
1

Pricing in the Presence of Peering
Eui-woong Lee, David Buchfuhrer, Lachlan L. H. Andrew, Ao Tang, Steven H. Low

Department of Computer Science, California Institute of Technology, Pasadena, CA 91125, USA

Abstract—This paper examines a simple model of how a
provider ISP charges customer ISPs by assuming the provider
ISP wants to maximize its revenue while customer ISPs have
the possibility of setting up peering connections. It is shown that
finding the optimal pricing is NP-complete. Several algorithms
are proposed and the corresponding constant approximation
ratios are proved. Finally, numerical results are provided to show
the average behaviors of the proposed algorithms.

I. INTRODUCTION

The Internet is an aggregation of a large number of networks
owned by competing entities, which we generically call Inter-
net service providers (ISPs). It is well known that economic
consideration frequently overrides technical factors in the
Internet traffic routing. In general, ISPs seek to maximize
their own profit. The border gateway protocol (BGP) provides
routing information, but the choice of route is determined by
financial considerations as well as engineering factors.

The routes available depend on which ISPs are connected
by direct links. When two unconnected ISPs want to exchange
data, they must each pay a “provider” ISP to relay their
data. It has been demonstrated [5] that routing has a “valley
free” property, in which ISPs can be divided into tiers, with
providers always in a tier above their customers. Topology
measurement results [12] show that, among 4200 or so transit
ISPs in the Internet today, only 15 of them are more or less
fully connected. This set of ISPs are commonly referred to as
tier-1 ISPs, and act as global providers. The remaining transit
ISPs either directly or indirectly rely on the tier-1 ISPs for
global reachability.

There has recently been much attention paid to ecomonic
consequences of interdomain routing [1], [2], [8], [11] This
paper concerns the optimal prices a (tier-1) provider ISP can
charge its (tier-2) customers, taking into account the fact that
its customers have the option of “peering” with other tier-
2 networks by operating their own links to carry some or
all of their traffic. In other words, the provider ISP tries to
balance the trade-off between high prices and the number of
subscribers.

This problem is of interest in the networking community as
it is a simple model that describes the basic relations among
ISPs. It serves as a starting point for future extensions to the
case of competing tier-1 ISPs. As we will soon see, it also has
a rich structure which is of interest to theoretical computer
science.

The paper is organized as follows. Section II describes
our mathematical model, which captures the optimization
problem faced by a provider ISP in deciding what to charge
its customers. This problem is shown in Section III to be
NP hard. Section IV develops approximation algorithms with

guaranteed performance to solve this problem. Numerical tests
are provided in Section V to investigate the average behavior
of the proposed algorithms.

II. MODEL AND NOTATION

Let R+ be the set of positive reals, and R+
= R+ ∪{0} be

the set of non-negative reals, and let |X| denote the cardinality
of any set X .

With this notation, consider transit ISPs in two adjacent
tiers, modeled as follows. Assume that all ISPs in the top
tier cooperate to avoid a price war [11], so that they act as a
single provider. This is modeled as a simple undirected graph
G = (V,E). Elements of V = {v1, v2, . . . , v|V |} are called
nodes, vertices or customers, and elements of E are called
links or edges. We also assume that the provider is directly
connected to every customer v ∈ V . Let µ : V 7→ R+

the
price function, such that µ(v) is the price customer v pays
the provider when they exchange one unit of traffic, in either
direction.

Let x(u, v) be the total traffic volume (per unit time) in both
directions between customers u and customer v. If u and v do
not peer, then the traffic goes through their providers and they
have to pay a total of x(u, v)(µ(u) + µ(v)), where one term
is paid by the sender and the other is paid by the receiver.

For each pair u and v, there is a maximum amount c(u, v)
which the provider can charge for traffic sent between u and
v, before u and v stop sending traffic via the provider. We
will interpret this as the cost per unit time of peering. If the
aggregate charge µ(u) + µ(v) exceeds the cost of peering
c(u, v) then it is to the combined benefit of u and v to peer.
This model assumes that in this case they will share the costs in
some fair manner and set up the peering link. Thus the revenue
to the provider from the edge (u, v) is x(u, v)(µ(u) + µ(v))
if µ(u) + µ(v) ≤ c(u, v), and zero otherwise.

The revenue of the provider is then given by the product of
its price and the total traffic between all customers that do not
peer. For any subset of edges E′ ∈ E, let

ν(µ;E′) ≡
∑

(u,v)∈E′

µ(u)+µ(v)≤c(u,v)

x(u, v)(µ(u) + µ(v)) (1)

giving the total revenue from G = (V,E) as

ν(µ) ≡ ν(µ;E). (2)

Remark:
1) The “price to peer”, c, could equally well model the total

cost to u and v of forgoing their connectivity.
2) That the costs of peering are primarily on-going costs,

such as rental of co-location facilities, increased traffic

2

Fig. 1. An example with four ISPs

within the peers’ own networks, the depreciation cost
of equipment used for peering, and the extra costs
associated with having to track down faults rather than
being able to apply pressure to the provider to ensure
connectivity.

3) The assumption that ISPs peer if it is in their combined
interest is an idealization, since in practice peering is
usually only established if it is in the interests of both
parties individually. The combinatorial nature of the
problem remains in both cases.

4) In addition to gaining revenue, the provider incurs
additional cost for traffic it carries. This is not included
in the current model.

The problem we seek to solve is to maximize ν(µ) for a
graph G:

max
µ:V 7→R+

ν(µ) (P1)

with optimal value denoted opt(G).
This notation is shown for a small example network in

Figure 1. The circles represent ISPs, and are labeled with their
prices, µ(v), while the edges are labeled with the peering
costs. In this example, the provider obtains revenue from
edges (1,2), (2,3), (2,4) and (3,4), but not from (1,3) since
µ(1)+µ(3) > c(1, 3). There is negligible traffic between ISPs
1 and 4.

Problem (P1) is related to the problem of finding the
maximum cut of a graph. A cut of a graph G = (V,E) is a
partition of the nodes {X, X} with X ∩X = ∅, X ∪X = V .
The “size” of the cut of a graph with edge weights c is
weighted sum of the “cut edges” with one vertex in each side
of the partition,

∑
{(u,v):u∈X,v∈X} c(u, v). This paper uses

two NP-complete problems related to maximum cuts. The
“simple max-cut” [6], used in Section III, finds the cut of
maximum size of an unweighted simple graph (c(e) = 1 for
all e ∈ E). The “weighted max-cut”, used in Section IV-C,
finds the maximum cut of an arbitrary weighted graph.

Before ending this section, we now show that the problem
can be solved by solving linear programs (LPs). Define a
“revenue set” to be a set of edges R ⊆ E from which we
require that revenue be gained. Given a revenue set, finding

the optimal µ is an LP, and hence in P.

max
R⊆E

M(R) (P2)

where M(R) is the solution to the linear program

max
µ:V 7→R+

∑
(u,v)∈R

x(u, v)(µ(u) + µ(v))

s.t. µ(u) + µ(v) ≤ c(u, v)

Note that R is the set of edges from which we require revenue;
for suboptimal R, the solution to (P2) may yield a solution µ
under which revenue is also obtained by edges not in R.

This LP interpretation has two important applications. The
first is that it allows a heuristic search of revenue sets, as will
be described in Section IV-A. It can also be used as a post-
processing stage after any approximate algorithm which finds
a price function µ. Such price function induces a revenue set,
R. Solving the corresponding LP yields a new price function
µ no worse than the original, and often significantly better.
The value of this approach is demonstrated in the numerical
results of Section V.

It is clear that the number of LPs that we need to solve
grows exponentially as a function of the number of possible
links. This combinatoric structure hints that the problem could
be NP-hard, which will be formally shown in the next section.

For the remainder of this paper, it will be assumed for
simplicity that x(e) = 1 for all e ∈ E. The techniques can
easily be generalized.

III. NP-HARDNESS

Before investigating approximate solutions, it is reassuring
to know that there is no simple algorithm to find the exact
solution. This is the case since the problem of assigning the
optimal prices µ is NP-complete. This will now be shown by
showing the NP-completeness of the corresponding decision
problem “Is there an r such that the total revenue is at least
r?”

Clearly this problem is in NP, since it is easy to compute
the revenue from a given price allocation. To see that it is NP-
hard, it will be shown that the “simple max-cut” problem [6]
can be reduced in polynomial time to solving the pricing
problem (P1).

If µ were restricted to integers, then the max-cut could be
solved simply by assigning weight c(e) = 1 to each edge of G
and solving the resulting problem (P1). An optimal (integer)
solution consists of allocating each node a price µ(v) ∈ {0, 1},
since no revenue can be obtained from edges adjoining any
node with price µ(v) > 1. The sets X = {v ∈ V : µ(v) = 0}
and X̄ = V \ X form the maximum cut, since revenue is
obtained exactly from those edges (u, v) with u ∈ X and
v ∈ X̄ .

However, the optimal solution to the continuous form of the
problem (P1) on G is the degenerate allocation µ(v) = 0.5 for
all v ∈ V , which cannot be used to solve the max-cut problem.
The remainder of this section describes an augmentation of G
which forces the optimal (continuous) prices to be either close
to 0 or close to 1, allowing simple max-cut to be reduced to
the continuous problem (P1).

3

Fig. 2. Construction to force prices µ to lie in [0, 1/k3) ∪ (1− 1/k3, 1].

Consider an arbitrary simple undirected graph G = (V,E),
where V =

{
v1, v2, ..., v|V |

}
. Any isolated node v, such that

there is no u ∈ V with (u, v) ∈ E, will not affect the max-cut
of G. Thus, without loss of generality, we will assume G has
no isolated nodes.

Let k = 2|E| + 1. Construct a graph G′ from G as
follows. For each vi, define the auxiliary graph Gi as shown
in Figure 2.

Formally, let Gi = (Vi, Ei) be a graph, where

Vi1 =
{
vi1, vi2, ..., vi[3k]

}
Vi2 =

{
vi[3k+1], vi[3k+2], ..., vi[6k]

}
Vi3 =

{
vi[6k+1], vi[6k+2], ..., vi[3k4+6k]

}
Vi = {vi} ∪ Vi1 ∪ Vi2 ∪ Vi3

Ei1 =
{
(vij , vi[j+3k]) | vij ∈ Vi1, vi[j+3k] ∈ Vi2

}
Ei2 = {(vi, vij) | vij ∈ Vi2)}
Ei3 = {(vi, vij) | vij ∈ Vi3)}
Ei = Ei1 ∪ Ei2 ∪ Ei3

Then G′ = (V ′, E′) where

V ′ =
|V |⋃
i=1

Vi, E′ = E ∪
|V |⋃
i=1

Ei (3)

with x(e) = 1 for e ∈ E′ and weights c : E′ 7→ R+ such that

c(e) =

 1 e ∈ E ∪ Ei1

2 e ∈ Ei2

1/k3 e ∈ Ei3

(4)

Before proving the main results, let us examine some
properties of G′.

Lemma 1. Consider each Gi. The maximum revenue we can
get from Ei, max{ν(µ;Ei) | µ : V ′ 7→ R+}, depends on the
value of µ(vi), but not on the other nodes in V . Moreover, if
µ(vi) ≤ 1, the revenues satisfy

ν(µ;Ei1 ∪ Ei2) ≤ 3k(2 + µ(vi)) (5)
ν(µ;Ei3) ≤ 3k (6)

max(ν(µ;Ei)) = 3k(2 + µ(vi) + Iµ(vi)<1/k3)

≤ 3k(3 + 1/k3), (7)

1/k^3 1

3/k^2+6k

3k+6k
3/k^2+3k+6k

µ(vi)

Re
ve

nu
e

fro
m

 E
i,

 ν
(µ

 ;
E i)

Fig. 3. Maximum revenue from auxiliary graph, Ei, as price µ(vi) varies.

where IA = 1 if A is true, and 0 otherwise.

The proof of this, and all other lemmas not immediately
followed by their proofs, is in the appendix. A plot of ν(µ;Ei)
against µ(vi) is shown in Figure 3.

The following three lemmas show that there exists an
optimal solution µ to the problem (P1) with µ(vi) very close
to either 0 or 1.

From any price function, it is possible to construct another
price function yielding at least as much revenue, but with no
prices exceeding 1.

Lemma 2. There is a µ : V ′ 7→ R+
such that ν(µ) = opt(G′)

and µ(vi) ≤ 1 for all vi ∈ V .

The proof uses Lemma 1 and the fact that the maximum
revenue from each auxiliary edge in Ei can be achieved when
µ(vi) = 1.

For µ of the form specified in Lemma 2, there are stricter
constraints for the value of µ(vi). For values of µ(vi) near
1/2, the solution would forfeit the revenue of up to 9k from
the very large auxiliary graph Gi, and the revenue could be
increased by reducing µ(vi) to 0. This gives rise to

Lemma 3. Consider µ of the form given in Lemma 2. For
each vi ∈ V , µ(vi) ≤ 1/k3 or µ(vi) ∈ [1− 1/k3, 1]

In particular, if µ(vi) ≤ 1/k3, revenue is gained from Ei3

while if µ(vi) ≥ 1 − 1/k3 then sufficient revenue is gained
from Ei1 ∪ Ei2 to compensate the loss of that revenue. Thus
µ(vi) should be very close to either 0 or 1.

With these results, we can show that the simple max-cut
problem can be reduced to the pricing problem (P1).

Lemma 4. The max-cut of G has size at least r ∈ Z if and
only if opt(G′) ≥ 9|V |k + r.

Theorem 5. The simple max-cut problem can be reduced in
polynomial time to the pricing problem (P1).

Proof: By Lemma 4, opt(G′) ≥ 9|V |k + r if and only
if the max-cut of G has size at least r ∈ Z. To see that the
reduction can be done in polynomial time, note that

|V ′| = |V |+ (3k4 + 6k) (8)
|E′| = |E|+ (3k4 + 6k) (9)

4

are polynomials of |V | and |E|, and to make G′, it is only
required to add |V ′| nodes and |E′| edges.

Corollary 6. The problem (P1) is NP-complete

Proof: It is clearly in NP, and the above reduction from
simple max-cut shows NP-hardness.

IV. APPROXIMATION ALGORITHMS

Since the problem is NP-complete, it is useful to inves-
tigate approximation algorithms. This section presents two
algorithms with provable performance bounds, and a more
heuristic algorithm which usually gets higher revenue but can
sometimes perform arbitrarily badly.

When seeking a bound, an obvious candidate would be
the sum of the edge weights,

∑
e∈E c(e). However, this is

hampered by the fact that for all r ∈ R+ however small,
there is a G such that opt(G) ≤ r

∑
e∈E c(e). (This can

be seen by considering complete graphs of size k with
c(vj , v[(j+i) mod k]) = 1/i; opt(G) grows as O(k) while the
sum grows as Θ(k log(k)).)

Instead, bounds are found in terms of a tighter upper bound
F (V), defined as follows. For any v ∈ V and any t ∈ R+

,
define λv,t : V 7→ R, by λv,t(v) = t and λv,t(u) = 0 for
all u 6= v. Then let f(v) be the maximum revenue obtainable
from ISP v, and g(v) be the corresponding price charged to
v. That is,

f(v) = max{ν(λv,t) | t ∈ R+} (10)

g(v) = min{t ∈ R+ | ν(λv,t) = f(v)}. (11)

Denote the edges from which v could get revenue under µ by

Eµ(v) = {(u, v) ∈ E | µ(v) ≤ c(u, v)} (12)

and note that, taking µ = g,

f(v) = g(v) |Eg(v)| . (13)

For any subset U ⊆ V , let

F (U) =
∑
v∈U

f(v). (14)

Lemma 7. For any graph G = (V,E),

opt(G) ≤ F (V). (15)

Proof: Let µ be a function such that ν(µ) = opt(G). For
each v ∈ V , denote the revenue obtained from v by

f ′(v) = µ(v) |{ u ∈ V | µ(u) + µ(v) ≤ c(u, v), (u, v) ∈ E }|
(16)

whence

opt(G) =
∑
v∈V

∑
(u,v)∈E

µ(u)+µ(v)≤c(u,v)

µ(v)

=
∑
v∈V

f ′(v) ≤
∑
v∈V

f(v)

using µ(u) ≥ 0, and the result follows by (14).
For all graphs, F (V)/4 ≤ opt(G), allowing it to be used

to prove constant-ratio bounds of Theorems 13 and 15.

The following lemma shows that f(v) and g(v) are easily
computable.

Lemma 8. For each v ∈ V ,

g(v) ∈ {c(u, v) | (u, v) ∈ E}. (17)

Proof: Clearly, if the right hand side is non-zero,

g(v) ≤ max{c(u, v) | (u, v) ∈ E} (18)

since otherwise f(v) = 0 by (13).
Suppose that (17) is false, and let

t = min{c(u, v) | (u, v) ∈ E, g(v) < c(u, v)}.

Such a t always exists by (18), and the hypothesis that (17)
is false. Moreover, with Eg defined by (12),

|{(u, v) ∈ E | t ≤ c(u, v)}| = |Eg(v)|

because the existence of a (u, v) such that g(v) < c(u, v) < t
would contradict the minimality of t. Thus

ν(λ(v, t)) = t |{(u, v) ∈ E | t ≤ c(u, v)}|
> g(v) |Eg(v)|
= f(v)

This contradicts the maximality of f(v).
The results in Theorems 13 and 15 show that this problem is

approximable up to a constant factor in polynomial time, and
thus in complexity class APX [4]. This leave open whether or
not it has a polynomial time approximation scheme (PTAS)
[4], meaning that for any ε > 0 there exists a polynomial time
algorithm to find a solution at least 1− ε times the maximum.
Note that max-cut on dense graphs is in class PTAS [3] and,
since ISPs want to be able to connect to all other ISPs, this
problem primarily concerns complete graphs.

A. Sequential by link
Since the optimal weights for a given revenue set can be

found by solving a LP, an effective heuristic is simply to try
a polynomial number of different revenue sets, and take the
best result.1 Two examples are as follows:

Add Start with a full set of peering links (R = ∅), and
greedily add to R the link which provides the greatest
incremental increase in revenue. This algorithm is
guaranteed to get revenue from the two edges with
the highest cost, c(e), although the optimal solution
may not use these edges.

Relax Start with an empty set of peering links (R = E),
and greedily add peering links, which relaxes the
constraint and forgoes the revenue.

The results of these algorithms can be unboundedly worse
than the optimal, as in the case of the following lemma.

Lemma 9. For a graph G = (V,E), let µAdd : V 7→ R+∪{0}
be the price function found by algorithm “Add”. For all r ∈
R+ there exists a G such that

ν(µAdd) ≤ r opt(G).

1The maximum of the linear program, M(R), may be strictly smaller than
the revenue ν(µ) from the resulting price function. The results in Section V
are for algorithms which maximize the increase in M(R) at each step.

5

B. Sequential by node

An alternative sequential algorithm is to allocate prices
sequentially to nodes rather than edges. Algorithm 1 is such
an algorithm, which provably gets at least 1/8 of the maximum
possible revenue. It incrementally constructs prices µ through
a sequence of intermediates µi.

Algorithm 1 Sequential by node
Given a graph G = (V,E), and peering costs c : E 7→ R+:

1: µ0(v)← 0 for all v ∈ V
2: Compute f(v) and g(v) by (10) and (11)
3: sort V to make V = {v1, v2, ..., v|V |}, such that

g(v1) ≤ g(v2) ≤ ... ≤ g(v|V |) (19)

4: for i← 1 to |V | do
5: for j ← 1 to |V | do
6:

µ′i(vj)←
{

g(vi)/2 j = i
µi−1(vj) j 6= i

(20)

7: end for
8: compute ν(µ′i) using (2)
9: if ν(µ′i)− ν(µi−1) ≥ 1

4f(vi) then
10: µi = µ′i
11: else
12: µi = µi−1

13: end if
14: end for

After Algorithm 1 terminates, V is partitioned into two sets
A and B such that

A =
{

v ∈ V | µ(v) =
1
2
g(v)

}
(21)

B = {v ∈ V | µ(v) = 0} (22)

Algorithm 1 can be summarized as: for each i, we compare
µi−1 and µ′i; if ν(µ′i) is sufficiently more than ν(µi−1), put
vi into A, making µi = µ′i.

Since Step (9) ensures the revenue increases by f(vi)/4
whenever µi 6= µi−1,

Lemma 10. If F (A) ≥ F (V)/2 then ν(µ) ≥ F (V)/8.

Proof:

ν(µ) = ν(µ|V |) =
|V |∑
i=1

(ν(µi)− ν(µi−1)) (23)

=
∑
vi∈A

(ν(µi)− ν(µi−1)) (24)

≥ 1
4

∑
vi∈A

f(vi) (25)

The result follows by (14) and F (A) ≥ F (V)/2.
To find an analogous result when F (B) ≥ F (V)/2 will

require an additional lemma.
Since the only difference between µi−1 and µ′i is the value

of vi, the difference ν(µ′i)−ν(µi−1) depends only on revenue

from edges incident on vi. Denote the set of edges from which
µ′i obtains revenue by

EiR = {e ∈ E | vi ∈ e, ν(µ′i, {e}) > 0} (26)

and denote the set of edges from which µi−1 obtains revenue
but µ′i cannot (since µi−1(u) ≤ c(e) < µ′i(u) + µ′i(vi)) by

EiL = {e ∈ E | vi ∈ e, ν(µi−1; {e}) > ν(µ′i; {e}) = 0}.
(27)

Note that edges not in EiR∪EiL do not affect ν(µ′i)−ν(µi−1),
since they yield no revenue under either price function.

The total potential change in revenue at stage i is then

ν(µ′i)−ν(µi−1) = (ν(µ′i;EiR)− ν(µi−1;EiR))−ν(µi−1;EiL)
(28)

Lemma 11. In stage i of Algorithm 1, the additional revenue
available is

ν(µ′i;EiR)− ν(µi−1;EiR) ≥ 1
2
f(vi) (29)

The potential loss of revenue is

ν(µi−1;EiL) =
∑

(vi,vj)∈E,vj∈A,j<i,

g(vj)≤2c(vi,vj)<g(vi)+g(vj)

g(vj)
2

(30)

and, if vi ∈ B, then the potential loss would have been

ν(µi−1;EiL) ≥ 1
4
f(vi). (31)

Lemma 12. If F (B) ≥ F (V)/2 then ν(µ) ≥ F (V)/8.

Proof: Considering revenue only from edges adjacent to
a node with µ(vi) = 0,

ν(µ) =
|V |∑
i=1

∑
(vi,vj)∈E,j<i

µ(vi)+µ(vj)≤c(vi,vj)

µ(vi) + µ(vj)

≥
∑
vi∈B

∑
(vi,vj)∈E,j<i

µ(vj)≤c(vi,vj)

µ(vj)

Substituting explicit values from (21) and (22), and then
limiting the sum to EiL, the right hand side becomes∑

vi∈B

∑
(vi,vj)∈E,vj∈A,j<i

g(vj)≤2c(vi,vj)

g(vj)
2

≥
∑
vi∈B

∑
(vi,vj)∈E,vj∈A,j<i,

g(vj)≤2c(vi,vj)<g(vi)+g(vj)

g(vj)
2

=
∑
vi∈B

ν(µi−1;EiL)

by (30) of Lemma 11. Thus, by (31) of Lemma 11,

ν(µ) ≥ 1
4

∑
vi∈B

f(vi)

The result follows by (14) and F (B) ≥ F (V)/2.
Combining Lemmas 10 and 12 gives the main result:

6

Theorem 13. The total revenue from Algorithm 1 is bounded
by

ν(µ) ≥ 1
8
opt(G). (32)

Proof: Since {A,B} is a partition of V, F (A)+F (B) =
F (V). Thus either F (A) ≥ F (V)/2 or F (B) ≥ F (V)/2.
Applying either Lemma 10 or Lemma 12 gives

ν(µ) ≥ 1
8
F (V) (33)

and the result follows by Lemma 7.

C. Approximate max-cut

A tighter bound can be obtained using an approximate
weighted max-cut algorithm. First, consider how prices µ
could be allocated if a suitable cut were known.

Given a cut {X, X} of G, which cuts edges E′ = {(u, v) ∈
E | u ∈ X, v ∈ X}, define a price function µX which sets
price to 0 for nodes on one side of the cut, and g(v) for nodes
on the other, as follows:
If ∑

v∈X

∑
(u,v)∈E′

g(v)≤c(u,v)

g(v) ≥
∑
v∈X

∑
(u,v)∈E′

g(v)≤c(u,v)

g(v) (34)

then

µX(v)←
{

g(v) v ∈ X
0 v ∈ X

(35)

otherwise

µX(v)←
{

0 v ∈ X
g(v) v ∈ X

(36)

Also, define c′ : E 7→ R+
by

c′(e) =
∑

v∈e, g(v)≤c(e)

g(v), (37)

which is either 0, min(g(u), g(v)) or g(u) + g(v).

Lemma 14. For an arbitrary cut {X, X} with cutting edges
E′ ⊆ E, the revenue generated by µX is related to the c′-
weight of the cut by

ν(µX) ≥ 1
2

∑
e∈E′

c′(e) (38)

Proof: Without loss of generality, consider the case that
more revenue can be gained from nodes in X than in X , in
the sense of (34). Then, considering revenue only from the cut
edges in E′,

ν(µX) ≥
∑

(v∈X,u∈X)∈E′

µX(u)+µX(v)≤c(u,v)

µ(u) + µ(v). (39)

By (34), µ is given by (35), whence then summand in (39)
becomes g(v), giving

ν(µX) ≥
∑

(v∈X,u∈X)∈E′

g(v)≤c(u,v)

g(v)

=
∑
v∈X

∑
(u,v)∈E′

g(v)≤c(u,v)

g(v)

≥ 1
2

∑
v∈X

∑
(u,v)∈E′

c(u,v)≥g(v)

g(v) +
∑
v∈X

∑
(u,v)∈E′

c(u,v)≥g(v)

g(v)


where the last step follows from (34), since the sum of two
terms is at most twice the maximum term. Thus, since X and
X partition V ,

2ν(µX) ≥
∑
v∈V

∑
(u,v)∈E′

c(u,v)≥g(v)

g(v)

=
∑
e∈E′

∑
v∈e

c(u,v)≥g(v)

g(v)

and the result follows by the definition of c′ in (37).
Algorithm 2 finds a suitable cut, not by performing a max-

cut on the graph with the original weights c, but instead with
the weights c′, which allows the performance to be bounded.

Algorithm 2 Max-cut-based algorithm
Given a graph G = (V,E) and peering costs c : E 7→ R+:

1: Compute f(v) and g(v) by (10) and (11)
2: Compute c′ according to (37).
3: Use the approximate weighted max-cut algorithm of [10]

to get a cut X , X of G, with edge weights c′, of weight
at least

∑
e∈E c′(e)/2.

4: Let µ← µX given by (34)–(36).

The main result of this section is

Theorem 15. The µ generated by Algorithm 2 satisfies

ν(µ) ≥ 1
4
opt(G) (40)

This is a straightforward consequence of the following two
lemmas and (7).

Lemma 16. The weight function c′ defined by (37) satisfies

F (V) =
∑
v∈V

f(v) =
∑
e∈E

c′(e) (41)

Proof: By the definitions of f , g and ν and λ,

F (V) =
∑
v∈V

ν(λv,g(v))

=
∑
v∈V

∑
(u,v)∈E

g(v)≤c(u,v)

g(v)

=
∑
e∈E

∑
v∈e

g(v)≤c(u,v)

g(v)

7

and the result follows by the definition of c′ in (37).

Lemma 17. The weight of the max-cut satisfies∑
e∈E′

c′(e) ≥ 1
2
F (V) (42)

Proof: Since E′ is generated using the algorithm of [10],
it is guaranteed that∑

e∈E′

c′(e) ≥ 1
2

∑
e∈E

c′(e) (43)

The result then follows from Lemma 16.
Note that Algorithm 2 uses a max-cut algorithm which

guarantees 1/2 of sum of edge weights [10]. It is tempting
to think that this result could be tightened by using the
celebrated 0.878 approximation algorithm of [7]. However,
this is unsuitable here since it guarantees 0.878 of the true
max-cut, which may be less than 1/2 of the sum of the edge
weights.

V. NUMERICAL RESULTS

In this section, numerical testing on random graphs are
provided to study typical behaviors of the proposed algorithms.

The random graphs used here are all complete, since typi-
cally, each tier-2 ISP wants to communicate with every other
tier-2 ISP. The results presented here are for costs c(e) drawn
independently from a uniform distribution with a maximum
100 times its minimum, U [1, 100], and for exponentially dis-
tributed c(e). Simulations were also performed for correlated
costs, and the results are qualitatively similar, except that the
max-cut algorithm performs around 20% worse.

The max-cut, sequential-by-node and “Add” version of
sequential-by-edge are all run on ensembles of 100 random
networks of between 3 and 20 nodes (3 to 190 edges). For
comparison, the exact solution is evaluated by exhaustive
search over the revenue sets, R, for those networks with up
to seven nodes (21 edges).

Figure 4 shows the probability density function (PDF) of
the “normalized revenue”, measured as the ratio between the
revenue obtained using the sequential-by-node and max-cut
approximations and the optimal revenue. This is the reciprocal
of the standard “approximation ratio”. For clarity, the heuristic
sequential-by-edge algorithm is not shown, since it finds the
optimal prices with probability over 0.9 and simply appears
as a spike on the graph. The max-cut and sequential-by-
node algorithms achieve around 70% or 80% of the optimum
in most runs, which is well above their provable bounds.
Note that the ranking of the algorithms is unrelated to their
theoretical bounds. The reason that the sequential-by-edge
algorithm performs so well is primarily that it performs a more
thorough search, examining O(|V |2) revenue sets, and thus
O(|V |5.5) time with an O(|V |3.5) LP algorithm [9], in contrast
to the O(|V |2 log |V |) running time for the two approximation
algorithms. For these particular examples, the mean running
time of the programs are shown in Table I. The fixed overhead
of around 48 ms dominates the time for the sequential-by-node
and max-cut algorithms.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

Fraction of optimal revenue (%)

pd
f

Sequential−by−node
Max−cut

Fig. 4. PDF of the normalized revenue for networks with |V | = 3, . . . , 7
and uniformly distributed peering costs.

TABLE I
RUNNING TIMES (ms) OF DIFFERENT ALGORITHMS

|V | Exhaustive Sequential-by-edge Sequential-by-node Max-cut
5 57 49 49 48
7 59500 56 52 59
20 – 62200 63 72

Clearly the computational complexity of the sequential-by-
node and max-cut algorithms scales well. To investigate how
well the accuracy scales, Figure 5 plots the performance of
the algorithms against the size of the problem (number of
nodes) for uniformly distributed peering costs. From Table I it
is clear that finding the optimal solution for networks with
|V | > 7 is prohibitive. For this reason, the performance
of all algorithms is normalized to that of the sequential-by-
edge algorithm (which yields an upper bound on the true
“normalized revenue”). The optimal results are also plotted for
|V | ≤ 7, which shows that the sequential-by-edge algorithm is
close to optimal, and hence a suitable reference for comparison
when |V | is large.

As mentioned previously, linear programming can be used
to fine-tune the solutions obtained by the approximate algo-
rithms. An approximate solution defines a particular revenue
set, and it is simple to find the optimal solution corresponding
to that revenue set. The curves marked by crosses in Figure 5
show the results of applying this improvement to each of the
algorithms. The benefit is clearly significant.

Figure 6 shows analogous results for the exponentially
distributed peering costs. Once again, sequential-by-edge per-
forms very well. This time, however, max-cut consistently
outperforms sequential-by-node as predicted by the approx-
imation ratios.

VI. CONCLUSION

Motivated by the fact that ISPs can exchange traffic by
setting up peering relations, we examine how much revenue a
tier-1 ISP can obtain. The problem is formally shown to be NP-
hard. We then proceed to provide heuristics and approximation
algorithms. In particular, by leveraging an existing weighted
max-cut algorithm, we are able to find a solution which is
provably at least 1/4 of the optimum. Numerical results are

8

0 5 10 15 20
0

20

40

60

80

100

Number of vertices, |V|

%
 s

eq
ue

nt
ia

l−
by

−e
dg

e
re

ve
nu

e

Sequential−by−node
Sequential−by−node (LP)
Max−cut
Max−cut (LP)
optimal

Fig. 5. Performance of algorithms relative to sequential-by-edge, uniformly
distributed peering costs.

0 5 10 15 20
0

20

40

60

80

100

Number of vertices, |V|

%
 s

eq
ue

nt
ia

l−
by

−e
dg

e
re

ve
nu

e

Sequential−by−node
Sequential−by−node (LP)
Max−cut
Max−cut (LP)
optimal

Fig. 6. Performance of algorithms relative to sequential-by-edge, exponen-
tially distributed peering costs.

also provided over randomly generated graphs to show the
average behavior of the proposed algorithms.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-0520349.

APPENDIX

Lemma 1 Consider each Gi. The maximum revenue ob-
tainable from Ei depends on the value of µ(vi), but not on
the other nodes in V . Moreover, if µ(vi) ≤ 1, the revenues
satisfy

ν(µ;Ei1 ∪ Ei2) ≤ 3k(2 + µ(vi)) (5*)
ν(µ;Ei3) ≤ 3k (6*)

max(ν(µ;Ei)) = 3k(2 + µ(vi) + Iµ(vi)<1/k3)

≤ 3k(3 + 1/k3), (7*)

where IA = 1 if A is true, and 0 otherwise.
Proof: Consider edges in Ei1 and Ei2.

1) If µ(vi) ≤ 1, we can get at most 3k(2+µ(vi)) by setting

µ(vij) =
{

0 vij ∈ Vi1

1 vij ∈ Vi2
(44)

This establishes (5).
2) If 1 < µ(vi) ≤ 2, we can get the maximum 3k × 3 by

setting

µ(vij) =
{

µ(vi)− 1 vij ∈ Vi1

2− µ(vi) vij ∈ Vi2
(45)

3) If 2 < µ(vi), we can get at most 3k by setting

µ(vij) =
{

1 vij ∈ Vi1

0 vij ∈ Vi2
(46)

Consider edges in Ei3.

1) If µ(vi) ≤ 1/k3, we can get 1/k3 × |Ei3| = 3k from
edges in Ei3 by setting

µ(u) =
1
k3
− µ(vi) u ∈ Vi3 (47)

2) otherwise we can get 0 from edges in Ei3.

This establishes (6).
Summing revenues from Ei1, Ei2, and Ei3 gives (7).
Lemma 2 There is a µ : V ′ 7→ R+

such that ν(µ) =
opt(G′) and µ(vi) ≤ 1 for all vi ∈ V .

Proof: For any α : V ′ 7→ R+
with α(vi) > 1 for some

vi ∈ V , let β : V ′ 7→ R+
such that

β(vi) = 1 (48)

β(vij) =

 0 vij ∈ Vi1

1 vij ∈ Vi2

0 vij ∈ Vi3

(49)

β(u) = α(u) if u /∈ Vi (50)

By Lemma 1, and since the only difference between α and
β is for v ∈ Vi, it is enough to consider revenue from Ei

and edges in E incident on vi to compare ν(α) and ν(β).
Consider the revenue ν(·; ·) under each pricing from different
sets of links:

1) ν(α, Ei3) = 0 since 1/k3 < 1 < α(vi).
2) ν(β;Ei1∪Ei2) = 3k×3, which is the maximum possible

revenue from these edges.
3) From edges in E incident on vi, α gets no revenue,

ν(α, {(u, vi) : vi ∈ V ′}) = 0, since α(vi) > 1.

Thus ν(β) ≥ ν(α).
Repeating for all vi such that α(vi) > 1 yields a µ such

that ν(µ) ≥ ν(α) and µ(vi) ≤ 1 for all vi ∈ V . Therefore,
any function from V ′ to R+

can be modified to have ≤ 1 for
all vi ∈ V , while getting the equal or more revenue.

Lemma 3 Consider µ of the form given in Lemma 2. For
each vi ∈ V , µ(vi) ≤ 1/k3 or µ(vi) ∈ [1− 1/k3, 1].

Proof: First, it will be established that

µ(vi) ∈ [0, 1/k3] ∪ [2/3, 1]. (51)

9

Suppose instead there is some vi ∈ V such that 1/k3 <

µ(vi) < 2/3. Let µ′ : V ′ 7→ R+
such that

µ′(vi) = 0 (52)

µ′(vij) =

 0 vij ∈ Vi1

1 vij ∈ Vi2

1/k3 vij ∈ Vi3

(53)

µ′(u) = µ(u) if u /∈ Vi (54)

Again, it is enough to consider revenue from Ei and E to
compare ν(µ) and ν(µ′).

First, we establish that the total revenue under µ is ν(µ) <
9k, as follows. Note that ν(µ;Ei3) = 0 since µ(vi) > 1/k3,
and ν(µ;Ei1 ∪ Ei2) < 3k(2 + 2/3) = 8k since µ(vi) < 2/3.
Thus, ν(µ;Ei) < 8k. Also, from edges in E, ν(µ;E) ≤ |E|×
1 ≤ k, since c(e) = 1 for all e ∈ E.

However, from edges in Ei alone, µ′ gets ν(µ′;Ei) = 9k,
which is greater than ν(µ) < 9k. Thus ν(µ′) > ν(µ),
which contradicts the hypothesis ν(µ) = opt(G′) and estab-
lishes (51).

It remains to show that there is no vi ∈ V such that 2/3 ≤
µ(vi) < 1 − 1/k3. Suppose instead that there is such a vi.
Then let µ′ : V ′ 7→ R+

such that

µ′(vi) = 1− 1/k3 (55)

µ′(vij) =

 0 vij ∈ Vi1

1 vij ∈ Vi2

0 vij ∈ Vi3

(56)

µ′(u) = µ(u) if u /∈ Vi (57)

Once again, it is enough to consider revenue from Ei and E
to compare ν(µ) and ν(µ′).

First, we will see that µ′ derives more revenue from Ei.
From Ei3, µ gets ν(µ;Ei3) = 0 since 2/3 > 1/k3. By (5),
the revenue from Ei1 and Ei2 is

ν(µ;Ei1 ∪ Ei2) ≤ 3k(2 + µ(vi))
< 3k(2 + µ′(vi))
= ν(µ′;Ei1 ∪ Ei2).

Thus ν(µ′;Ei) > ν(µ;Ei).
For (u, vi) ∈ E, noting that µ(u) = µ′(u) leaves two cases:
1) µ(u) ≤ 1/k3: µ(u)+µ(vi) ≤ µ′(u)+µ′(vi) ≤ 1, which

means µ′ gets more revenue than µ from (u, vi).
2) µ(u) ≥ 2/3: µ cannot get any revenue from (u, vi) since

2
3 + 2

3 > 1.
Thus, ν(µ′;E) ≥ ν(µ;E).

Thus ν(µ′) > ν(µ), which contradicts the hypothesis
ν(µ) = opt(G′) and completes the proof.

Lemma 4 The max-cut of G has size at least r ∈ Z if and
only if opt(G′) ≥ 9|V |k + r.

Proof: “If” part
Let r′ be the size of max-cut of G, and suppose r′ < r. By
Lemmas 2 and 3, we know that there is a µ : V ′ 7→ R+

such
that

ν(µ) = opt(G′) (58)

µ(vi) ≤
1
k3

or µ(vi) ≥ 1− 1
k3

∀vi ∈ V. (59)

Let A and B be the cut of G such that

A =
{
vi | µ(vi) ≤ 1/k3

}
(60)

B =
{
vi | µ(vi) ≥ 1− 1/k3

}
(61)

For each vi ∈ V , the maximal revenue we can get from Ei

is 9k + 3/k3, when µ(vi) = 1/k3, by the second part of
Lemma 1. Thus we can get at most |V |(9k + 3/k3) from all
Eis.

For each edge (u, v) ∈ E, there are three possible cases.

1) (u, v) ∈ A×A: we can get µ(u) + µ(w) ≤ 2/k3

2) (u, v) ∈ A × B ∪ B × A: we can get at most 1 since
c(u, v) = 1.

3) (u, v) ∈ B × B: we can get nothing from (u, v) since
µ(u) + µ(w) ≥ 2× (1− 1/k3) > 1

Since there are at most |E| instances of case 1, and r′ of
case 2, we can get at most 2|E|/k3 + r′ from E. Thus

ν(µ) ≤ |V |(9k + 3/k3) + 2|E|/k3 + r′

= 9|V |k + r′ + (3|V |+ 2|E|)/k3.

But |V | ≤ |E|+ 1, k = 2|E|+ 1 and |E| ≥ 1 imply (3|V |+
2|E|)/k3 < 1, giving

ν(µ) < 9|V |k + r′ + 1.

Since r′ and r are both in Z and r′ < r, this implies
opt(G′) = ν(µ) < 9|V |k + r, which is a contradiction.
Therefore, r′ ≥ r, which completes the proof of the “if” part.

“Only if” part:
Let A, B be a cut of G such that the number of cut edges is
at least r. Let µ : V ′ 7→ R+

such that

µ(vi) =
{

1 vi ∈ A
0 vi ∈ B

(62)

µ(vij) =

 0 vij ∈ Vi1

1 vij ∈ Vi2

1/k3 vij ∈ Vi3

(63)

Clearly ν(µ) ≥ 9|V |k + r, since

1) For each vi ∈ A, we can get 9k from the auxiliary edges
Ei (3k from Ei1, 6k from Ei2 and 0 from Ei3)

2) For each vi ∈ B, we can get 9k from the auxiliary edges
Ei (3k from Ei1, 3k from Ei2 and 3k from Ei3)

3) From the original edges in E, we can get at least r (1
from each crossing edge)

Therefore, opt(G′) ≥ ν(µ) ≥ 9|V |k + r, which completes the
proof.

Lemma 9 For a graph G = (V,E), let µAdd : V 7→ R+∪{0}
be the price function found by algorithm “Add”. For all r ∈
R+ there exists a G such that

ν(µAdd) ≤ r opt(G).

Proof: Let k be such that

k∑
i=1

1
i

>
12− 4r + 1/k2

r
(64)

10

which exists since the right hand side is decreasing in k. Let
G = (V,E) such that

V = {v0, v1, ..., vk, vk+1, vk+2} (65)
E1 = {v0, vi | 1 ≤ i ≤ k} (66)
E2 = {vi, vi+1 | 1 ≤ i ≤ k − 1} (67)
E = E1 ∪ E2 ∪ {(v0, vk+1), (vk+1, vk+2)} (68)

and let c : E 7→ R+ such that

c(e) =


1/i e = (v0, vi) ∈ E1

1/k3 e ∈ E2

10 e = (v0, vk+1)
2 e = (vk+1, vk+2)

(69)

Let µ′ : V 7→ R+ ∪ {0} such that

µ′(vi) =

 1/i 1 ≤ i ≤ k
0 i = 0 or k + 2
2 i = k + 1

(70)

Then, ν(µ′;E1) =
∑k

i=1 1/i, ν(µ′;E2) = 0 and ν(µ′;E \
(E1 ∪ E2)) = 4, giving

ν(µ′) = 4 +
k∑

i=1

1
i
. (71)

The sequential algorithm first adds (v0, vk+1) and
(vk+1, vk+2), which give the most revenue 12. After that the
algorithm adds all the edges in E2 before adding any edge
in E1, since adding edges in E1 would decrease revenue by
adding a constraint to v0 and losing revenue from (v0, vk+1).
After adding all the edges in E2, the algorithm adds edges in
E1, but we can get at most 1 + 1

k2 from edges in E1.
(No matter what µ(v0) is, 1 = 2× 1

2 = ... = k× 1
k , so edges

in E1 can get at most 1 from v0. And since for 1 ≤ i ≤ k,
vi ≤ 1/k3 by edges in E2, so edges in E1 can get at most
1
k3 × k = 1/k2 from vis.)

Therefore, the algorithm finds the local optimum when it
gets revenue from only E − E1, which gives 12 + 1/k2.

Then

ν(µAdd) = 12 +
1
k2

< rν(µ′) ≤ r opt(G) (72)

as required.
Lemma 11 In stage i of Algorithm 1, the additional revenue

available is

ν(µ′i;EiR)− ν(µi−1;EiR) ≥ 1
2
f(vi) (29*)

The potential loss of revenue is

ν(µi−1;EiL) =
∑

(vi,vj)∈E,vj∈A,j<i,

g(vj)≤2c(vi,vj)<g(vi)+g(vj)

g(vj)
2

(30*)

and, if vi ∈ B, then the potential loss would have been

ν(µi−1;EiL) ≥ 1
4
f(vi). (31*)

Proof: Since nodes j > i have not yet been processed,
µ′i(vj) = 0. For j < i, (19) implies µ′i(vj) ≤ µ′i(vi), and

by (20), µi(vi) ≤ c(vi, vj)/2 for (vi, vj) ∈ Eg(vi), with
Eg(vi) defined in (12). Thus

µ′i(vj) + µ′i(vi) ≤ c(e), e = (vj , vi) ∈ Eg(vi).

Hence, using (13),

ν(µ′i;Eg(vi))− ν(µi−1;Eg(vi)) = µ′i(vi) |Eg(vi)|

=
1
2
g(vi) |Eg(vi)| = f(v)/2.

From only edges from Eg(vi), µ′i gets f(v)/2 more revenue
than µi−1.

To prove (29), it suffices to show that this gain is not
canceled by e 6∈ EiR. This is the case since, for any
e = (u, vi) ∈ EiR,

ν(µ′i; {e}) > ν(µi−1; {e})

since

µi−1(u) + µi−1(vi) < µ′i(u) + µ′i(vi) ≤ c(u, vi)

whence (ν(µ′i;Ei \ Eg(vi))− ν(µi−1;Ei \ Eg(vi))) ≥ 0.
To show (31), note that vi ∈ B only if ν(µ′i)− ν(µi−1) <

f(vi)/4. Substituting this and (29) into (28) gives (31).
At stage i− 1, µi−1(vi) = 0, and hence by (1),

ν(µi−1;EiL) =
∑

(vi,vj)∈EiL

µi−1(vj)

=
∑

(vi,vj)∈EiL,vj∈A,j<i

g(vj)
2

since the non-zero terms are g(vj)/2 by (21) and (22). Noting
that EiL consists of those links which give revenue under µi−1

but not µ′i gives (30).

REFERENCES

[1] D. Acemoglu and A. Ozdaglar. Price Competition in Communication
Networks. In Proc. IEEE INFOCOM, pages 1–12, 2006.

[2] E. Anshelevich, B. Shepherd and G. Wilfong. Strategic network
formation through peering and service agreements. in Proc. IEEE
Foundations of Computer Science (FOCS), 2006, pages 77–86.

[3] S. Arora, D. Karger and M. Karpinski. Polynomial time approximation
schemes for dense instances of NP-hard problems. In Proc. ACM
Symposium on the Theory of Computing (Las Vegas, NV), pp. 284-293,
May 29–June 1, 1995.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approximation: Com-
binatorial optimization problems and their approximability properties,
Springer-Verlag, 1999.

[5] L. Gao and J. Rexford. Stable Internet routing without global coordina-
tion. IEEE/ACM Transactions on Networking, 9(6):681–692, December
2001.

[6] M. R. Garey, D. S. Johnson, L. Stockmeyer. Some simplified NP-
complete problems. In Proceedings of the sixth annual ACM symposium
on Theory of computing, 1974, pp 47-63.

[7] M. X. Goemans, and D. P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming. Journal of the ACM, 42(6):1115–1145, Nov. 1995.

[8] R. Johari and J. Tsitsiklis. Routing and peering in a competitive Internet.
In Proc. IEEE Conf. Decision and Control, 2004.

[9] N. Karmarkar. A new polynomial time algorithm for linear program-
ming, Combinatorica, 4(4):373–395, 1984.

[10] S. Sahni and T. Gonzalez, P-Complete approximation problems, Journal
of the ACM, 23(3):555–565, July 1976.

[11] S. Shakkottai and R. Srikant, Economics of network pricing with
multiple ISPs, IEEE Trans. Networking, 14(6):1233-1244, Dec. 2006.

[12] B. Zhang, R. Liu, D. Massey, and L. Zhang. Collecting the internet AS-
level topology. ACM Computer Communication Review, 35(1):53–61,
Jan. 2005.

