)
2 (57, 38, 20) (59.5, 39.7, 19.84) (95%, 20%) (99.2%, 19.8%)
3 (28.3, 8.6) (29.4, 8.8) (28.3%, 86%) (29.4%, 88%)
4 (21.3, 7.2, 42.4) (23.8, 7.14, 47.6) (63.7%, 72%) (71.4%, 71.4%)
5 (9.4, 9.4) (9.62, 9.62) (94%, 94%) (96.2%, 96.2%)

Table 3: Percentage difference between analytical and simulation results

Example Throughput Utilization

1 (1.22%,0.6%) (0, -)
2 (4.39%,4.47%,0.8%) (4.42%, 1%)
3 (3.89%, 2.32%) (3.89%, 2.32%)
4 (11.74%, 0.83%, 12.26%) (12.09%, 0.83%)
5 (2.34%, 2.34%) (2.34%, 2.34%)

6. Arrival and Departure of Flows

So far, the number of FAST flows in the network has been considered
fixed. However, in practice flows come and go as file transfers complete.
This section will consider the dynamics of a system in which flows arrive
in each direction as independent Poisson processes of rates λF and λB, and
send exponential amounts of data with equal means 1/µ [bits]. All flows
have equal αs, P+

s and P−
s = bP+

s . The aim is to determine the fraction of
time a dumbbell network will spend with link lF as the bottleneck

It will be assumed that there is a timescale separation between that of
TCP dynamics and that of flow arrivals and departures, so that the rates
reach the equilibrium specified by (5) or (6) as soon as the number of flows
change. The system can then be represented by a two dimensional Markov
chain, with state (n, m) = (|F+|, |F−|). The service rates depend on which
link is the bottleneck, and hence on the state. The form of the service rates
depend on whether the (n, m) is above or below a dividing line with slope
θ; that is, on whether or not n ≥ θm. When n = θm, the load is balanced,
so that both links are fully saturated.

Consider first the degenerate cases of (7) in which the coefficients of
|F+| and |F−| have the same sign. If both are positive, link lF is always
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the bottleneck and so θ = 0; if both are negative, link lB is always the
bottleneck and so θ = ∞. In these cases, the fraction of time that each link
is a bottleneck does not depend on any of the above assumptions.

The remainder of the section will consider the usual non-degenerate case
that b < min(cF , cB)/ max(cF , cB) ≤ 1; the anomalous case when b > 1
(ACKs are larger than data packets) is analogous. In this case, by (7), the
slope of the dividing line is

θ =
cF − bcB

cB − bcF
. (17)

The service rate of each flow is then xsP
+µ where, by (7), xs is given by

(5) if n ≥ mθ and (6) otherwise. Specifically, the transition rates are:

transition rate
(n, m) → (n + 1,m) λF

(n, m) → (n, m + 1) λB

(n, m) → (n− 1,m) nµC(n, m)
(n, m) → (n, m− 1) mµC(n, m)

where

C(n, m) =


cF

n+bm if n ≥ θm and n > 0
cB

bn+m if n < θm

0 otherwise.

Like in a standard two-class processor sharing queue with equal service
time distribution for each class, at each (n, m), the service rate for each
class is proportional to the number of jobs of that class.2 However, (when
θ ∈ (0,∞)) the total service rate is not constant, but instead depends on the
ratio n/m. The maximum rate of µ(cF + cB)/(1 + b) occurs at the dividing
line n = mθ, and there are local minima of µcF when m = 0 and µcB when
n = 0.

This Markov chain may be stable (ergodic), or unstable in both dimen-
sions simultaneously. When acknowledgements are ignored, the system is
unstable in the dimension of link l if the total offered load on link l ex-
ceeds its capacity:

∑
flows s using link l λs/µ ≥ cl [26, 27]. For the bidirec-

tional case studied here, the number of flows using link lF will be unstable

2This may be seen as “fair”. Alternatively, it may be considered unfair, since the flows
whose ACKs are bottlenecked cause much less of the congestion but still only get the same
rate. This could be addressed using size-based priority scheduling on the link, although
that would cause other complications.
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if (λF + bλB) ≥ cF , and similarly the number using lF will be unstable if
(λB + bλF ) ≥ cB. Notice that in either case, both n and m are unbounded,
since all flows use both links.

Although a necessary condition for stability is that
∑

λs/µ < cl on each
link, this is not sufficient, as shown by several examples in [27]. However,
for unidirectional flows, it is sufficient in many cases: when rates are “α-
fair”, it is sufficient even if file sizes are not exponential [28], or timescale
separation is not assumed [29]. When acknowledgements are considered, it
remains an open question whether the simple condition of stability of each
link individually is sufficient for network stability.

When the Markov chain is unstable, the flows enter a fluid regime, in
which the ratio n/m = λF /λB with probability 1. Hence, if λF /λB > θ
then lF is almost always the bottleneck, and if λF /λB < θ then lB is almost
always the bottleneck. When λF /λB < θ, the fraction of time each link
is the bottleneck is not easy to determine, but both links are “almost” the
bottleneck all of the time: for any ε > 0 and l ∈ {lF , lB} the saturation is
yl/cl ≥ 1− ε with probability 1.

The fraction of time each link is a bottleneck depends on the total load,
as well as the amount of traffic on each path. Figure 5 shows this for a single
bidirectional link, with λF (= λB) change from 0 to 1/(1 + b), 1/µ = 1Mb,
cF = 1Mb/s, cB = 2Mb/s, and b = 0.04. At low load, the system is often
empty, but when it is not empty, each link is quite likely to be the bottleneck.
At higher load, the law of large numbers causes the ratio n/m to become
more constant, and so the bottleneck does not shift so often.

7. Conclusions

This paper has provided a study of bi-directional FAST flows. We have
derived the throughput of two-way FAST and link utilization in a network
consisting of a single bidirectional link. Either direction of this link may be
the bottleneck, giving rise to two distinct but symmetric scenarios.

The results have been validated by simulations in several example cases.
Further examples demonstrated that balanced parameters leads to higher
network efficiency. We also argued that reverse queueing need not funda-
mentally change the stability issues associated with FAST in simple topolo-
gies.

Finally, we have demonstrated that the fraction of time for a link being
bottlenecked depends on the total load, as well as the amount of traffic on
each path.
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necked (i.e., the system is empty).
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