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Abstract. We introduce models of gossip based communication networks
in which each node is simultaneously a sensor, a relay and a user of
information. We model the status of ages of information between nodes as
a discrete time Markov chain. In this setting a gossip transmission policy
is a decision made at each node regarding what type of information to
relay at any given time (if any). When transmission policies are based on
random decisions, we are able to analyze the age of information in certain
illustrative structured examples either by means of an explicit analysis,
an algorithm or asymptotic approximations. Our key contribution is
presenting this class of models.

Keywords: Gossip Networks, Discrete Time Markov Chains, Approxi-
mations, Minima of Random Variables.

1 Introduction

We consider gossip networks in which the nodes wish to maintain an updated
situation awareness view of the information sensed by all other nodes in the
network. Using the gossip paradigm [6,13], this is done by having nodes transmit
both their own sensed information and information that they have received from
others. Thus nodes act as sensors, relays and receivers. Bandwidth is limited and
communication channels are imperfect, thus the decision of what and when to
transmit may often greatly affect performance. A natural application for gossip
networks is intelligent transport systems (ITS) in which vehicles wirelessly share
information relating to traffic congestion, road conditions and route alternatives,
in order to improve safety and reduce congestion [7,15]. In this setting, gossiping
is a suitable way to overcome the frequent changes in network topology.

The decision at each node of whether to transmit and what to transmit,
are typically taken so as to minimize some measure of cost. Natural measures
include the ages of information between the various node pairs, where the age of
information at node i of information sensed at node j is defined as the difference
between the current time and the time-stamp found on the most recent sensor
measurement from j received (perhaps through relays) at i.
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Our aim is to introduce simple Markovian age of information models together
with preliminary performance analysis results. Such models may influence network
planning, protocol design and synthesis of efficient control methods. For the
specific examples in this paper, it is easy to generate efficient deterministic
transmission policies, but this analysis is a first step toward studying more
complex networks in which randomized policies are beneficial.

A fundamental question in the design of gossip networks is the following: In
order to help the greater good, how should a node balance relaying with transmitting
its own information? This paper sets the tone for treatment of this question by
means of performance analysis and optimal policy design. For the specific case of
ring networks, we give an answer based on asymptotics.

There has been much work focusing on either information aggregation [4,12,14]
or the age of information in gossip networks [2,3,5,8]. The former dealt with the
problem of computing aggregates based on some functions, such as sum, average
or quantile of a set of data distributed over the nodes of a gossip network, and
studied the performance of protocols in terms of convergence and the optimization
of neighbour selection (i.e. strategy). The latter looked at the age of information
via either analyzing the evolution of processes that gossip one message or content
[3,8] or characterizing the distribution of latency (i.e. age) over the network of
many nodes [2,5].

In particular, both models in [2,5] are based on a mean field analysis with the
networks size tending to infinity. The model in [5] yields a set of partial differential
equations that uniquely describe a system that allowed opportunistic content
updates as in our work but without interference or a lossy wireless channel.
The model in [2], on the other hand, is based on a discrete-time Markov chain
which could possibly be extended to account for a lossy channel but without a
content update. Finally, [9] considers a lossy channel, and uses model checking
and Monte Carlo simulation to investigate the performance of a probabilistic
broadcast gossip protocol.

Our models and flavour of results are different in that we propose a simpler
Markovian framework that can provide explicit formulae for the stationary
distribution of the age of information in some specific cases. Using this framework
the mean age at each node is also obtained for arbitrary tree networks, while the
same is achieved via asymptotic analysis for ring networks. A further distinctive
feature is that our models are suited to real-time data that is continuously
updated. This differs from models where one big file is being transferred, or
sensor network models where the key aim is to conserve energy, as in [10].

The rest of this paper is organized as follows. Section 2 introduces the age
of information models. These are specialized to linear, tree and ring networks
in Sect. 3, where we also present some basic results for the mean and variance
of the age of information and motivate the understanding of rings. Section 4
presents some non-trivial explicit and algorithmic solutions for specific structured
examples. Section 5 presents asymptotic approximations for structured ring
networks with a simple policy where we also answer the question of the balance
between relaying and transmitting one’s own information.
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2 Age of Information Modeling

We consider networks of a finite number of nodes, in which sensing, transmission
and reception occurs at discrete (slotted) time instances. The age of information
process, {Ai,j(n), n = 0, 1, 2, . . . , i 6= j} is such that Ai,j(n) is the age of
the information that node i has about node j at time n. Thus for example if
A1,3(n) = 15, we know that at time n, node 1’s most updated view regarding
the sensed information at node 3 is from time n− 15.

We denote the sequence of information transmissions indicators by {Ii,j(n)},
where Ii,j(n) = 1 if and only if at time n node i has broadcast its information
regarding node j, otherwise Ii,j(n) = 0. Note that Ii,i(n) indicates if a node
broadcasts its own sensed information.

We assume some sort of channel model in which the received packets at every
node depend on the transmitted packets of the whole network and some other
possible random effects that are independent for different n, yet follow the same
probabilistic law. This may describe essentially any form of time-independent
communication channel without memory. At time n the resulting receptions of
packets are a random function of Ii,j(n) for all i, j and are denoted by Ri,j(n)
where Ri,j(n) = 1 if and only if j received a packet sent by node i (containing any
form of sensor information, original or relayed). Using ∧ to denote the minimum,
the dynamics of the age process are

Ai,j(n+ 1) =

{(
Ai,j(n) ∧ ∧{k:Rk,i(n)Ik,j(n)=1}Ak,j(n)

)
+ 1, i 6= j ,

0, i = j .
(1)

As (1) illustrates, age increases by 1 at each time slot, unless “fresh information”
is received. Each node i is only interested in the “freshest” information about j
and therefore compares the minimum age of information that was received (on all
receptions k) with the current age of information stored in node i. The channel
plays a role here in determining how I(n) is mapped to R(n): I(n) determines all
transmissions made on the network and this in turn (perhaps taking interference
into account) determines all receptions.

Randomness enters (1) through both the channel and possibly through the
transmission decisions I(n) in case they are random. In this paper we shall take
{I(n)} to be a (multi-dimensional) i.i.d. sequence. We refer to this as having
Bernoulli policies, i.e., the decision of what to transmit at any time instant is
based on the time-invariant probability distribution of I(n). In this case it is clear
that (1) together with some initial distribution, defines a discrete time Markov
chain.

For a network of N nodes where each node is assumed to have a sensor, the

state space of the Markov chain is ZN
2−N

+ . Transitions on this space are either of
the form (a) incrementing a coordinate by 1 (no new reception) or (b) shifting a
coordinate to equal the value of another coordinate plus 1 (new reception of fresh
information). Showing that the Markov chain has a single irreducible countably

infinite class (nicely represented as a subset of ZN
2−N

+ ), is non-periodic and is
positive recurrent, is straight-forward under quite general assumptions on the
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channels and the transmission policy. We shall skip these details as they are
non-instructive. (Positive recurrence can be established by means of a linear
Lyapunov function.)

Finding explicit performance measures, most importantly finding the station-
ary distribution, marginals of the stationary distribution or their mean, poses a
much greater challenge. In the remainder of the paper we focus on introductory
special structured examples on which the behaviour can by analyzed.

3 Structured Models

In order to get some insight into the behaviour of age of information models of
the form (1), we look at some structured examples. To do so, we assume that the
channel is represented by a directed graph, indicating which nodes can directly
communicate. The graph determines the possible paths in which information may
flow from sensor to user. The minimal attainable age of information, Ai,j(n), is
then the shortest path on the graph from j to i. In case there is no such path,
the Ai,j(·) component of the Markov chain is ignored.

As a first structured example, consider a directed linear network with infinitely
many nodes. See Fig. 1a. In this situation we assume the channel is such that
information from node k can be directly transmitted only to node k + 1. While
channel interference may be taken into account, the model is insightful enough
even in the case of perfect channel conditions. The choice that each node faces at
any time instant is what information to transmit: its own or that of some node to
the left of it. A Bernoulli policy is then determined by a probability distribution,
{pi, i = 0, 1, 2, . . .} such that each node k transmits or relays information about
node k − i with probability pi.

k − i

k − i+ 1

k − 1 k k + 1

(a) (b)

Fig. 1: (a) A directed linear network. (b) A tree.

For this class of networks, finding the marginal distribution of age is a simple
task: Denote by Ai the age of information at some arbitrary node k with respect
to the information from node k− i. We assume stationarity and thus suppress the
dependence on the time n. Then, for infinitely long networks, the random variables
Ai have the same distribution for every k. Now the time it takes information to
propagate from node k − i to node k is distributed as the sum of i independent
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geometric random variables (each with support {1, 2, . . .}) having parameters,
p0, p1, . . . , pi−1. Hence we have,

E[Ai] =

i−1∑

j=0

1

pj
, Var(Ai) =

i−1∑

j=0

1− pj
p2j

.

A similar line of argumentation can be applied to infinite or finite trees as
in Fig. 1b. Since there is only one path4 that information can take between any
two nodes we again have that the set {k : Rk,i(n)Ik,j(n) = 1} appearing in (1)
contains at most one element. Thus the distribution of the age of information
can be represented as a sum of independent geometric random variables (whose
parameters depend generally both on the Bernoulli policy and on possible channel
interference, in a straight-forward way). Further details are in [16].

Ring Networks

For modeling of situations in which information may travel on more than one
route, a natural first step is to consider ring networks as in Fig 2. For brevity
we consider networks with an even number of nodes, say 2M and assume ideal
channels. Assuming rotational symmetry, it is sufficient to study the distribution
of the age of information with respect to a single source, node 1. In this case, we
denote the age of information at the nodes by Ai, i = 1, . . . , 2M .

A1

d = −M

A2M

d = M − 1

AM+1

d = 0

A2

d = −M + 1

θ = 0
− +

···
···

Fig. 2: Ring network of 2M nodes with node 1 the source of information.

Let us define a global coordinate variable d whose origin is the node di-
ametrically opposite the source. This variables counts the number of hops

4 Throughout, we ignore redundant receptions in which a node receives information it
has already relayed.
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to that node in the clockwise direction. We further introduce θ := d
M ∈

{−M/M, (−M + 1)/M, . . . , (M − 1)/M} and denote Zθ := AM(θ+1)+1. Fig 2
illustrates d and θ.

At every time slot, each node decides which sensor information it should relay
(its own sensor information is also an option). Using Bernoulli policies, node i
transmits information it knows about node j with a probability depending on
the “angle” of j relative to i, namely θ. Denote this probability q(θ).

Our aim is to study the marginal distribution Zθ. For each θ, Zθ is the
minimum of the age of information coming from the clockwise and anticlockwise
directions. Information flowing back to the source is redundant, so these are
equivalent to the age of information processes in a ring network with clockwise
or anticlockwise directed transmission, respectively. Using the same reasoning
as in the linear network, the age of information in one direction is distributed
as a sum of independent geometric random variables in a ring network with
directed transmission. We denote the directed age of information in the clockwise

direction by X
(+)
θ and in the anticlockwise direction by X

(−)
θ .

Using the same reasoning as in the directed linear network, we note that X
(+)
θ

is a sum of independent geometric random variables, with

E[X
(+)
θ ] =

θM−1∑

d=−M

1

q(d/M)
, Var(X

(+)
θ ) =

θM−1∑

d=−M

1− q(d/M)

q(d/M)2
.

In the anticlockwise directed transmission (X
(−)
θ ) and with q(·) symmetric with

respect to the distance from the source, the mean and variance are expressed in
the same way except for the interchange of θ by (1− θ) in the summation.

As a Bernoulli policy, we suggest a parametric family of distributions:

q(θ) :=

{
β, θ = −1 ,
Cα|M(|θ|−1)|, θ > −1 ,

where C :=

{
1−β

2M−1 , α = 1 ,
(1−β)(1−α)
2α−αM (α+1)

, α < 1 ,

where α ∈ (0, 1] describes the geometric decay in probability when moving away
from the source and β ∈ (0, 1) is the probability mass of the source transmitting
its own information.

This family allows various behaviours: A uniform transmission probability
(α = 1) or alternatively decaying probabilities when moving further away from
the source (α < 1), both with or without a different probability of transmitting
at the source as determined by β. The information sent by the source is usefully
transmitted in both the clockwise and anticlockwise direction, whereas relayed
information only benefits one of the relay’s neighbours. This suggests that β
should give a higher weight to the source; we optimize β in Sect. 5.

4 Explicit and Algorithmic Solutions

Finding the stationary distributions, their marginals or the means of our models
is in general not straightforward. Nevertheless in this section we report some
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successful results. In doing so we illustrate a recurring pattern in these types of
models: Using marginal distributions to find joint distributions.

The most basic model is a sensor node transmitting to a receiver, where there
is a chance of λ ∈ (0, 1) for successful reception. In this case the age of information
at the receiver follows a specific GI/M/1 type Markov chain (c.f. [1], Sect. XI.3)
in which transitions increment the state by one with probability (1− λ) or reset
the state to 0 with probability λ. As with all GI/M/1 (scalar) Markov chains,
the stationary distribution is geometric, in this case with parameter (1 − λ)
and support {0, 1, . . .}. We shift the support to {1, 2, . . .} to accommodate the
minimal possible age, 1. In general the value of λ may be influenced by both the
channel properties and the transmission policy. For example we may have λ = pq
where p is the chance of receiving a packet conditional on it being transmitted
and q is the chance of transmitting.

This GI/M/1 type stationary distribution can be used as a “building block”
for finding the (multi-dimensional) stationary distributions of more complicated
models. We illustrate this now for two types of models: star networks and a small
ring, further examples and details are in [16].

Star Networks

Consider star networks as illustrated in Figure 3. Transmissions take place from
the source node to N receivers. We denote a version of the steady state age at
node i by Ai. What is then the joint distribution of A1, . . . , AN?

A1

A2

..
.

AN

Fig. 3: A star topology.

To illustrate the solution approach we first consider the case of N = 2. Let λ∅,
λ{1}, λ{2} and λ{1,2} denote the respective probabilities that reception occurs at
neither node, node A1 only, node A2 only, or both nodes. The transition diagram
of this model is shown in Figure 4.
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Let πi,j := P(A1 = i, A2 = j). Then,

π1,1 = λ{1,2}

∞∑

i=1

∞∑

j=1

πi,j , (2a)

πi,1 = λ{2}

∞∑

j=1

π(i−1),j , i ≥ 2 , (2b)

π1,j = λ{1}

∞∑

i=1

πi,(j−1), j ≥ 2 , (2c)

πi,j = λ∅ · π(i−1),(j−1), i, j ≥ 2 . (2d)

Now a key observation is that in (2b)-(2c) there is summation over one entire
coordinate, therefore we can use the marginal distributions. For nodes k = 1, 2,
let ck = 1− (λ{3−k} + λ{1,2}) denote the probability of no reception on the other
node, 3 − k. Then as in the GI/M/1 type Markov chain described above, the
marginal distributions are given by

π
(Ak)
i := P(Ak = i) = (1− c3−k)ci−13−k, k = 1, 2, i = 1, 2, . . . .

Since π1,1 = λ{1,2}, these marginal distributions imply the equilibrium equations
simplify to

π1,1 = λ{1,2} ,

πi,1 = λ{2}π
(A1)
i−1 = λ{2}c

i−2
2 (1− c2), i ≥ 2 ,

π1,j = λ{1}π
(A2)
j−1 = λ{1}c

j−2
1 (1− c1), j ≥ 2 ,

πi,j = λ∅ · π(i−1),(j−1), i, j ≥ 2 .

These then yield the stationary distribution

πi,j =





λi−1∅ λ{1,2}, i = j ,

λj−1∅ λ{2}c
i−j−1
2 (1− c2), i > j ,

λi−1∅ λ{1}c
j−i−1
1 (1− c1), i < j .

After some straightforward calculations this yields

Cov(A1, A2) =
λ∅λ{1,2} − λ{1}λ{2}

(λ{1} + λ{1,2})(λ{2} + λ{1,2})(1− λ∅)
.

It can now be verified that if there is no interaction between the communication
links, i.e., (λ{1} + λ{1,2})(λ{2} + λ{1,2}) = λ{1,2}, then there is a product form
solution to πi,j and the covariance is 0. Otherwise, the covariance is non-zero
and can be used to get LMMSE (linear minimum mean squared error estimates)
of Ak based on A3−k. We do not discuss this further here.

The idea of a network with N = 2 can now be generalized to arbitrary N by
recursive usage of marginal distributions of some lower order. We describe this in
brief and present an algorithm for calculating the exact stationary distribution.
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A2

A1

i i+ 1

j

j + 1

λ{1,2}

λ∅

λ{2}

λ{1}

Fig. 4: Markov chain transition diagram for a star with N = 2.

The Bernoulli policies and i.i.d. channel conditions imply that we may es-
sentially have λB for any receiving subset of nodes B. We let D denote some
proper subset of the set of all nodes in order to consider smaller networks in the
recursive specification that follows. When computing the joint distribution of a
subset D of all the nodes, we need to know λB;D, which are the probabilities
of successful reception on the nodes in the set B, given that we only consider
receptions on the nodes in the subset D of the full network. That is, we ignore
transmissions to the nodes in the complement of D. Let D = {i1, i2, . . . , i|D|}.
To find

π(D)
ai1 ,...,ai|D|

:= P(Ai1 = ai1 , . . . , Ai|D| = ai|D|) ,

let j1, j2, . . . , j|D| be a permutation of D such that 0 ≤ aj1 ≤ aj2 ≤ . . . ≤ aj|D| ,

and let π̃
(D)
aj1 ,aj2 ,...,aj|D|

= π
(D)
ai1 ,ai2 ,...,ai|D|

. Then π̃ can be calculated recursively by

Alg. 1.

Algorithm 1 Joint distribution of |D| nodes in a network of N nodes.

1: if aj1 = . . . = aj|D| then
2: m = |D|
3: else
4: m = min{k : ajk < ajk+1}
5: end if
6: if aj|D| = 1 then

7: π̃
(D)
1,...,aj|D|

= λD;D

8: else
9: Let F = D \ {j1, . . . , jm} and its complement is F c.

10:

π̃(D)
aj1 ,aj2 ,...,aj|D|

=

λ
aj1−1

∅;D · π̃(D)
1,...,1,ajm+1

−aj1+1,...,aj|D|−aj1+1, aj1 > 1

λFc;C · π̃(F )
ajm+1

−1,...,aj|D|−1, aj1 = 1

11: end if
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Similarly to the N = 2 case, the probability at the point (1, 1, . . . , 1) equals
the probability of reception on all nodes in the network; see line 7. For any state
in the interior of the state space, i.e., the smallest age satisfies ai1 > 1, we can
compute the probability by moving back along the diagonal to the nearest (hyper)
plane or edge and using the knowledge that there is a geometric decay along the
diagonals. This is shown in the first part of the equation on line 10. If we are
already on a (hyper) plane or edge, we can use the marginal distribution of all
the other nodes that have a strictly positive age (see second part of line 10). See
report [16] for an illustration in the case of N = 3.

A Small Ring

Let us now consider the smallest non-trivial ring: a ring with 2M = 4 nodes.
We exploit now the fact that A2 = A4 and denote them by A2;4. We then allow
this “virtual” node A2;4 to transmit over two separate channels to the node
diametrically opposite the source. Thus we can represent the steady state age of
information by A3 ∈ {2, 3, . . .} and A2;4 ∈ {1, 2, . . . , A3}. See Fig. 5.

A1 A2;4 A3

q(−1)

Ch.1

q(−1/2)

Ch.2

q(1/2)

Ch.3

Fig. 5: Alternate representation of a network with four nodes where node 1 is the
source. There are three channels.

Denote πi,j := P(A2;4 = i, A3 = j). Observe that the marginal distribution
of A2;4 is geometric with parameter q(−1) = β and support {1, 2, . . .}, as we

found earlier in this section. Let π
(A2;4)
i = P(A2;4 = i). Similarly to the star, this

value appears in the balance equations of πi,j . These equations are based on
reception probabilities on subsets of the channels denoted by λB, where B is a
set of channels. For example λ{2,3} = (1− q(−1))q(−1/2)q(1/2).

π1,2 =
(
λ{1,2} + λ{1,3} + λ{1,2,3}

)
π
(A2;4)
1 , (3a)

π2,2 =
(
λ{2} + λ{3} + λ{2,3}

)
π
(A2;4)
1 , (3b)

π1,j = λ{1}

j−1∑

i=1

πi,j−1 +
(
λ{1,2} + λ{1,3} + λ{1,2,3}

)
π
(A2;4)
j−1 , j ≥ 3 , (3c)

πi,j =
(
λ{2} + λ{3} + λ{2,3}

)
π
(A2;4)
i−1 + λ∅πi−1,j−1, i = j, i ≥ 3 , (3d)

πi,j = λ∅πi−1,j−1, i 6= j, i ≥ 2, j ≥ 3 . (3e)

Algorithm 2 uses these equations to calculate {πi,j , i, j ≤ K} exactly for any K.
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Algorithm 2 Joint distribution of A2;4 and A3.

Use the known π
(A2;4)

i,j and set π1,2 and π2,2.
for j = 3 : K do . Iterate until a bounding box of size K is reached.

for i = 1 : j do
if i = 1 then

Calculate πi,j using (3c), based on π
(A2;4)

j−1 and πi,j−1.
else if i = j then

Calculate πi,j using (3d), based on π
(A2;4)

i−1 and πi−1,j−1.
else

Calculate πi,j using (3e), based on πi−1,j−1.
end if

end for
end for

We now present a numerical example. We compute the joint distribution of
A2;4 and A3 for two sets of transmission parameters (α, β). The first is a uniform
policy (α = 1, β = 1

2M ), and the second has its probability mass concentrated
around the source, (α = 0.1, β = 2

2M ). Figure 6 shows the joint distribution found
by Alg. 2. In the first case the probability mass of the joint distribution is more
widely spread out over the state space and in the latter it is more concentrated
around the minimum ages, i.e. a2;4 = 1 and a3 = 2.

5

10

150
10

20

0

5 · 10−2

0.1

A2;4

A3

(a) (α = 1, β = 1
2M

) Bernoulli policy

5

10

150
10

20

0

5 · 10−2

0.1

A2;4

A3

(b) (α = 0.1, β = 2
2M

) Bernoulli policy

Fig. 6: Joint distribution of A2;4 and A3 for two different policies, using Alg. 2.

A similar approach to that of Alg. 2 can essentially be applied to networks with
more nodes. However, this is analytically demanding and becomes impractical.
Even for a network with 5 nodes there are 5 possible transmissions and thus 25

different subsets of B in λB and many more equations in comparison to (3a)-(3e).
We therefore shift our attention to approximations.
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5 Asymptotic Approximations in Rings

In this section we present an asymptotic evaluation of ring networks with α = 1
and some β. We revisit the question presented in the introduction: How should a
node balance transmitting its own information against relaying? Alternatively,
what is a good value for β? Our analysis is based on the representation

Zθ = X̃M−1
M

+
(
X̃

(+)
θ ∧ X̃(−)

θ

)
,

where X̃M−1
M

represents the age at the neighbouring nodes of the source (both

have the same age) and X̃
(+)
θ , X̃

(−)
θ represent the age difference between the

node in question and the neighbouring nodes of the source, in the clockwise and
anticlockwise directions respectively, based on directed transmission.

For large M , we are guided by the central limit theorem to use a Gaussian
approximation for each of the directed transmissions, i.e., the Negative Binomially

distributed X̃
(+)
θ and X̃

(−)
θ are approximately normally distributed with

µ
(+)
θ := E[X̃

(+)
θ ] = ((1+θ)M−1)C−1 , µ

(−)
θ := E[X̃

(−)
θ ] = ((1−θ)M−1)C−1 ,

and standard deviations, σ
(+)
θ :=

√
µ
(+)
θ (C−1 − 1), σ

(−)
θ :=

√
µ
(−)
θ (C−1 − 1)

respectively. We now have

Zθ ≈d Ẑθ := X̃M−1
M

+ (N
X̃

(+)
θ

∧N
X̃

(−)
θ

) ,

where ≈d informally denotes approximate equality in distribution and the N
variables are independent versions of normal random variables with the aforemen-
tioned parameters. In this paper we do not formalize this as a weak-convergence
result (as M →∞). This technical hurdle is left for future research.

In [11] (see also [17]) the moments of the minima of normally distributed
random variables are given. We exploit these results here to find approximating
expressions for the mean and variance of Zθ. Denoting the CDF and PDF of the
standard normal distribution by Φ(·) and φ(·) respectively, we obtain

E[Ẑθ] =
1

β
+ µ

(+)
θ Φ

(−µ̄
∆

)
+ µ

(−)
θ Φ

( µ̄
∆

)
−∆φ

(−µ̄
∆

)
, (4)

E[Ẑ2
θ ] =

−1

β
+ ω(+)Φ

(−µ̄
∆

)
+ ω(−)Φ

( µ̄
∆

)
− µ̄∆φ

(−µ̄
∆

)
, (5)

where µ̄ := µ
(+)
θ − µ(−)

θ , ∆ :=

√(
σ
(+)
θ

)2
+
(
σ
(−)
θ

)2
, ω(+) :=

(
µ
(+)
θ

)2
+
(
σ
(+)
θ

)2

and ω(−) :=
(
µ
(−)
θ

)2
+
(
σ
(−)
θ

)2
.

We conjecture that for any θ ∈ [−1, 1], limM→∞ E[Z[θ]]/E[Ẑθ] = 1 and the
same for the variance (here [θ] denotes the nearest value that θ may attain over
the grid). We have verified this conjecture numerically by means of extensive
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Fig. 7: Comparison of the mean and variance obtained from simulation with the
approximation values E[Ẑθ] and Var[Ẑθ]. This is for 2M = 30.

Monte-Carlo simulations. As an illustration we compare the curves for 2M = 30
nodes in Fig. 7.

To observe convergence of the variance to the “volcano curve”, we also ran
long simulations for 2M = 100. The results are not displayed here. Our numerical
experiments have also clearly indicated that E[Zθ] ≥ E[Ẑθ] and Var(Zθ) ≤
Var(Ẑθ). We leave proofs of these inequalities for future work.

The Asymptotically Best β

We now optimize the transmission policy with respect to minimizing the mean
age of information at the node corresponding to θ. For θ = 0 we can simplify (4).

We know that the mean and variance of X̃
(+)
0 and X̃

(−)
0 are equal and we omit

the superscripts (+), (−). This leads to the following expression:

E[Ẑ0] =
1

β
+ µ0 −

σ0√
π
.

The mean µ0 is O(M2), whereas σ0 is O(
√
M3) and both scale with 1/(1− β).

Hence the mean dominates the standard deviation for large M , and thus

E[Ẑ0] ≈ 1

β
+

2M2

1− β

for large M . This is minimized for β̂∗ =
√

2/(2M) for large M and θ = 0.

For θ 6= 0, again σθ = o(µθ) whence |µ̄/∆| → ∞ and β̂∗ =
√

2
1−|θ|/(2M). We

numerically compute the β∗ values for various fractions θ using (4), summarized

in Fig. 8. Observe the converge of β∗ to β̂∗ as M →∞.
We have thus found that in large rings, if the overall goal is to maintain

timely information at the farthest node from each sensor, then each node should
transmit its own information about 40% more frequently than the information of
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Fig. 8: Optimal values for β for various angles θ for increasing network size 2M .

some other node. This finding is of course based on a series of assumptions and
stylized modeling assumptions. Yet it can perhaps serve as a rule of thumb for
gossip networks, if there is no better alternative.

6 Conclusion

We have developed a simple Markovian framework for the design and analysis
of a gossip protocol in tree or ring topology networks where information is
probabilistically updated by each individual node and sent over bandwidth-
limited lossy wireless channels. Using the framework, we presented some basic
results for the mean, the variance, and distribution of age in the studied star
networks and a small ring, including non-trivial explicit and algorithmic solutions
to obtain the age of information distribution. For large ring networks, we obtained
asymptotic forms for the age of information using normal approximations and
explored the optimal strategy to forward information in such a network.

Future work will deal with the extension of the framework beyond the linear
(or tree) and ring network topologies where new asymptotic approximations could
be developed. For most applications, including ITS, information about nearby
nodes is more important than information about distant nodes. Hence it will be
useful to consider both optimizing weighted means of ages of information, and
also coarsely aggregating information as it emanates further from its source. We
also wish to settle some of the conjectures laid out regarding the ring asymptotics.
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